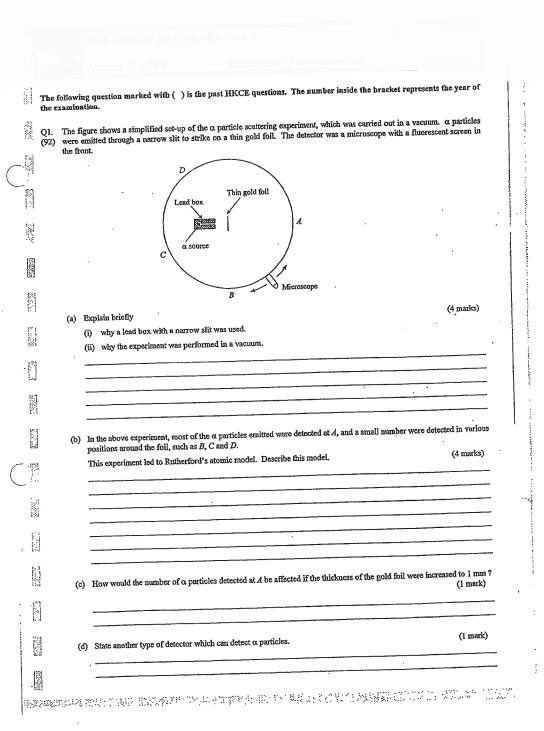

TABLE OF CONTENTS

- **Elective 2 Atomic World**
- 2.1 Rutherford's atomic model
- 2.2 Photoelectric effect
- 2.3 Bohr's atomic model of hydrogen
- 2.4 Particles or Waves
- 2.5 Probing into nano scale

2.1 Rutherford's atomic model

Use fl				$e = 1.60 \times 10^{-19} \mathrm{C}$	1.
Charge	of elect	tron		$m_e = 9.11 \times 10^{-31} \text{ kg}$	
Electro	on rest n	1855			C3
Permit	tivity of	free space		$\epsilon_o = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$	
Part					•
The fo	ollowing	g question mark	ced with (SP) is th	e Sample Paper question of the new DSE Examination.	6
				deduced from Rutherford's scattering experiment ?	
(SP)			es are helium nuclei		÷
• •	(2)) There are disc	crete energy levels i	in an atom.	
	(3)) The positive	charge in an atom is	confined to a very small region.	· ·
) only			
) only) & (2) only	•		
	D. (2	2) & (3) only			
			•		
			• • •		
	tB:	21			
					n.
				he Practice Paper question of the new DSE Examinatio	n. 5
	Whicł	n of the followin	g can be concluded	from the Rutherford scattering experiment ?	n
	Which	n of the followin 1) The nucleus	g can be concluded s of an atom consist	from the Rutherford scattering experiment ? s of protons and neutrons.	n.
M2.	Which } (n of the followin 1) The nucleus 2) The nucleus	g can be concluded s of an atom consist s of an atom is very	from the Rutherford scattering experiment ? s of protons and neutrons. small compared to the size of the atom.	n.
M2.	Which } (n of the followin 1) The nucleus 2) The nucleus	g can be concluded s of an atom consist s of an atom is very	from the Rutherford scattering experiment ? s of protons and neutrons.	
M2.	Which } ((A. (n of the followin 1) The nucleus 2) The nucleus (3) Electromag (2) only	g can be concluded s of an atom consist s of an atom is very	from the Rutherford scattering experiment ? s of protons and neutrons. small compared to the size of the atom.	n.
M2.	Which } ((A. (B. (n of the followin 1) The nucleus 2) The nucleus 3) Electromag	g can be concluded s of an atom consist s of an atom is very	from the Rutherford scattering experiment ? s of protons and neutrons. small compared to the size of the atom.	
M2.	Whief } ((A. (B. (C. (n of the followin 1) The nucleus 2) The nucleus (3) Electromag (2) only (3) only	g can be concluded s of an atom consist s of an atom is very	from the Rutherford scattering experiment ? s of protons and neutrons. small compared to the size of the atom.	
M2.	Whief } ((A. (B. (C. (n of the followin 1) The nucleus 2) The nucleus 3) Electromag (2) only (3) only (1) & (2) only	g can be concluded s of an atom consist s of an atom is very	from the Rutherford scattering experiment ? s of protons and neutrons. small compared to the size of the atom.	
м2. {PP	Which } () (A. () B. () C. () D. ()	n of the followin 1) The nucleus 2) The nucleus 3) Electromag (2) only (3) only (1) & (2) only	g can be concluded s of an atom consist s of an atom is very	from the Rutherford scattering experiment ? s of protons and neutrons. small compared to the size of the atom.	
M2. {PP	Which) ((A. (B. (C. (D. (D. ())	 a of the followin The nucleus The nucleus Electromag only only only e (2) only (1) & (2) only (1) & (3) only 	g can be concluded s of an atom consist s of an atom is very netic waves emitted	from the Rutherford scattering experiment ? s of protons and neutrons. small compared to the size of the atom. from atoms of gases are of specific frequencies.	
{PP Ра Тъ	Which) ((A. (B. (C. (D. (D. ())	n of the followin 1) The nucleus 2) The nucleus 3) Electromag (2) only (3) only (1) & (2) only (1) & (3) only ving question m	g can be concluded s of an atom consist s of an atom is very netic waves emitted	from the Rutherford scattering experiment ? s of protons and neutrons. small compared to the size of the atom.	
M2. {PP	Which } ((A. (B. (C. (D. (D. (D. (C. (C. (D. (C. (C. (D. (C. ()	n of the followin 1) The nucleus 2) The nucleus 3) Electromag (2) only (3) only (1) & (2) only (1) & (3) only ving question m on.	g can be concluded s of an atom consist s of an atom is very metic waves emitted warked with { } is	from the Rutherford scattering experiment ? s of protons and neutrons. small compared to the size of the atom. from atoms of gases are of specific frequencies. the past DSE question. The number inside the bracket	
M2. {PP Pa Th ext	Which (((A. (B. (C. (D. (D. () art C : art C : art at a start art at at a start art at	n of the followin 1) The nucleus 2) The nucleus 3) Electromag (2) only (3) only (1) & (2) only (1) & (3) only ying question m on. n the classical p	g can be concluded s of an atom consist s of an atom is very netic waves emitted parked with { } is oint of view what an	from the Rutherford scattering experiment ? s of protons and neutrons. small compared to the size of the atom. from atoms of gases are of specific frequencies. the past DSE question. The number inside the bracket re the limitations of Rutherford's model of the atom ?	
M2. {PP Pa Th ext	Which } ((A. (B. (C. (D. (D. (D. (C. (C. (D. (C. (C. (D. (C. ()	n of the followin 1) The nucleus 2) The nucleus 3) Electromag (2) only (3) only (1) & (2) only (1) & (3) only ying question m on. n the classical p (1) Atoms wo	g can be concluded s of an atom consist s of an atom is very netic waves emitted parked with { } is oint of view what an puld continuously en	from the Rutherford scattering experiment ? s of protons and neutrons. small compared to the size of the atom. from atoms of gases are of specific frequencies. the past DSE question. The number inside the bracket re the limitations of Rutherford's model of the atom ? nit electromagnetic radiation.	
M2. {PP Pa Th ext	Which (((A. (B. (C. (D. (D. () art C : art C : art at a start art at at a start art at	n of the followin 1) The nucleus 2) The nucleus 3) Electromag (2) only (3) only (1) & (2) only (1) & (3) only ving question m on. n the classical p (1) Atoms wo (2) Atoms wo (2) Atoms wo	g can be concluded s of an atom consist s of an atom is very netic waves emitted parked with { } is oint of view what an puld continuously en puld be unstable and	from the Rutherford scattering experiment ? s of protons and neutrons. small compared to the size of the atom. from atoms of gases are of specific frequencies. the past DSE question. The number inside the bracket re the limitations of Rutherford's model of the atom ? nit electromagnetic radiation.	
M2. {PP Pa Th ext	Which } (((((C. (D. (D. (C. (D. (C. (D. (C. (D. (C. (D. (C. ()))) () () () ()) () (n of the followin 1) The nucleus 2) The nucleus 3) Electromag (2) only (3) only (1) & (2) only (1) & (3) only wing question m on. n the classical p (1) Atoms wo (2) Atoms wo (3) The atom	g can be concluded s of an atom consists s of an atom is very metic waves emitted parked with { } is oint of view what ar puld continuously en- puld be unstable and ic emission spectrum	from the Rutherford scattering experiment ? s of protons and neutrons. small compared to the size of the atom. from atoms of gases are of specific frequencies. the past DSE question. The number inside the bracket re the limitations of Rutherford's model of the atom ? nit electromagnetic radiation.	
M2. {PP Pa Th ext	Which } (((((C. (D. (D. (C. (D. (C. (D. (C. (D. (C. (D. (C. ()))) () () () ()) () (n of the followin 1) The nucleus 2) The nucleus 3) Electromag (2) only (3) only (1) & (2) only (1) & (3) only (1) & (3) only ving question m on. n the classical p (1) A toms wo (2) Atoms wo (3) The atoms (1) & (2) only	g can be concluded s of an atom consist s of an atom is very netic waves emitted warked with { } is oint of view what an ould continuously en ould be unstable and ic emission spectrum	from the Rutherford scattering experiment ? s of protons and neutrons. small compared to the size of the atom. from atoms of gases are of specific frequencies. the past DSE question. The number inside the bracket re the limitations of Rutherford's model of the atom ? nit electromagnetic radiation.	



 $^{\circ}$

M11. From the result of the alpha-scattering experiment, Rutherford proposed his nuclear model of atom. Which of the following statements concerning the model is NOT correct?		Ans	wers			
	dar a she	1.	с	6.	A 11. D	
(2) There exist discrete energy levels for electrons to stay in the atom.		2.	A	7.	D 12. C	
(3) Radiations of discrete wavelength would be emitted when the electrons revolve around the nucleus.	.:					
A. (1) only		•••	- ,			
B. (3) only	4-100					
	2	5.	D	10.	В	
M12. The deflection of alpha particles by a thin gold foil through angles that range from 0° to 180° can be explained by		Sol	ution			
A. scattering from free electrons.			_			
B. diffraction from the nucleus.		1.	C		the second second from Dutherford's contering experiment	
C. scattering from small but heavy regions of positive charge.			1			
D. reflection from the nucleus.			1	(2)		
	10 M		x .	(3)	The positive charge confining to a very small region, the nucleus, could be deduced from the experime	ot
		2.	A			
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		×	(1)	Rutherford scattering experiment concluded that there is a tiny nucleus, but the particles inside the nucleus are not known by this experiment.	
			1	(2)	The large angle of deflection confirmed that there is very tiny nucleus inside the atom.	
			×	(3)	Rutherford scattering experiment cannot give any conclusion about the emitted electromagnetic waves	s
				••		
		3.	D			
			1	(1)	Since the orbital electrons have centripetal acceleration, by classical electromagnetic theory.	
			~	(2)	As the atoms loses energy continuously, the electrons would spiral towards are could be	
· · · ·		•	,	(7)		
	Ŵ		v	(3)	The childston spectrum would be continuous transition of a start and a start and a start and a start and a start	
	With the second s					
		4.	A		and the literature to the standardide versileive forme	
			~	(1)		
	1 1		ж	(2)		
			×	(3)	The path shows that α is attracted towards the nucleus, thus it is impossible.	
	1 St					
		5.	D			
			Sin	e the dot	tted path passes through the nucleus X, it is a head-on collision.	
			Thu	s, the dei	flection is 180° and the alpha particle should be rebounded back along the original path.	
	 following statements concerning the model is NOT correct? (1) All the positive charges are concentrated inside a very thy aucleus. (2) There exist discrete energy levels for electrons to stay in the atom. (3) Radiations of discrete wavelength would be emitted when the electrons revolve around the nucleus. A. (1) only (2) and (2) only (2) and (2) only (3) and (2) only (4) and (2) only (5) and (2) only (1) The deflection of alpha porticles by a thin gold foil through angles that range from 0° to 180° can be explained by A scattering from free electrons. B. diffraction from the nucleus. C. scattering from small but heavy regions of positive charge. D. reflection from the nucleus. (2) reflection from the nucleus. 	 following statements concerning the model is NOT correct? (i) All the positive charges are concentrated inside a way thay outletus. (c) There exist discrete energy levels for electrons to stay in the atom. (a) Radiations of discrete wavelength would be emitted when the electrons revolve around the nucleus. (b) (a) and (c) only (c) (a) and (2) only (d) and (2) only (e) and (2) only (f) and (2) only (f) and (2) only (g) and (3) only M12. The deflection of alpha particles by a thin gold foil through angles that range from 0° to 180° can be explained by (f) setting from free electrons. (f) difficution free observations. (f) difficution free observations of positive charge. (f) reflection from the nucleus. (f) reflection from the nucleus. 	following statements concerning the model is NOT correct? 1. (1) All the positive charges are concentrated midde a very thy nucleus. 2. (2) There exist discrete energy levels for electrons to stay in the atom. 3. (3) Radiations of discrete wavelength would be emitted when the electrons revolve around the nucleus. 3. (4) O ady 4. (5) O ady 5. (7) (2) and (2) only 5. (8) (2) and (3) only 5. M12. The deflection of alpha particles by a din gold foil through angles that range from 0° to 180° can be explained by A. scattering from free electrons. 1. c. scattering from sould be nucleus. 1. C. scattering from sould but heavy regions of positive charge. 1. D. reflection from the nucleus. 2. 2. 3.	following statements concerning the model is NOT correct? 1. C (1) All the positive charges are concentrated index a very thy outletax. 2. A (2) There exist discrete wavelength would be emitted when the electrons revolve around the nucleus. 3. D (3) Endiations of discrete wavelength would be emitted when the electrons revolve around the nucleus. 3. D (4) Outy 4. A (5) Outy 5. D (7) (1) and (2) only 5. D (8) (2) only 5. D (9) (2) and (2) only 5. D (1) (2) and (2) only 5. D (2) The deflection of alpha particles by a thin gold foil through angles that range from 0° to 180° can be explained by A. scattering from from the nucleux. (2) scattering from from the nucleux. 7. * (2) reflection from the nucleus. 7. * (3) reflection from the nucleus. 7. * (4) reflection from the nucleus. 7. * (5) reflection from the nucleus. 7. * (6) reflections. 7. * (7) reflection from the nucleus. 7. * (6) reflection from the nucleus. 7. * (7) reflection from the nucleus. 7. * (8) reflection from the nucleus. 7. *	Indivious statements concerning the models is NOT correct? 1. C 6. (1) All the positive charges are concentrated is hide a very thy uncleus. 3. D 8. (2) There exist discrete mergy levels for electrons to stay in the atom. 3. D 8. (3) Endiations of discrete mergy levels for electrons to stay in the atom. 3. D 8. (4) O only 8. A 9. 5. D 10. (1) C and (2) only 0. (2) and (2) only 5. D 10. M12. The deflection of alpha particles by a duin gold foil through angles that range from 0° to 180° can be explained by 1. C $< < 2.0$ A: seattering from from the nucleus. 1. C . $< < 2.0$ $< < 2.0$ D: reflection from the nucleus. 2. A . $< < 2.0$ $< < 2.0$ D: reflection from the nucleus. 2. A . $< < 2.0$ $< < 2.0$ C: seattering from small but heavy regions of positive charge. 2. A . $< < 2.0$ C: seattering from from the nucleus. < 2.0 C: seattering fr	Billewing interms concentrate large way first ordersI.CG.AII.D(1)M. for pative darge measurementance large way first orders 2 . A <td< td=""></td<>

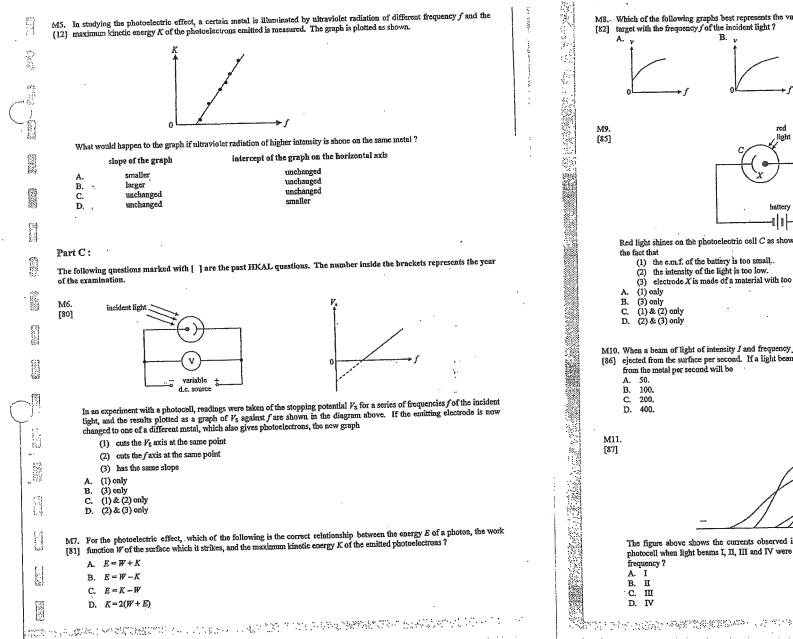
÷

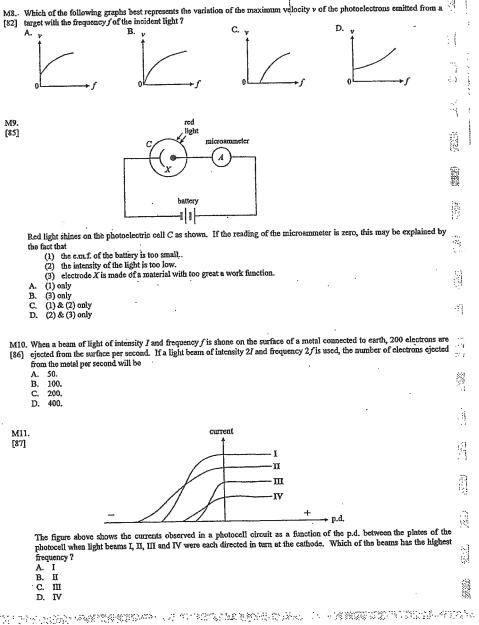
6.	A							÷	
	×	(1)	α-particles have in fact weak penetrating power.		11.	D		1	
	• 🖌	(2)	As most of the space in an atom is empty, thus roost a particles pass through the foil without deflection			~	(1)	All the positive charges are concentrated inside the tiny nucleus that can deflect the alpha pa	rticles.
1.75	ж	(3)	Only the positive charged particles are concentrated in a tiny nucleus, but not the negative charges.			×	(2)	The discrete energy levels are proposed by Bohr, not by Rutherford.	, A
ß,						*	(3)	Rutherford model cannot explain the emission of radiation of discrete wavelength.	1
^{L.19} 7.	D					<not< td=""><td>e that the</td><td>e question asks for incorrect statements. ></td><td>e 2</td></not<>	e that the	e question asks for incorrect statements. >	e 2
9	×	A.	During the bombardment, the a particle knocks out a proton from the nucleus, so it is a nuclear reaction.			_			1
(A)	×	B.	During the bombardment, the α particle knocks out a neutron from the nucleus,		12.	C			4
50			thus it is a nuclear reaction.			The p	ocess of	changing the direction of the alpha particles by the positive charged nucleus is called scattering	. 🤾
N	×	C.	When aluminium is transmuted into phosphorus, the nucleus is changed, thus it is a nuclear reaction.						0
633	1	D.	During the collision, alpha particles are rebounded by the gold nucleus,						Contraction of the second s
			alpha particles do not make contact with the nucleus, thus it is not a nuclear reaction.						
515)		• 2.)							
8.	В			김 김					~
(** 3	Ву с	onservatio	on of energy:					· · ·	(3) (3)
	4	KE at far	distance = KE at $P + PE$ at P where $PE = Qq$			·			
.84			$4\pi \varepsilon_{q} r$						
3	. 7	.7 × 10 ⁶ ×	$1.6 \times 10^{-19} = KE_{\rm p} + \frac{(79 \times 1.6 \times 10^{-19})(2 \times 1.6 \times 10^{-19})}{4 \pi \varepsilon_{\rm o} (6.5 \times 10^{-14})}$						
	x	æ _r = 6.7.	$2 \times 10^{-13} \text{ J} = \frac{6.72 \times 10^{-13}}{1.6 \times 10^{-19}} = 4.2 \times 10^{6} \text{ eV} = 4.2 \text{ MeV}$					Υ.	
g 9.	с								
	×	A.	α particles are scattered by the nucleus of the atoms, thus no relation with the energy level of electrons.						
3	×	B.	Binding energy is the energy to split the nucleus, but a cannot reach the nucleus of the atoms.						
	1	C.	The closest approach of the α particles can give an estimate of the size of the nucleus.						
	×	D.	This experiment can only tell the structure of atom, but not the structure of the nucleus.						
3					•				Y
10.	в								-
	~	(1)	Apply the classical electromagnetic theory onto the Rutherford's atomic model,						
		~~*	the electrons orbiting the nucleus have contripetal acceleration,						
•			thus electromagnetic waves would be emitted continuously,						
			and the atom would gradually lose energy and collapse.						<i>f</i> 1:
			Actually, an atom would not emit electromagnetic waves and would not collapse,						
	1	(2)	When a high voltage is applied to the gas in a discharge tube,	· .					
			the gas would emit light consisting of discrete spectral lines. Rutherford's model cannot explain why only the waves of certain frequency or wavelength are emitted,						<u>.</u> X
			but not the continuous range of wavelengths.						
	ж	(3)	The orbiting motion of electrons is a circular motion,						Q.
	•	(-)	centripetal force is provided by the electrostatic attraction force between the nucleus and the electrons.						
									3
	0 N.:				yaraa.	·	······	Press, and a system of the second	÷.
					· .		•		A.X 88

01. (a)	ເມ	To obtain a fine beam of a particles.	[2]	
		OR		272
		To enable the α particles travel in a straight line.	[2]	, , 33
	(ii	α particles have very short ranges in air.	[2]	
		OR	[2]	(ke.,
		The range of α particles in air is only a few centimetres.	[1]	
(b)		here exists a tiny nucleus in the atom. ost of the space in an atom is coppy.	[1]	
	A	I the positive charge and most of the mass were concentrated in the nucleus.	(1) [1]	
	T	ae negative electrons move around the nucleus.		57
(c)) T	he number of α particles detected at A becomes zero.	[1]	<i>.</i> 20
(d	I) G	M tube	[1]	
	C	R		
	P	hotographic film	[1]	
		· .		
				, life
		·		
				1.2411
				Acres 1
		· .		
	•			

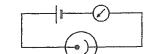
N.V.

4


73


(31) - 23) -

10.10


2.2 Photoelectric effect

Use the	following data v	Ameredet mees	essary :		•			
Speed of	light in vacuum		C	= 3 × 10 ⁸ m s ⁻¹				
Charge of	felectron		e	= 1.6 × 10 ⁻¹⁹ C				
Electron	rest mass		m	= 9.11 × 10 ^{−34}	kg			
Planck co	instant		h	∞ 6.63 × 10 ⁻³⁴ J	s			
The foll	lowing list of form	mulae may be	e found usefi	al :				
Einstein's	s photoelectric equation	on	$\frac{1}{2}$	$m_{\rm c} v_{\rm max}^2 = hf$	- <i>φ</i>			
Part A	•							
The folio	wing questions mar	ked with (SP) a	re the Sample I	aper questions	of the new DSI	C Examination		
MI. The	e equivalent waveleng	gth of a photon o	f energy 10 eV i	s				
{SP} A. B.	213 nm 124 nm							
C. D.	25.6 nm 19.7 nm				•			
	,	· · ·						
M2. In a	an experiment on th	e photoelectric	effect, a beam	of monochrom	atic light is dire	ected onto a m	etal plate to Jil	e
{SP} elec	ctrons. The velocity of directly proportions	of the fastest pho	toelectrons emit	ted is			-	
			,					
В.	directly proportions	d to the intensity	of the incident	light.				
В. С. D,	independent of the	nature of metal.		light.				
B. C. D.	independent of the a independent of the i	nature of metal. intensity of the ir	icident light.	light.				
B. C. D,	independent of the	nature of metal. intensity of the ir	icident light.	light.				
B. C. D, M3. The	independent of the independent of the e work function W of <u>Metal</u>	nature of metal. intensity of the ir	icident light.	Light. Calcium	Magnesium	Beryllium]	
B. C. D, M3. The	independent of the independent of the e work function W of	nature of metal. intensity of the ir five metals are ta	ucident light. Ibulated below.		Magnesium 5.9	Beryllium 8.0	 -	
B. C. D. M3. The {SP}	independent of the Independent of the e work function W of <u>Metal</u> W/10 ⁻¹⁹ J	nature of metal. intensity of the ir five metals are iz Caesium 3.4 ight of wavelend	ncident light, hbulated below. Barhum 4.0	Calcium . 4.6	5.9	8.0	them would e:	h
B. C. D. (SP)	independent of the : Independent of the i e work function W of <u>Metal</u> W/10 ⁻¹⁹ J nen monochromatic 1 otoelectric emission ? 1	nature of metal. intensity of the ir five metals are iz Caesium 3.4 ight of wavelend	ncident light, hbulated below. Barhum 4.0	Calcium . 4.6	5.9	8.0	them would e	h
B. C. D. M3. The {SP}	independent of the : independent of the i e work function W of <u>Metal</u> W/10 ⁻¹⁹ J an monochromatio 1 poolectric emission ?	nature of metal. intensity of the ir five metals are iz Caesium 3.4 ight of wavelend	ncident light, hbulated below. Barhum 4.0	Calcium . 4.6	5.9	8.0] them would e	da
B. C. D. M3. The {SP}	independent of the : Independent of the i e work function W of <u>Metal</u> W/10 ⁻¹⁹ J an monochromatic 1 stoelectric emission ? 1 2 3	nature of metal. intensity of the ir five metals are iz Caesium 3.4 ight of wavelend	ncident light, hbulated below. Barhum 4.0	Calcium . 4.6	5.9	8.0	f them would e	al.
B. C. D. M3. The {SP} Wh pho A. B. C.	independent of the : Independent of the i e work function W of <u>Metal</u> W/10 ⁻¹⁹ J an monochromatic 1 stoelectric emission ? 1 2 3	nature of metal. intensity of the ir five metals are iz Caesium 3.4 ight of wavelend	ncident light, hbulated below. Barhum 4.0	Calcium . 4.6	5.9	8.0	them would e	-du
B. C. D. M3. The (SP) Wh pho A. B. C. D,	independent of the : Independent of the i work function W of <u>Metal</u> W/10 ⁻¹⁹ J ten monochromatic 1 stoelectric emission ? 1 2 3 4	nature of metal. intensity of the ir five metals are iz Caesium 3.4 ight of wavelend	ncident light, hbulated below. Barhum 4.0	Calcium . 4.6	5.9	8.0	them would e	ah
B. C. D. M3. The {SP} [[[[[[] [] [] [] [] [] []	independent of the : Independent of the i e work function W of <u>Metal</u> W/10 ⁻¹⁹ J nen monochromatic 1 otoelectric emission ? 1 2 3 4	nature of metal. intensity of the ir five metals are iz <u>Caesium</u> <u>3.4</u> ight of waveleng	ucident light. Ibulated below. Barium 4.0 gth 400 nm is	Calcium 4.6 incident on eac	5.9 h of the metals,	8.0 how many of		
B. C. D. M3. The {SP} Wh pho A. B. C. D. Part B : The follo	independent of the : Independent of the i work function W of <u>Metal</u> W/10 ⁻¹⁹ J ten monochromatic 1 stoelectric emission ? 1 2 3 4	nature of metal. intensity of the ir five metals are iz <u>Caesium</u> <u>3.4</u> ight of waveleng	ucident light. Ibulated below. Barium 4.0 gth 400 nm is	Calcium 4.6 incident on eac	5.9 h of the metals,	8.0 how many of		
B. C. D. M3. The {SP} Wh pho A. B. C. C. D. D. The follo of the exe	independent of the : independent of the i e work function W of <u>Metal</u> W/ 10 ⁻¹⁹ J nen monochromatic 1 stoelectric emission ? 1 2 3 4	nature of metal. intensity of the ir five metals are iz <u>Caesium</u> <u>3.4</u> ight of waveleng ked with { } ar	ncident light. Ibulated below. Barium 4.0 gth 400 nm is	Calcium 4.6 incident on eac	5.9 h of the metals,	8.0 how many of	represents the	у
B. C. D. M3. The {SP} Wh pho A. B. C. D. Part B : The follo of the exc M4. Pho {12} emi	independent of the : Independent of the i Independent of the i Metal <i>W</i> /10 ⁻¹⁹ J then monochromatic 1 btoelectric emission ? 1 2 3 4 wing questions mark amination. btoms with energy 7 c itted is 4 eV. When p	nature of metal. intensity of the ir five metals are iz Caesium 3.4 ight of waveleng ked with { } ar EV are incident of	ncident light. Ibulated below. Barium 4.0 gth 400 nm is re the past DSE on the cathode of	Calcium 4.6 incident on eac questions. Th	5.9 h of the metals,	8.0 how many of e the brackets	represents the	у
B. C. D. M3. The {SP} Wh pho A. B. C. D. Part B : The follo of the exs M4. Pho {12} emi A.	independent of the : Independent of the i Metal W/10 ⁻¹⁹ J the monochromatic 1 ptoelectric emission ? 1 2 3 4 wing questions mark amination.	nature of metal. intensity of the ir five metals are iz Caesium 3.4 ight of waveleng ked with { } ar EV are incident of	ncident light. Ibulated below. Barium 4.0 gth 400 nm is re the past DSE on the cathode of	Calcium 4.6 incident on eac questions. Th	5.9 h of the metals,	8.0 how many of e the brackets	represents the	у
B. C. D. M3. The {SP}	independent of the : independent of the i independent of the i work function W of <u>Metal</u> <u>W/10⁻¹⁹ J</u> ten monochromatic 1 stoelectric emission ? 1 2 3 4 wing questions mark amination. btons with energy 7 e itted is 4 eV. When p 0 V.	nature of metal. intensity of the ir five metals are iz Caesium 3.4 ight of waveleng ked with { } ar EV are incident of	ncident light. Ibulated below. Barium 4.0 gth 400 nm is re the past DSF	Calcium 4.6 incident on eac questions. Th	5.9 h of the metals,	8.0 how many of e the brackets	represents the	y,

M12. [88]

Light falls on the photo-sensitive metal surface of a photocell. A battery and a sensitive meter are connected to the photocell as shown. Which of the following statements is correct? A. No current is observed in the meter until after a considerable time, when the metal surface has heated up.

B. The maximum energy of the electrons emitted is proportional to the intensity of light.

C. The maximum kinetic energy of the electrons emitted is independent of the particular metal used.

D. No current is observed in the meter unless the frequency of light is above a minimum value.

M13. When light of wavelength 4.0 × 10⁻⁷ m is incident on the surface of a metal, the kinetic energy of the electrons emitted has a [89] maximum value of 3.0 × 10⁻¹⁹ J. What is the longest wavelength of light which would cause electrons to be emitted from the metal ?
A. 6.6 × 10⁻⁷ m

- B. 1.0×10⁻⁶ m
- C. 2.5×10^{-6} m

D. 9.8×10^{-5} m

M14. The photoelectric effect occurs when monochromatic light falls upon a metal surface in a photocell. What happens when the [90] light intensity increases ?

A. More electrons are emitted with unchanged speed.

B. More electrons are emitted with increased speed.

C. The same number of electrons is emitted with increased speed.

D. More photons are emitted from the surface.

M15. A beam of monochromatic light falls on a metal surface. If the frequency of the light is doubled but the intensity remains [91] unchanged, which of the following statements is/are correct ?

(1) The photon energy is doubled.

(2) The number of photons failing on the surface per second is halved.

(3) The maximum kinetic energy of photoelectrons ejected is doubled.

A. (1) only B. (3) only C. (1) & (2) only

D. (2) & (3) only

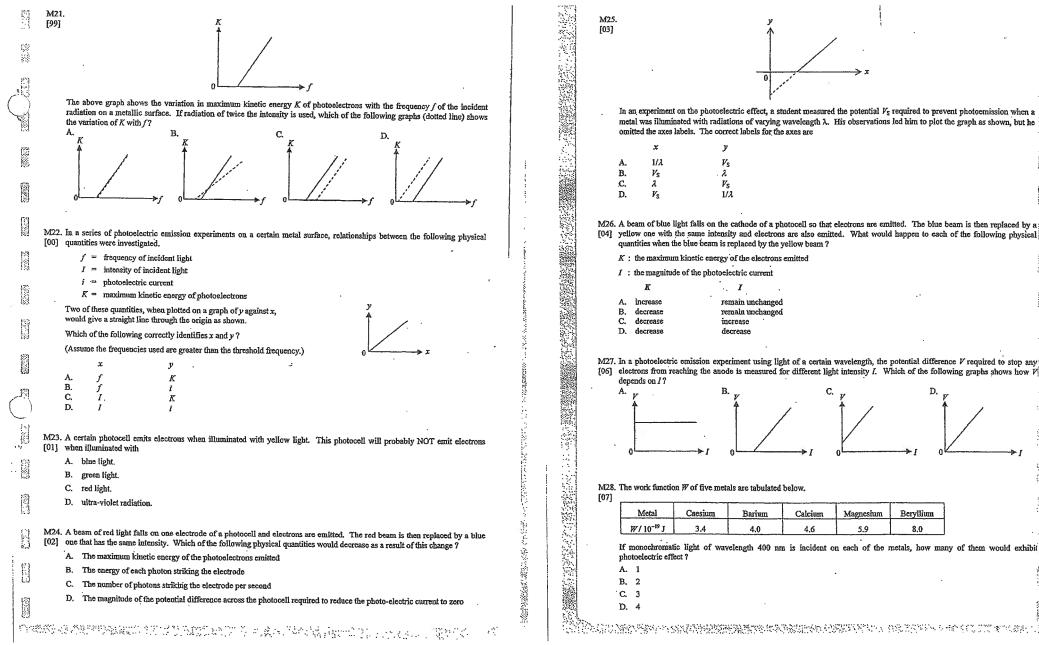
M16. In an experiment on the photoelectric effect, a beam of monochromatic light is directed onto a metal plate to liberate [91] electrons. Which of the following statements is true ?

and we wanted with the state of the second second

· .: -

A. The velocity of the fastest electrons is directly proportional to the frequency of the incident light.

B. The velocity of the fastest electrons is directly proportional to the intensity of the incident light.


C. The kinetic energy of the fastest electrons is directly proportional to the frequency of the incident light.

D. The velocity of the fastest electrons is independent of the intensity of the incident light.

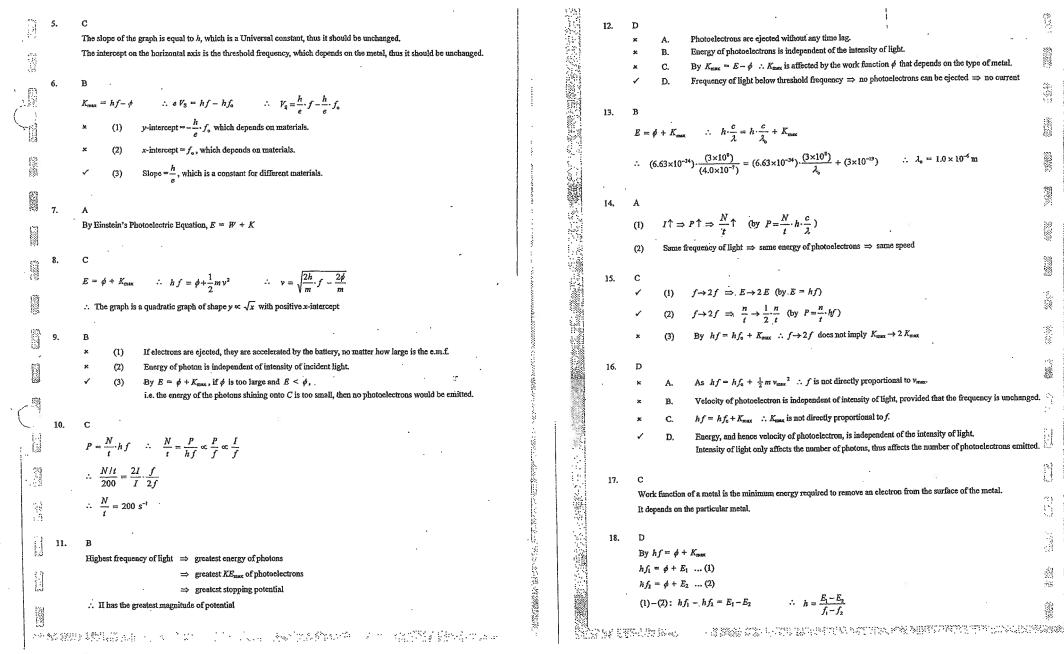
M17.	Т	he work function of a metal is the least energy required to	
[92]			
		b bring one mole of electrons from the interior of the metal to the surface.	: 1
	C D		;
	J		
	Sl	When light of frequency f_1 is shone on to a metal surface, the maximum energy of the electrons emitted is E_1 . If the same arface is illuminated with light of frequency f_2 , the maximum energy of the electrons emitted is E_2 . The Planck constant is iven by	
	A	$\frac{f_2 E_1 - f_1 E_2}{f_1 f_2}$	New York
	в	$\frac{E_1 + E_2}{f_1 + f_2}$	
		$\frac{E_1-E_2}{f_1+f_2}$	89 (1)
	D	$\frac{E_1 - E_2}{f_1 - f_2}$	
M19.	. A	a metal surface is illuminated with monochromatic light so that it emits photoelectrons. The maximum kinetic energy of the	Ú.
[96]	e	mitted photoelectrons depends on (1) the distance of the metal surface from the light source.	
		(2) the work function of the metal surface.	.19
		(3) the wavelength of the incident monochromatic light.	
	A E		1 12
	C D	C. (1) & (2) only D. (2) & (3) only	
M20. [97]	-	incident monochromatic	
		radiation C	1
	8	d.c. source A d.c. source is applied to a photocell as shown. Monochromatic radiation is incident on cathode C so that photoelectrons are emitted from the cathode surface. The maximum kinetic energy of the photoelectrons reaching anode A can be increased	and the second se
	ł	y using .	
		 a d.c. source of higher voltage. monochromatic radiation of longer wavelength. 	÷:
		(3) the same monochromatic radiation but of higher intensity.	23
		A. (1) only B. (2) estr	
	• (B. (3) only C. (1) & (2) only D. (2) & (3) only	

Provided by dse

٩,

In an experiment on the photoelectric effect, a student measured the potential V_S required to prevent photoemission when a metal was illuminated with radiations of varying wavelength A. His observations led him to plot the graph as shown, but he omitted the axes labels. The correct labels for the axes are 開設 M26. A beam of blue light falls on the cathode of a photocell so that electrons are emlitted. The blue beam is then replaced by a [04] yellow one with the same intensity and electrons are also emitted. What would happen to each of the following physical quantities when the blue beam is replaced by the yellow beam ? K: the maximum kinetic energy of the electrons emitted M27. In a photoelectric emission experiment using light of a certain wavelength, the potential difference V required to stop any [06] electrons from reaching the anode is measured for different light intensity I. Which of the following graphs shows how V D.

> 5.9 4.6 8.0


Calcium

na astro

Beryllium

Magnesium

5	M29. The human eye is most sensitive to green light of wavelength 520 nm. Our eyes can detect light of minimum intensity [08] 2.0 × 10 ⁻¹³ W m ⁻² . Estimate the minimum number of photons entering an eye in one second in order to cause sensation, assuring that the average diameter of the pupil is 5 mm.		An	swers					 }
\mathcal{M}	A. 10000		1.	в	11. B	21. A	31. D		ه پېښو
٠.	B. 1000 C. 100		2.	D	12. D	22. D	32. B		
Ð	D. 10		3.	С	13. B	23. C			1
			4.	в	14. A.	24. C			63
	M30.		5.	С	15. C	25. A			
:	[10] Just								
			б.	В	16. D	26. C			
			7.	A	17. C	27. A			
685	G		8.	С	18. D	28. C			
68			9.	В	19. D	29. D			128
			10.	Ċ	20. A	30. B			
1.4	Monochromatic light is incident on a photo-emissive cell connected to a variable d.c. supply as shown. The galvanometer								
1993 (March 1997)	shows no denection. Which of the following can be a possible reason ?		Sal	ution	,				
	(1) The temperature of the photo-emissive cell is too low.		201	uuon .	• .				
	(2) The wavelength of the incident light is too long.		1.	в					
1935	(3) The d.c. voltage applied has been reduced to zero.			D., E	he he				
約	A. (1) only B. (2) only			By E -	$hf=\frac{hc}{\lambda}$				
	6. (2) only C. (1) & (3) only			. (10.)	$1.6 \times 10^{-19}) = (6.6)$	3×10 ⁻¹⁴)(3×10 ⁸)			
93) 1	D. (2) & (3) only			(IVX	$1.6 \times 10^{-1} = 1.0 \times 10^{-1}$	A			28 (j
				∴ 2 =	$1.24 \times 10^{-7} \mathrm{m} = 124$, nm			
	M31. In photoelectric emission experiments, when a monochromatic light of wavelength λ is incident on metals X and Y, the								
12	[10] maximum kinetic energy of the photoelectrons emitted are 1.0 eV and 0.5 eV respectively. If the incident light is replaced by that of wavelength 3./2, the maximum kinetic energy of the photoelectrons emitted from metal X becomes 3.0 eV. What is		2.	D				·.	
	the maximum kinetic energy of the photoelectrons emitted from metal Y?			The inten	sity of the incident lip	ght affects the number of ph	otons, but not the energy of	photons.	
(iii)	A. 1.0 eV					aximum speed are not affec			a fi
	B. 1.5 eV					•			
	C. 2.0 eV D. 2.5 eV		3.	с			•		
	D. 2.3 CV			Energy of	f the photon with way	clength 400 mm :			*** *
• • •					hc (6.63×10	⁴⁴ //3×10 ⁸)			
	M32. When a metal surface is illuminated by light of wavelength 400 nm, the emission of photoelectrons can be stopped by a [12] potential of 0.9 V. Find the work function of the metal.			E = hf	$=\frac{nc}{\lambda}=\frac{(0.05\times10^{\circ})}{(400)}$	$\frac{^{64})(3\times10^{8})}{\times10^{-9})} = 4.97\times10^{-19}$	J		
.13	A. 0.9 eV						oton has to exceed the work	function Wof the metal	
(54)	B. 2.2 eV	N N							1.1.7 by
Ţ,	C. 2.9 cV			Only Cae	sium, Barium and Ca	leium can exhibit photoelee	tric effect, thus the number i	s 3.	
	D. 3.1 eV								
			4.	B					1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
€ 12 <i>8</i>					stric equation : $E =$				
					7 eV and $K_{max} = 4 eV$				•
				•••	= ₩ + (4)	$W = 3 \mathrm{eV}$			
679				For $E =$					- D
1000				∴ (4) =	• (3) + K _{max} ∴	$K_{\rm max} = 1 {\rm eV} \qquad \therefore V_{\rm S}$	= 1 V	•	
	and he was a set of the second sec		• ••••	en anter en er					
		×326433	48.22	<i></i>	searce l'impacié	Kenera di Kada da Kada Kada da Kada da			dealifa
							<u>r 10</u>	vided Dy	<u>usc.IIIC</u> ·

Provided by dse.lif

Ņ

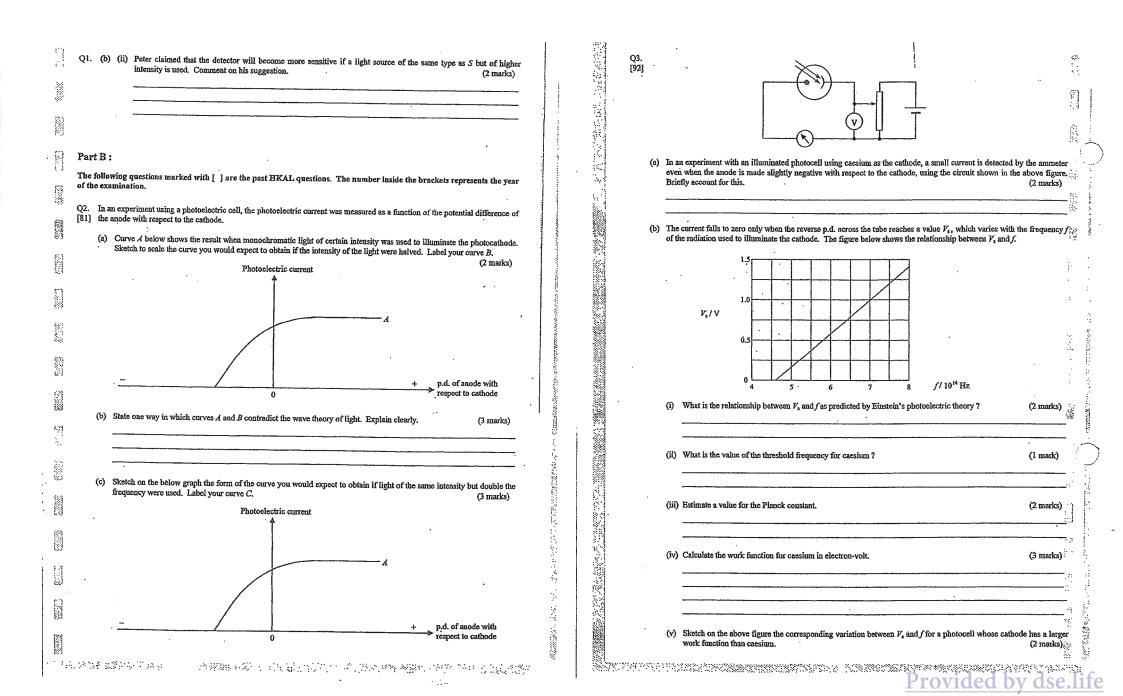
8997 797

1992 (M. 1997) (M. 1997)

200

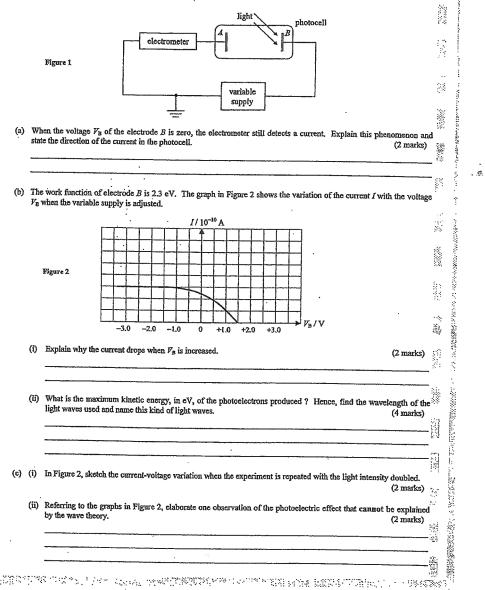
Ň

Ň


 \mathbb{C}

-65

19. n 25. As $hf = hf_0 + eV_S$ $\therefore K_{max} = h \cdot \frac{c}{r} - W$ $\therefore V_{\rm s} = \frac{hc}{c} \cdot \frac{1}{2} - \frac{hf_{\rm o}}{c}$.: (2) and (3) are correct A graph of V_s against $\frac{1}{\lambda}$ gives a straight line with negative y-intercept, thus, x is $\frac{1}{\lambda}$ and y is V_s 20. A, : [] Higher voltage \Rightarrow photoelectrons gain more KE (1)26. С $\lambda \uparrow \Rightarrow K_{\max} \downarrow (by K_{\max} = h \cdot \frac{c}{2} - W)$ (2) ወ Yellow light has a smaller frequency f than blue light. By hf = W + K $\therefore f \downarrow \implies K \downarrow$ (3) Energy of photoelectrons is independent of the intensity of incident light. Intensity of light $\propto P = \frac{N}{t}hf$ and Current $I = \frac{n}{t}e$ 21. Α $\therefore f \downarrow \Rightarrow \frac{N}{t} \uparrow \Rightarrow \frac{n}{t} \uparrow \Rightarrow I \uparrow$ KE of photoelectrons is independent of intensity of radiation ... no change in the graph 27. 22. D V is the stopping potential, which is related to the maximum kinetic energy K_{max} of the photoelectrons by $K_{\text{max}} = e V$ By $i = \frac{n}{t}e$ \therefore $i \propto \frac{n}{t}$. The maximum kinetic energy is related to the frequency f of the light by $hf = W + K_{max}$ By $P = \frac{N}{r}E$ \therefore $P \propto \frac{N}{t}$ It can be found that the stopping potential is not affected by the light intensity I. Thus, the graph should be a horizontal line, indicating that V is independent of I. As $l \propto \frac{n}{t} \propto \frac{N}{t} \propto P \propto I$ \therefore $i \sim I$ graph is a straight line graph. · D is correct. 28. C Energy of the photon with wavelength 400 nm : 23. c Since red light has a frequency lower than yellow light $E = hf = \frac{h\sigma}{\lambda} = \frac{(6.63 \times 10^{-34})(3 \times 10^{8})}{(400 \times 10^{-9})} = 4.97 \times 10^{-19} \text{ J}$ 阙 thus the energy of a red light photon is less than that of yellow light To eject photoelectrons from a metal, the energy of this photon has to exceed the work function W of the metal. therefore the energy of the red light photon may not be greater than the work function of the metal so photoelectrons may not be ejected. Only Caesium, Barium and Calcium can exhibit photoelectric effect, thus the number is 3. 24. С 29. D A. Since blue light photon has a greater energy, by $E = W + K_{max}$, $E = hf = \frac{hc}{\lambda} = \frac{(6.63 \times 10^{-34})(3 \times 10^{8})}{(520 \times 10^{-9})} = 3.825 \times 10^{-19} \text{ J}$ the maximum kinetic energy of the photoelectrons emitted is greater for blue light. В. As blue light has a higher frequency than that of the red light, by E = hf, $P = IA = (2.0 \times 10^{-13}) \times \frac{\pi}{4} (5 \times 10^{-3})^2 = 3.93 \times 10^{-18} \text{ W}$ energy of a blue light photon is greater than the energy of a red light photon. 正式の主いたという $P = \frac{N}{t}E$ C, Since the two beams of light have the same intensity, the power P incident onto the electrode are the same. By $P = \frac{N}{t}hf$, as blue light has higher frequency f, the number of photons per second N/t is smaller. $\therefore (3.93 \times 10^{-10}) = \frac{N}{4} \times (3.825 \times 10^{-19})$ Since blue light ejects photoelectrons of greater maximum kinetic energy, D, $\therefore \frac{N}{t} = 10 \text{ s}^{-1}$ 問題 By $K_{anx} = e V_s$, the stopping potential V_s for blue light is greater.


书记 计算法算

10.11.
$$(0)$$
The temperature of the jobs relative call words to site d_{0} does the fracture life the photometrix to the site d_{0} does the fracture life the photometrix to the site d_{0} does the fracture life the photometrix to the site d_{0} does the fracture life the photometrix to the site d_{0} does the fracture life the photometrix to the site d_{0} does the fracture life the photometrix to the site d_{0} does the fracture life the photometrix to the site d_{0} does the fracture life the photometrix to the site d_{0} does the fracture life the photometrix to the site d_{0} does the fracture life the photometrix to the site d_{0} does the fracture life the photometrix to the site d_{0} does the fracture life the photometrix to the site d_{0} does the fracture life the photometrix to the site d_{0} does the fracture life the photometrix to the site d_{0} does the fracture life the photometrix to the site d_{0} does the fracture life the photometrix to the site d_{0} does the photometrix to the sit

Sec.			fultraviolet light of wavelength 230 nm. The work function of the metal is 2.21 eV, hat is meant by the work function of a metal ?	(1 mark)		j [08] sensi varia	set-up shown in Figure 1 is used to study photoelectric five electrode B of a photocell. The potential differen- ible supply.
Ċ	(b)	(i)	Calculate the maximum kinetic energy of the photoelectrons emitted.	(2 marks)			Figure 1
		(ii)	Find the stopping potential.	(1 mark)		(a)	When the voltage V_B of the electrode <i>B</i> is zero, the electric the direction of the current in the photocell.
					-		
	(c)	4030	intensity of the ultraviolet light used is 3 W m ⁻² and it falls normally on one side of the metal plate, ence of the stopping potential, the number of photoelectrons emitted per second. Assume that areas in			(b)	The work function of electroide B is 2.3 eV. The graph V_B when the variable supply is adjusted.
		can	successfully release a photoelectron.	(3 marks)	-		
			· · · · · · · · · · · · · · · · · · ·				Figure 2
	(4)	Stat	e the change in		-		-3.0 -2.0 -1.0 0
Ċ	(u)	(i)	the stopping potential; and			(-3.0 - 2.0 - 2.0 0 i) Explain why the current drops when V_B is increased
)22			the number of photoelectrons emitted per second, not second, not second intersection of ultraviolet light with the same intensity, but having a shorter wavelength, is used. Ex	plain briefly.			
				(4 marks)	(is a 1	(What is the maximum kinetic energy, in eV, of the light waves used and name this kind of light waves.
			· · · · · · · · · · · · · · · · · · ·			(c) (i) In Figure 2, sketch the current-voltage variation whe
						. (Referring to the graphs in Figure 2, elaborate one o by the wave theory.
(85)				~~~~~~			

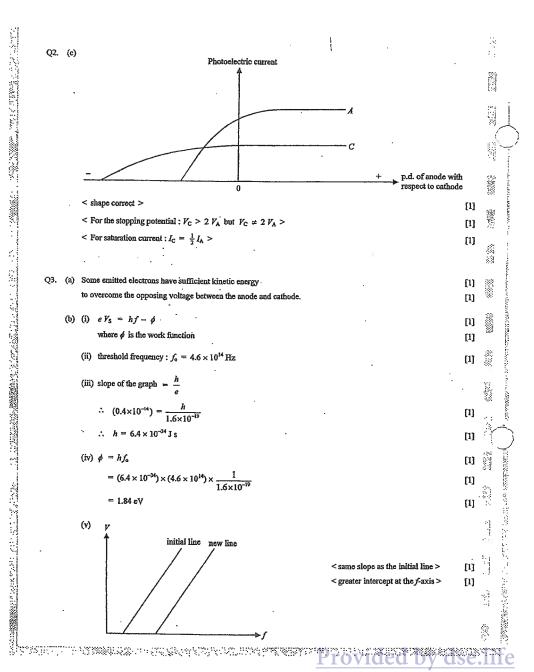
effect. Light of a certain frequency is directed towards the photo-nce across the electrodes A and B can be varied by adjusting the

.

								Q		avelength of visible light that can cause e		
((b) Light o	of wavelength 450 nm is	incident on a meta	l surface. The pow	wer of the light re	aching the metal sur	face is 5.0 mW.			······		
	·(i) F 	ind the number of photon	ns arriving at the n	etal surface per se	cond.		(3 marks)		(b) Light of wavelength 4.4 emitted from it.	11×10^{-7} m is incident on Caesium. Find	d the maximum kinetic energy (in e	V) of photoelectro (2 marks)
	(ii) If ca	on average only one p alculate the resulting pho	hotoelectron is en otoelectric current.	itted for every tw	o thousand photo	ons absorbed by the	e metal surface, (2 marks)	満				
	• _											
(c) Light o	of different wavelengths	λ is allowed to illu	minate the metal s	urface. The corr	esponding maximum	n kinetic energy		'art C :	mad do aliza anna ta marta da aliza da	the shared of	
	KEmax	of the photoelectrons em	nitted is tabulated b	elow.						gned to give supplemental exercise for t	-	
		KE _{max} /eV	0.23	0.44	0.66	0.95	-	Q	The graph shows how the in frequency f of the incident rate	aximum kinetic energy E of photoelectron idiation.	ns emitted from the surface of alum	inium varies with t
		2/nm	520	480	441	400			E/eV p			
	th								2-			
									2- 1- 0- 0		<i>f</i> /10 ¹⁴ Hz	
									2 1 1 0 0 0 0 0 0	2 4 6 8 10 12 14	16 18 20	(1 mark)
											16 18 20	(1 mark) (2 marks)
										lectrons are emitted below a frequency of	16 18 20	
									(b) Calculate the work fun	lectrons are emitted below a frequency of	16 18 20 £10 × 10 ¹⁴ Hz.	
							ed line to sketch (2 marks)		(b) Calculate the work fun	lectrons are emitted below a frequency of	16 18 20 £10 × 10 ¹⁴ Hz.	(2 marks

Q9. In 1921, Albert Einstein won the Nobel Prize for his work on the photoelectric effect.	Q10. (b) (ii) The graphs show how the maximum kinetic energy of the emitted electrons varies with the frequency of neident light for the four metals.
The results of experiments on the photoelectric effect show that :	
* photoelectrons are not released when the incident radiation is below a certain threshold frequency;	Q10. (b) (ii) The graphs show how the maximum kinetic energy of the entitled electrons varies with the nequency of netdent and light for the four metals.
* the kinetic energy of the photoelectrons released depends on the frequency of the incident light and not its intensity.	energy / J
Explain how these results support a particle theory, but not a wave theory of light. (6 marks)	
<u>[2]</u>	
Q10. (a) In a demonstration of photoelectric effect ultraviolet light is incident on a zinc plate and electrons are emitted. Suppose	
Q10. (a) In a demonstration of photoelectric effect, ultraviolet light is incident on a zinc plate and electrons are emitted. Suppose now the intensity of the ultraviolet light is increased.	By using the photoelectric equation, explain why the lines are all parallel. (2 marks)
(i) Explain why the number of electrons emitted per second increases. (3 marks)	
· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
add	
(ii) Give the reason that the maximum kinetic energy of an electron does not change. (2 marks)	(iii) A school laboratory has a photoelectric cell for student use. The metal plate in the photoelectric cell is made of
	 (iii) A school laboratory has a photoelectric cell for student use. The metal plate in the photoelectric cell is made of a caesium and it can be used with a set of filters to obtain a graph similar to the one in (ii). Explain why the metal plate is made of caesium rather than zinc. (2 marks)
	Explain why the metal plate is made of caesium rather than zinc. (2 marks)
(b) The table shows the work functions of four metals.	[] [] [] [] [] [] [] [] [] []
Kill Work function / 10 ⁻¹⁹ J	
Aluminium 6.53	
Caesiun 3.36	
Potassium 2.30	
Zinc 6.88	
(i) Determine which of these metals can emit electrons when illuminated with visible light of frequency 5.88×10^{14} Hz.	
(1) Determine which of mess metals can end electrons when mummated with visible next of nequency 5,88 × 10 Hz. (3 marks)	
;4	
til Der Millich – Millich burge under Alle Alle der Alle die Bergeberge beiterten der Bergebergebergebergebergebergebergeberge	

٠ť


-

Provided by dse.life

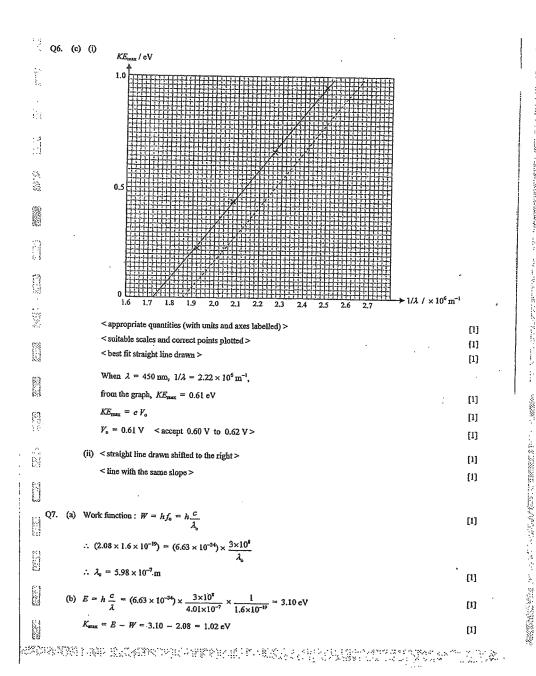
. N. C.

1.115

ſ	10000	Q1.	(a)	(i)	According to wave theory, energy of light depends on the intensity.	[1]
					No matter what the frequency is, photoelectrons should be emitted when the incident light is intense enough.	[1]
	2000 B			(ii)	$\phi = hf_o = h\frac{c}{\lambda_o}$	[1]
					$(6.63 \times 10^{-34}) \times \frac{3 \times 10^{4}}{5.27 \times 10^{-7}}$	[1]
	()				$= 3.77 \times 10^{-19} \mathrm{J}$	
					$=\frac{3.77\times10^{-19}}{1.6\times10^{-19}} \text{ eV} = 2.36 \text{ eV}$	[1]
244	*			(iii)	Work function is the minimum energy required to release an electron from a metal surface	
(carried	57553 5				against the attractive electric force of the metal.	[1]
100000	20192		(b)	(i)	Number of photoelectrons per second = $\frac{i}{e} = \frac{1 \times 10^{-8}}{1.6 \times 10^{-19}} = 6.25 \times 10^{10}$	[1]
					Number of photons per second = $6.25 \times 10^{10} + 5\% = 1.25 \times 10^{12}$	[1]
000000				(ii)	With a more intense light source of the same type, more photons are emitted.	[1]
	s.,				Sufficient photons will be scattered by a smaller amount of smoke.	[1]
2000					Hence, Peter's claim is correct.	
400235-000	2000	Q2.	(a)			
Sec. 1	4				Photoelectric current	
1000	22					
644	122				т. Г	
Ş	31 				A	
X UQAA	i i				В	
				-	+ p.d. of anode with respect to cathode	
,					0 respect to cathode	
				< Sta	opping potential remains unchanged >	[1]
÷	-1			< Sa	tription ourset reduced to halfs	[1]
			(b)	The	convert is reduced to save first and the set	
¢.	n,				Stopping voltage is presentional to the second state of the	[1]
1.1.2	1				ording to the wave theory, the K.E. of the emitted electrons should be greater for more intense light	[1]
5	iii Iii			and t	therefore a superior to the second seco	[1]
Į,	Ŋ					
¥.	i). N			. V.		333

•• . 1.1.2

ŝ,


1.1.1.ABSTRAT

-

(a) Work function is the minimum energy to remove an electron from the metal surface.	ព្	Q5. (c) (i) // 10 ⁻¹⁰ A	
(b) (i) $h\frac{c}{\lambda} = K_{\text{rest}} + \phi$			
$(5.63 \times 10^{-54}) \times \frac{3 \times 10^8}{230 \times 10^{-9}} = K_{max} + (2.21 \times 1.60 \times 10^{-19})$	[1]	Q5. (c) (l) 1/10 ⁻¹⁰ A	
$\therefore K_{\text{max}} = 5.11 \times 10^{-19} \text{ J}$	[1]		
(ii) $V_s = \frac{5.11 \times 10^{-19}}{1.60 \times 10^{-19}} = 3.19 \text{ V}$	[1]	-3.0 -2.0 -1.0 0 $+1.0$ $+2.0$ $+3.0$ $Y_{\rm B}/\rm V$	
(c) Energy supplied per second $= 3 \times (8.0 \times 10^{-3})^2$		<saturation current="" doubled=""></saturation>	[1]
$= 1.92 \times 10^{-4} \mathrm{J s^{-1}}$	[1]	<stopping potential="" unchanged=""></stopping>	[1]
Energy of each photon $= 6.63 \times 10^{-34} \times \frac{3 \times 10^{4}}{230 \times 10^{-9}}$		(ii) According to wave theory, the photoelectrons should have greater maximum K.E.	[1]
230×10^{-5} - 8.65 × 10 ⁻¹⁹ J	[1]	However, the stopping potential and thus the maximum K.E. remain unchanged.	[1]
Number of photoelectrons emitted per second $-\frac{1.92 \times 10^{-4}}{8.65 \times 10^{-19}}$			
$= 2.22 \times 10^{14}$	[1]	Q6. (a) hf is the energy of each photon	[1]
(d) (i) Since the energy of each photon increases,	[1]	4.1 \$	[1]
the maximum K.E. of the photoelectrons increases, thus the stopping potential increases.	[1]	(b) (i) $E = h f = \frac{hc}{\lambda} = \frac{(6.63 \times 10^{-34})(3 \times 10^{3})}{(450 \times 10^{-9})} = 4.42 \times 10^{-39} \text{ J}$	[1]
(ii) The number of photoelectrons emitted per second would decrease since intensity is constant	[1]	$P = \frac{N}{r}E$	
and each photon has more energy, the number of photons arrived per second would decrease.	[1]	$\therefore (5.0 \times 10^{-1}) = \frac{N}{r} (4.42 \times 10^{-19})$	[1]
	. • • «		
(a) Since the photoelectrons are emitted with non-zero kinetic energy (OR speed).	[1]	$\therefore \frac{N}{t} = 1.13 \times 10^{16} \mathrm{s}^{-1}$	[1]
Direction of current is from A to B in the photocell.	m	(ii) Number of photoelectrons emitted per second :	
(b) (i) Those photoelectrons with kinetic energy less than $e V_B$	[1]	$\frac{n}{t} = 1.13 \times 10^{16} \times \frac{1}{2000} = 5.65 \times 10^{12} \mathrm{s}^{-1}$	[1]
do not have enough energy to reach the anode A, thus the current drops.	[1]		
(ii) $K_{\text{max}} = 1.5 \text{ eV}$	[1]	$i = \frac{n}{t}e = (5.65 \times 10^{12}) \times (1.6 \times 10^{-19}) = 9.04 \times 10^{-7} \text{ A}$	[1]
By $\frac{hc}{\lambda} = \phi + K_{\text{pass}}$	[1]	(c). (d)	
$\therefore \frac{(6.63 \times 10^{-54})(3 \times 10^{5})}{2} = (2.3 + 1.5) \times 1.6 \times 10^{-10}$:	KE _{max} / eV 0.23 0.44 0.66 0.95	
<i>h</i>	· ·	λ/nm 520 480 441 400	
$\therefore \lambda = 3.27 \times 10^{-7} \mathrm{m}$	[1]	$\frac{1}{\lambda} / \times 10^6 \mathrm{m}^{-1} \qquad 1.92 \qquad 2.08 \qquad 2.27 \qquad 2.50$	
It is ultra-violet.	[U]		

Provided by dse.life

 \langle

Q8	. (a)) The	e photon energy is less than the work function of the metal.	[1]
	(Ь)) Tha	reshold frequency: $f_o = 10 \times 10^{14}$ Hz.	. [1]
			ork function : $\phi = hf_0 - (6.63 \times 10^{-34}) (10 \times 10^{14}) = 6.63 \times 10^{-19} \text{ J} = 4.14 \text{ eV}$	[1]
	(c)		$dient = \frac{(3-0) \times (1.6 \times 10^{-19})}{(18-10) \times 10^{14}}$	[1]
			∞ 6×10 ⁻³⁶ Js	[1]
		The	e gradient is the Planck's constant.	[1]
	ക	<t< td=""><td>he second line should be parallel to the original line. ></td><td></td></t<>	he second line should be parallel to the original line. >	
	(-)		The x-intercept should be less than 10.>	[1] [1]
				[*]
Q9.	In	Partic	le theory, light consists of packets of energy called photons.	
	En	ergy o	f each photon is expressed by $E = hf$. Higher frequency means photons of greater energy.	[1]
	Ift	he ene	ergy of photon is below the work function, no photoelectrons can be released.	[1]
	Gr	eator f	frequency means greater energy of photon that can release electrons of greater KE.	[1]
	Mo	re int	ense light means more photons, to produce more electrons.	[1]
	In	Wave	theory, wave energy depends on intensity.	[1]
	Mo	ere int	ense light should give electrons of greater KE, but it does not happen.	[1]
QIQ). (a)	(1)	Light consists of photons, each photon has energy E where $E = hf$.	[1]
			Each photon can release one electron from the metal. If intensity of light is increased, the number of photons per second increases,	[1] [1]
			thus number of electrons emitted per second increases.	14
		(ii)	Since the frequency is constant, the photon energy is unchanged,	ពរ
·.			By $hf = \Phi + K_{max}$ and Φ is constant, thus the maximum KE of electron does not change.	[1]
	(b)	(i)	Energy of each photon = $hf = (6.63 \times 10^{-34}) (5.88 \times 10^{14}) - 3.90 \times 10^{-19} \text{ J}$	[1]
			Electrons can be emitted if the energy of each photon is greater than the work function.	•
			Electrons can thus be emitted from caesium and potassium,	[2]
		(ii)	By $K_{\max} = hf - \Phi$	[1]
			As gradient = h , which is constant, thus they are all parallel.	[1]
		(iii)	Caesium works with visible light.	[1]

Use the following data wherever	lecessary :	
Speed of light in vacuum	$c = 3.00 \times 10^{8} \mathrm{m s^{-1}}$	т Ул
Charge of electron	$e = 1.60 \times 10^{-19} \mathrm{C}$	
Electron rest mass	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$	
Planck constant	$h = 6.63 \times 10^{-34} \mathrm{Js}$	
Permittivity of free space	$\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$	· · · · · · · · · · · · · · · · · · ·

The following list of formulae may be found useful :

Energy level equation for hydrogen atom

 $E_{\kappa} = -\frac{1}{n^2} \left\{ \frac{m_e e^4}{8 h^2 \varepsilon_o^2} \right\} = -\frac{13.6}{n^2} \text{ eV}$

Energy

0

-4E

-6E

2000

8

÷

 22^{-1}

à.

1.011

Provided by dse.life

Part A :

The following questions marked with (SP) are the Sample Paper questions of the new DSE Examination.

M1. The ionization potential of a hydrogen atom is 13.6 V. How much energy is required to excite an electron from the ground {SP} state to the first excited state in a hydrogen atom ?

А.	10.2 eV				-		
B.	6.8 eV			•			
 C.	3.4 eV	·		•			
D.	1.9 eV		•		·		

M2. The energy levels of a certain atom are as shown. Which of these may {SP} undergo an inelastic collision with the atom ?

- (1) an electron with kinetic energy 3 E
- (2) a photon with energy 2 E
- (3) a photon with energy 3 E
- A. (i) only
- B. (3) only
- C. (1) & (2) only D. (2) & (3) only

Part B :

The following questions marked with {PP} are the Practice Paper questions of the new DSE Examination.

M3. The wavelength of the radiation emitted when an electron of an atom drops from the j^{th} excited state of energy E_j to a lower {PP} k^{th} excited state of energy E_j is

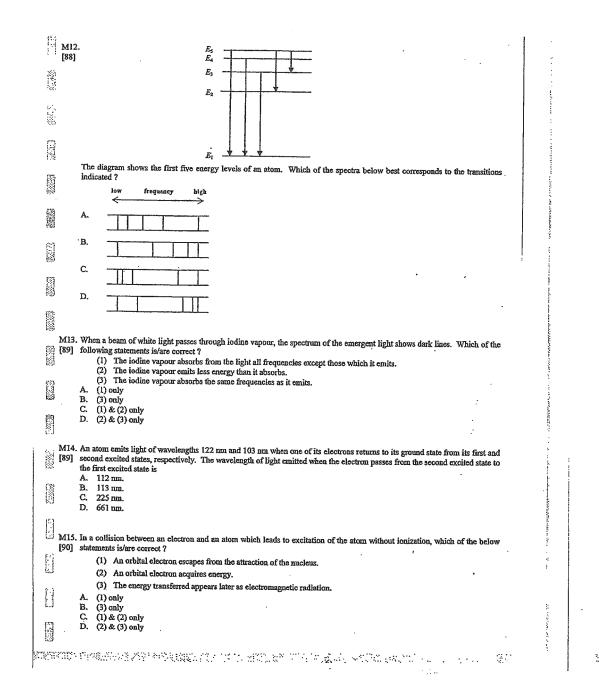
A. $\frac{E_{I} - E_{k}}{h}$ B. $\frac{E_{I} - E_{k}}{hc}$ C. $\frac{hc}{E_{I} - E_{k}}$ D. $\frac{hc}{E_{I}} \frac{hc}{E_{k}}$

M4. The ionization energy for a hydrogen atom in ground state is 13.6 eV. A photon of energy 4.53 eV strikes a hydrogen atom	M8. The ionisation energy of an atom in its ground state is
(PP) in ground state. The hydrogen atom will	[84] A. the energy required to separate all the electrons from the remainder of the atom.
A. not be excited to a higher energy level.	B. the maximum energy required to separate one electron from the remainder of the atom.
A. not be excited to a night checky revol.	C. the minimum energy required to separate one electron from the remainder of the atom.
B. be excited to the first excited state.	D. the minimum energy required to add one electron to the atom.
C. be excited to the third excited state.	
D. be ionized.	M9. The ionization energy of a hydrogen atom is 13.6 eV. Which of the following energy levels is/are possible for the atom ?
	[85] (1) -1.51 eV (2) -3.40 eV
	(3) - 6.80 eV
Part C : The following questions marked with { } are the past DSE questions. The number inside the brackets represents the year	A. (1) only
	B. (3) only
of the examination.	C. (1) & (2) only
M5. According to Bohr's model of the hydrogen atom, the ratio of the radius of the electron's orbit in the first excited state to that	D. $(2) \& (3)$ only
M5. According to Bohr's model of the hydrogen atom, the ratio of the radius of the electron's orbit in the first excited state to that {12} in the second excited state is	
	M10. $(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,$
A. 1:2.	
¹⁰⁷⁴ B. 1: √2.	
C. 4:9. D. 2:3.	
D. 2:3.	
M6. Which of the following statements about spectra is/are correct ?	
{12} (1) A tungsten-filament lamp emits a continuous spectrum.	
(2) A line absorption spectrum can be obtained when a tungsten-filament lamp is viewed through some hydrogen gas.	
(3) The emission spectrum of hydrogen consists of dark lines on a bright background.	
A. (1) & (2) only	
B. (1) & (3) only C. (2) & (3) only	E_1
D. (1), (2) & (3)	In the diagram above, E1 and E, represent (to scale) the energy levels of a hydrogen atom in its ground state and the ionised
	state respectively. Which of the drawn lines represents the energy level of the atom in its first excited state?
	A. I . B. II
	C. III
Part D:	D. IV
The following questions marked with [] are the past HKAL questions. The number inside the brackets represents the year	
of the examination.	M11. n=4
	[87] n=3
M7. An electron of mass m and charge e_i is accelerated by a potential V_i then strikes an atom, exciting it from its ground state to a [81] higher energy state. The electron is scattered with speed u_i and the excited atom subsequently decays back to the ground	#=?
state with the emission of a photon of frequency f. If h is the Planck constant, the value of u is	• •
A. $2(eV + hf)$	
	y ==]
$B. \frac{2(eV-hf)}{m}$	
	The figure shows the four lowest energy levels of a hydrogen atom. The hydrogen atom is excited from ground state to the energy level $n = 3$ when an electron collides inelastically with it. What is the minimum energy required for the electron to do
C. $\sqrt{\frac{eV+hf}{m}}$	energy level $n = 3$ when an electron could as inclassically with n. what is the infimitum energy required for the electron to do this? (Ionization energy of hydrogen = 13.6 eV)
5	A. 4.9 oV
D. $\frac{2(eV-hf)}{2}$	B. 12.1 eV C. 12.8 eV
$D_{*} \sqrt{\frac{2(e^{y}-hf)}{m}}$	C. 12.8 eV D. 15.1 eV
	1

Provided by dse.life

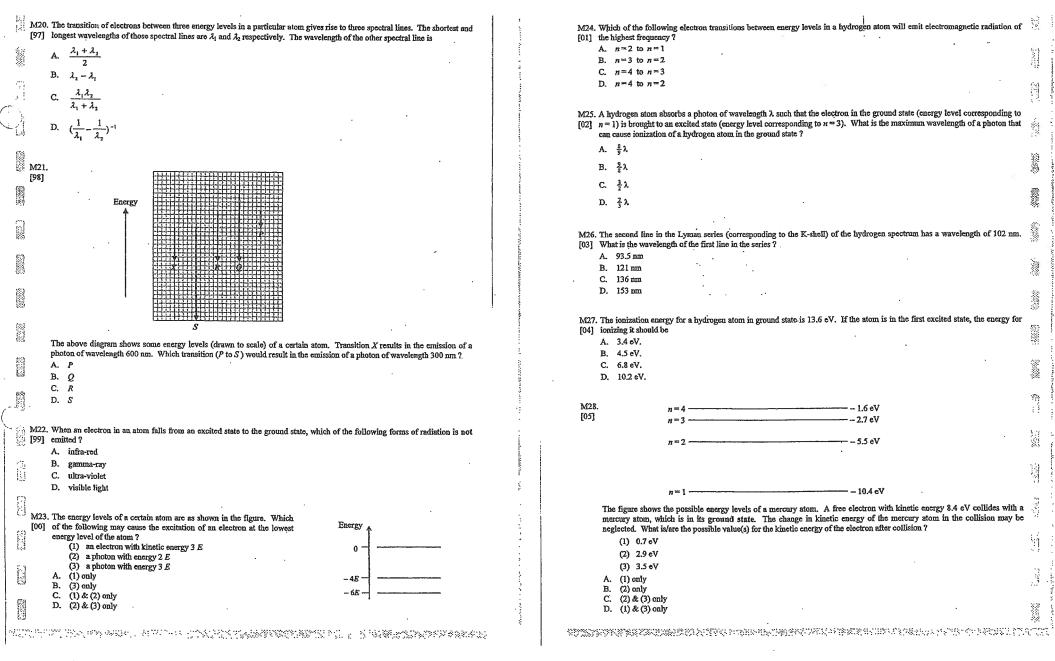
11

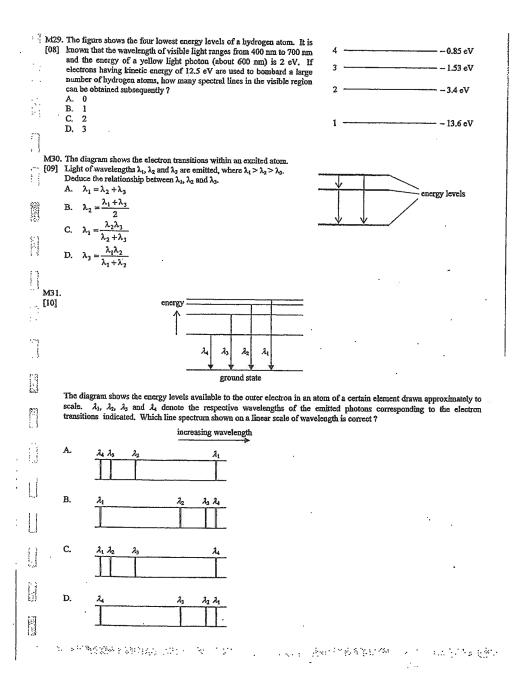
1

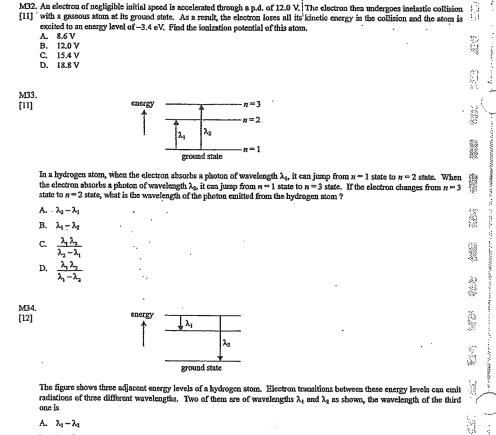

.

Ņ

24 1.4


1997. 1997. - 1997. 1997. - 1997.

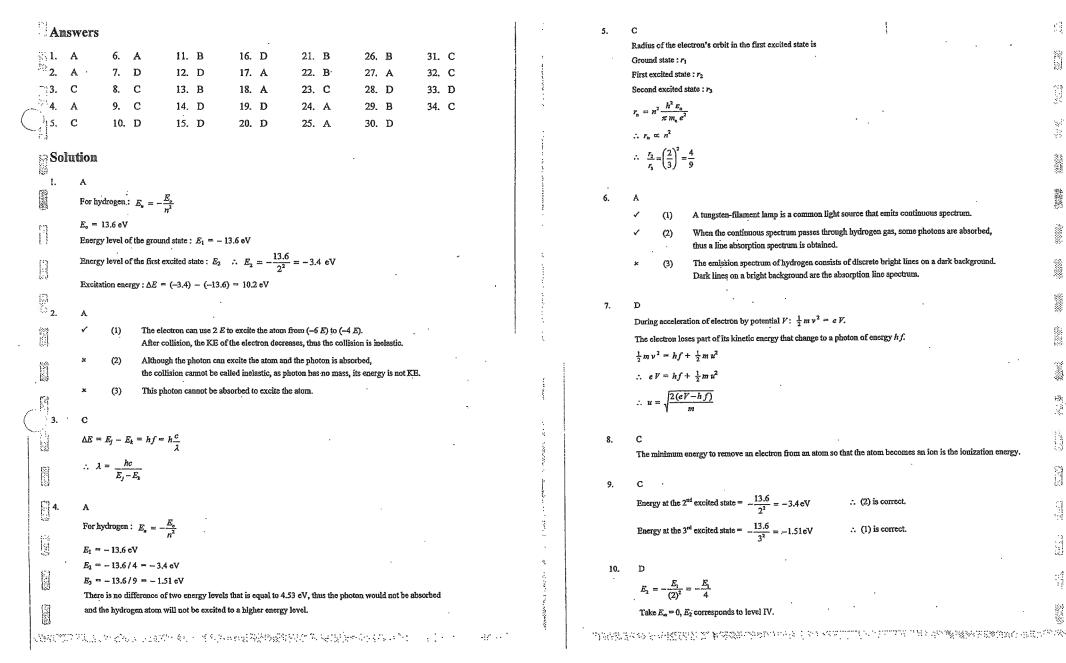

1



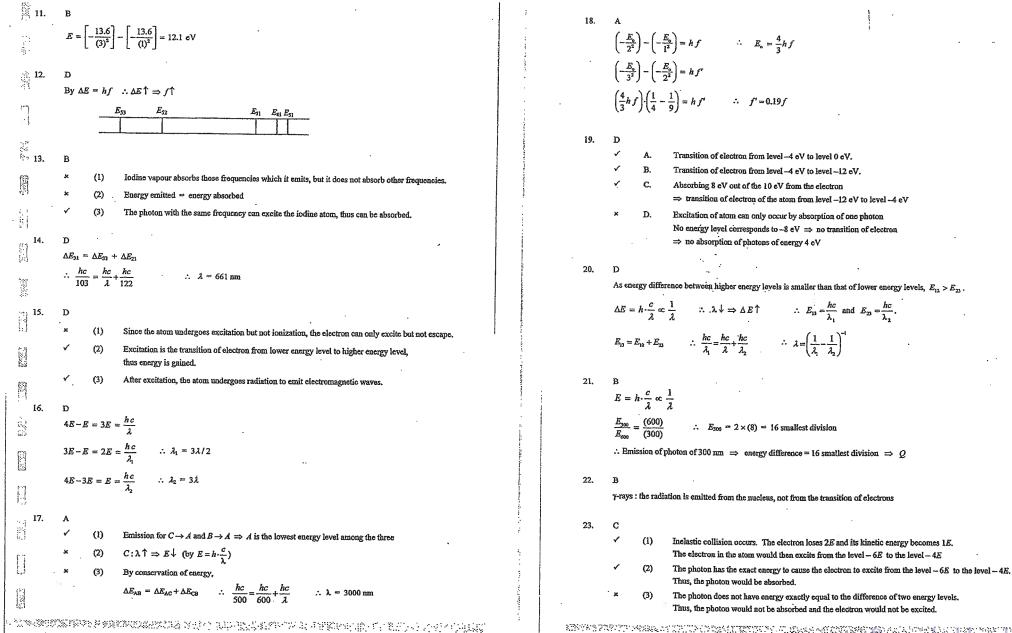
	way leve	gy from 4 E to E, a photon of wavelength λ is emitted. Which of the following 4 E elengths of photons could be produced by other transitions between the energy 3 E is shown ? 3 E	30
	A.	$\lambda/3$ and 3λ	2,54
	B.	2 2/3 and 3 2/2 E	
	C.	$2\lambda/3$ and 3λ	
	D.	3 1/2 and 3 1	220
M17.	Elec	tron transitions occur in an atom resulting in the emission of the following light wavelengths :	1.1
[91]		from level C to level A : 600 nm from level B to level A : 500 nm	2 2.20
	Whi	ch of the following statements is/are correct ?	
		(1) Level A has a lower energy than both levels B and C.	
		(2) Level C has a higher energy level B.	
		(3) The wavelength of light emitted for the transition between C and B is 100 nm.	्र
	A. B.	(1) only (3) only	
	C. D.	(1) & (2) only (2) & (3) only	N.X.
			ų,
M18. [94]	elec	hydrogen atom, electron transitions from the first excited state to the ground state give photons of frequency f . If an tron fails from the second excited state to the first one, the frequency of the photon emitted would be	Ŵ
M18. [94]	elec A.	tron falls from the second excited state to the first one, the frequency of the photon emitted would be $0.19 f$	** **
[94]	elec A. B.	tron falls from the second excited state to the first one, the frequency of the photon emitted would be 0.19 <i>f</i> 0.44 <i>f</i>	W (200
[94]	elec A. B. C.	tron falls from the second excited state to the first one, the frequency of the photon emitted would be 0.19 f 0.44 f 0.84 f	
[94]	elec A. B. C.	tron falls from the second excited state to the first one, the frequency of the photon emitted would be 0.19 <i>f</i> 0.44 <i>f</i>	
[94]	elec A. B. C.	tron falls from the second excited state to the first one, the frequency of the photon emitted would be 0.19 f 0.44 f 0.84 f	
[94]	elec A. B. C.	tron falls from the second excited state to the first one, the frequency of the photon emitted would be 0.19 f 0.44 f 0.84 f 1.19 f energy	
[94] M19.	elec A. B. C.	tron falls from the second excited state to the first one, the frequency of the photon emitted would be 0.19 f 0.44 f 0.84 f 1.19 f	
[94] M19.	elec A. B. C.	tron falls from the second excited state to the first one, the frequency of the photon emitted would be 0.19 f 0.44 f 0.84 f 1.19 f catergy 0 eV	
[94] M19.	elec A. B. C.	tron falls from the second excited state to the first one, the frequency of the photon emitted would be 0.19 f 0.44 f 0.84 f 1.19 f catergy 0 eV	
[94] M19.	elec A. B. C.	tron falls from the second excited state to the first one, the frequency of the photon emitted would be 0.19 f 0.44 f 0.84 f 1.19 f catergy 0 eV	
[94] M19.	elec A. B. C.	tron falls from the second excited state to the first one, the frequency of the photon emitted would be 0.19 f 0.44 f 0.84 f 1.19 f catergy 0 eV	
[94] M19.	elec A. B. C.	tron falls from the second excited state to the first one, the frequency of the photon emitted would be 0.19 f 0.44 f 0.84 f 1.19 f catergy 0 eV	
[94] M19.	elec A. B. C.	tron falls from the second excited state to the first one, the frequency of the photon emitted would be 0.19 f 0.44 f 0.84 f 1.19 f catergy 0 eV	
[94] M19.	elec A. B. C. D.	tron falls from the second excited state to the first one, the frequency of the photon emitted would be 0.19 f 0.44 f 0.84 f 1.19 f catergy 0 eV	
[94] M19.	elec A. B. C. D.	tron falls from the second excited state to the first one, the frequency of the photon emitted would be 0.19 f 0.44 f 0.84 f 1.19 f -1 eV]
[94] M19.	elec A. B. C. D.	<pre>tron falls from the second excited state to the first one, the frequency of the photon emitted would be 0.19 f 0.44 f 0.84 f 1.19 f</pre>	
[94] M19.	elec A. B. C. D. Ah ofti A.	ron falls from the second excited state to the first one, the frequency of the photon emitted would be 0.19 f 0.44 f 0.84 f 1.19 f -1 eV -4 eV vpothetical atom has only four energy levels as represented above. It can change from any one level to any other. Which is following statements about this hypothetical atom is it NCORRECT ? If the atom is at the level -4 eV, it can absorb a photon of energy 4 eV.	

rovide

B. $\lambda_2 - \lambda_1$ C. $\frac{\lambda_1 \lambda_2}{\lambda_1 - \lambda_2}$ D. $\frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1}$


Ë.

23


1.51

and a straight state

and the second state of the second second

20.20 1 織 (1997) (1997)

j

調整

1999) 1999)

101

24. A To emit electromagnetic radiation of the highest frequency, the transition between 2 energy levels should be the greatest, Since the difference of energy level between the E_1 and E_2 is greatest, it gives the highest frequency. 25. А $\frac{hc}{\lambda} = (-\frac{E_o}{9}) - (-E_o) = \frac{8}{9}E_o$ $\frac{hc}{\lambda_{\rm max}} = 0 - (-E_o) = E_o$ $\therefore \quad \lambda_{\max} = \frac{8}{9}\lambda$ 2000 26. В For hydrogen, energy of the *n*th shell follows : $E_n = -\frac{E_0}{n^2}$ 84 Lyman series are emitted when the electron falls from higher energy level to the ground state of energy level E_1 Second line of Lyman series : $\frac{hc}{102} = (-\frac{E_o}{9}) - (-\frac{E_o}{1}) = \frac{8}{9}E_o$ SWW. First line of Lyman series : $\frac{hc}{2} = (-\frac{E_o}{4}) - (-\frac{E_o}{1}) = \frac{3}{4}E_o$ $\therefore \quad \frac{\lambda}{102} = \frac{8/9}{3/4}$ ∴ 2 = 121 nm 27. А For hydrogen : $E_n = -\frac{E_o}{r^2}$ 1 The first excited state is E_2 \therefore $E_2 = -\frac{13.6}{2^2} = -3.4 \text{ eV}$ Energy needed for ionization = 0 - (-3.4) = 3.4 eV28. D ✓ (1) Second excitation energy = (-2.7) - (-10.4) = 7.7 eVAfter inelastic collision and excited the atom to second excited state, KE of e = 8.4 - 7.7 = 0.7 eV× (2) Loss of kinetic energy of e = 8.4 - 2.9 = 5.5 eV. However, there is no difference of any two energy levels equal to 5.5 eV. Thus, it is not possible. (3) First excitation energy = (-5.5) - (-10.4) = 4.9 eVAfter inelastic collision and excited the atom to first excited state, KE of e = 8.4 - 4.9 = 3.5 eVserved available for the experience of the

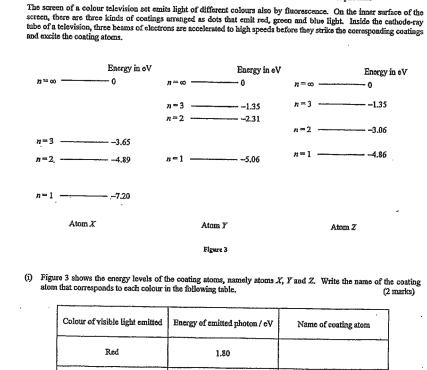
19.	B	84 41
	$\Delta E_{13} = (-1.53) - (-13.6) = 12.07 \text{ eV} \qquad \Delta E_{14} = (-0.85) - (-13.6) = 12.75 \text{ eV}$	
	Electrons of energy 12.5 eV can excite the hydrogen atoms to level 3 but not level 4.	
	The transition from level 3 back to level 2 can radiate a visible light photon, which belongs to Balmer series.	112
	However, the transitions from level 3 to 1 or from level 2 to 1 radiate ultra-violet photons, which belong to Lyman series.	
	Only 1 spectral line in the visible region (Balmer series) can be obtained.	14
	· ·	
		-39
	Let the energy of the three energy levels be E_1 , E_2 and E_3 , where E_1 is the lowest energy level.	
	By $\Delta E = \frac{hc}{\lambda}$, $E_3 - E_1$ should give the shortest wavelength λ_2 and $E_3 - E_2$ should give the longest wavelength λ_1 .	63
	As $(E_3 - E_1) = (E_3 - E_2) + (E_2 - E_1)$	編編
	$\therefore \frac{hc}{\lambda_1} = \frac{hc}{\lambda_1} + \frac{hc}{\lambda_2} \qquad \therefore \frac{1}{\lambda_2} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \qquad \therefore \lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$	653
	λ_3 λ_1 λ_2 , λ_3 λ_1 λ_2 λ_3 $\lambda_4 + \lambda_2$	
		31
	C	
	λ_1 has the greatest energy level difference, thus greatest energy of photon and greatest frequency and shortest wavelength. $\lambda_1 < \lambda_2 < \lambda_3 < \lambda_4$	83
	As the difference of energy levels between λ_1 and λ_2 is smaller, λ_1 and λ_2 should be closer, thus answer is C.	
		1
	c	, W
	Kinetic energy of the electron $= 12 \text{ eV}$	
	Excitation energy of the atom $= 12 \text{ eV}$	
	Energy of the ground state = $(-3.4) - 12 = -15.4 \text{ eV}$	89 80
	Ionization energy = 15.4 eV	
	Ionization potential = 15.4 V	83
		76.) 19.)
	D	
	$\Delta E_{31} = \Delta E_{32} + \Delta E_{21} \qquad \therefore \frac{hc}{\lambda_2} = \frac{hc}{\lambda} + \frac{hc}{\lambda_1}$	
	- ,	
	$\therefore \frac{1}{\lambda_2} = \frac{1}{\lambda} + \frac{1}{\lambda_1} \qquad \therefore \frac{1}{\lambda} = \frac{1}{\lambda_2} - \frac{1}{\lambda_1} \qquad \therefore \lambda = \frac{\lambda_1 \lambda_2}{\lambda_1 - \lambda_2}$	1
		•]
	c	
	$\Delta E_n = \Delta E_n + \Delta E_n \qquad hc = hc + hc \qquad .$	
	$\Delta E_{31} = \Delta E_{32} + \Delta E_{21} \qquad \therefore \frac{hc}{\lambda_2} = \frac{hc}{\lambda_1} + \frac{hc}{\lambda}$	33
	$\therefore \frac{1}{\lambda_2} = \frac{1}{\lambda_1} + \frac{1}{\lambda} \qquad \therefore \frac{1}{\lambda_2} = \frac{1}{\lambda_2} - \frac{1}{\lambda_1} \qquad \therefore \lambda = \frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_2}$	No.
	λ_2 λ_1 λ λ_2 λ_2 λ_1 $\overline{\lambda_1 - \lambda_2}$	90
		998 1997

237

	of light in vacuum			$c = 3.00 \times 10^8 \mathrm{m s^{-1}}$			
	-	elect		$e = 1.60 \times 10^{-19} \mathrm{C}$			
Electron rest mass				$m_{\rm c} = 9.11 \times 10^{-31} \rm kg$			
Planck constant				$h = 6.63 \times 10^{-34} \mathrm{Js}$			
mi	ittivi	y of :	free space	$\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$			
he	foll	owin	ng list of formulae may be found	useful :			
ierg	y lev	/el eq	uation for hydrogen atom	$E_{n} = -\frac{1}{n^{2}} \left\{ \frac{m_{e} e^{4}}{8 h^{2} \varepsilon_{o}^{2}} \right\} = -\frac{13.6}{n^{2}} eV$			
art	A :						
	ollov inati		question marked with { _} is the past D	SE question. The number inside the bracket represen	is the year of the		
.,			gy level of an electron in a hydrogen aton	t is given hy :			
2}			· · ·		•		
		<i>E</i> =	$=-\frac{13.6}{n^2}eV$				
	(a)	Exp	ain the physical meaning of the negative	sign of E.	(1 mark)		
	ው	State	TWO nostulates of Pohe's model of the	hudrogen storn minish me not "alassias]?	(7 marke)		
	(0)		State TWO postulates of Bohr's model of the hydrogen atom which are not "classical". (2 marks)				
	(c)	is fo		by an ultraviolet light beam of wavelengths 102.8 nm a is absorbed by the hydrogen gas while the 100.0 nm a			
		(i)	Calculate the energy of an ultraviolet lig the hydrogen atom after absorbing such	cht photon of wavelength 102.8 nm in eV. What is the qu a photon ?	antum number of (3 marks)		
				······································			
		(ii)	Why does the 100.0 nm ultraviolet light	pass through the hydrogen gas without absorption ?	(1 mark)		
		(iii)	When the excited hydrogen atom return these transitions gives visible light and o	s to its ground state, how many transitions are possible ? (explain your answer.	state which one of		
			Given : the energy of a visible light pho		(3 marks)		
			· .				

Part	в	:

;


rart D : The following questions marked with [] are the past HKAL questions. The number inside the brackets represents the year of the examination.

Q2. The figure below represents the energy levels of a hypothetical hydrogen-like atom :

	zero energy level	5.000 D.C. 100
	Diagram not to scale	
	2	
	. 1	
(a)	Mark on the above figure the ground state of the atom. (1 mark)	
(b)	Briefly explain what is meant by 'the ground state of the atom'. (1 mark)	
(c)	What is the significance of the zero energy level ? (1 mark)	
(d)	During the transition from level 3 to level 2 of the above atom, photons of wavelength 600 nm are emitted. Calculat the ionization potential energy for the atom. (3 marks)	
(e)	Determine the energy (in eV) corresponding to the levels 1, 2 and 3. (3 marks)	
•		- · · · · · · · · · · · · · · · · · · ·

		Energy in eV 0.0	ł
977% \$778		1.6	
8		-3.7	i f
/ 200		Diagram NOT to scale	
)		-5.5	
13			******
			41-1
		-10.4 ——— Ground state	5
63	•		
	(a)	From the above graph, estimate the lowest excitation energy for mercury. (2 marks)	
2772 2772		· · · · · · · · · · · · · · · · · · ·	
22			**
\$200 \$200			
	(b)	What is the wavelength of the radiation emitted by the mercury atoms as they return to their ground state from the first	5-11-1
		excited state? What kind of radiation does it belong to ? (3 marks)	
		excited state ? What kind of radiation does it belong to ?	
		excited state ? What kind of radiation does it belong to ?	
		excited state ? What kind of radiation does it belong to ?	айадага — мала — мала аладага а
		excited state ? What kind of radiation does it belong to ?	م میں ایک ایک ایک ایک ایک ایک میں ایک م ایک میں ایک میں ایک ایک ایک ایک ایک میں
		weited state ? What kind of radiation does it belong to ? (3 marks)	میں اور
		excited state ? What kind of radiation does it belong to ?	
		excited state ? What kind of radiation does it belong to ? (3 marks)	n
		excited state ? What kind of radiation does it belong to ? (3 marks)	،
		excited state ? What kind of radiation does it belong to ? (3 marks)	
		excited state ? What kind of radiation does it belong to ? (3 marks)	7
		excited state ? What kind of radiation does it belong to ? (5 marks)	л Л
		excited state ? What kind of radiation does it belong to ? (5 marks)	3 A

[04]				
ודי			Energy in eV	
		$n = \infty$, 0	.5
		n=4	-1.57	Ð
		<i>n</i> =3	-3.71	:: : ••
	Figur	el		
		n=2	· · · ·	
		n=1	-10.38 Diagram NOT to scale	WC Ed
			ns in the mercury vapour are excited to the first excited state from its ground state by the ic electrons. Determine the wavelength of the radiation emitted by the excited mercury ground state. In which part of the electromagnetic spectrum does this radiation belong (4 marks)	89900
	to ?		(4 marks)	2 2 2
				с.): Г
	`			
		· · · · · ·		
		<u> </u>		W155
				£1
(ii)	The ra	diation in (a)(i) is	then absorbed by the coating on the inner surface of the fluorescent tube. Figure 2 shows s of a coating atom.	
(ii)	The ra	diation în (a)(î) is of the energy levels	then absorbed by the coating on the inner surface of the fluorescent tube. Figure 2 shows s of a coating atom. Energy in eV	
(ii)	The ra	diation in (a)(i) is of the energy levels n=	s of a coating atom.	
(ii)	The ra	of the energy levels $n = \frac{1}{2}$	s of a coating atom. Energy in eV 0 2.66	
(ii)	some	of the energy levels n = C	s of a coating atom. Energy in eV 	
(ii)	some	of the energy levels n= C	Energy in eV 	
(i)	some	nf the energy levels n=	Energy in eV 	
(ii)	some	n ⁼ n ⁼ rc ² B A	Energy in eV Energy in eV -2.66 	And the second second
(ii)	some (n ⁼ n ⁼ re ² <i>B</i> <i>A</i> <i>n</i> =	s of a coating atom. Energy in eV \$\overline{v}\$ 0 \$\overline{v}\$ -2.66 \$\overline{v}\$ -3.81 \$\overline{v}\$ -4.86 \$\overline{v}\$ -7.52 Diagram NOT to scale	
(i)	Some (n ⁼ n ⁼ re ² <i>B</i> <i>A</i> <i>n</i> =	s of a coating atom. Energy in eV co 0	And the second second
(i)	Figure (I)	If the energy levels n = re^2 After the absorption atom be excited to The excited coatting	Energy in eV Energy in eV Energy in eV -2.66 -3.81 -4.86 -1	and the second of the second s
(ii)	Figure (I)	If the energy levels n = re^2 After the absorption atom be excited to The excited coatting	Energy in eV Energy in eV Energy in eV -2.66 -3.81 -4.86 -1	
(ii)	Figure (I)	If the energy levels n = re^2 After the absorption atom be excited to The excited coatting	Energy in eV Energy in eV Energy in eV -2.66 -3.81 -4.86 -1	
(i)	Figure (I)	If the energy levels n = re^2 After the absorption atom be excited to The excited coatting	s of a coating atom. Energy in eV ∞ 0 ∞ -2.66 3.31 -3.81 1 -4.86 1 -7.52 Diagram NOT to scale m of the radiation in (a) (i), which energy levels, A, B, or C, would the ground state coating 7 (1 matk)	

Q4. (b) Fluorescence occurs when an electron of a fluorescent coating atom is excited to an excited state, the excited electron

will return to the ground state through various intermediate states and these transitions will emit photons.

3

风

調問

(i)

9

2007

Ú

2

「「「「」」

2000

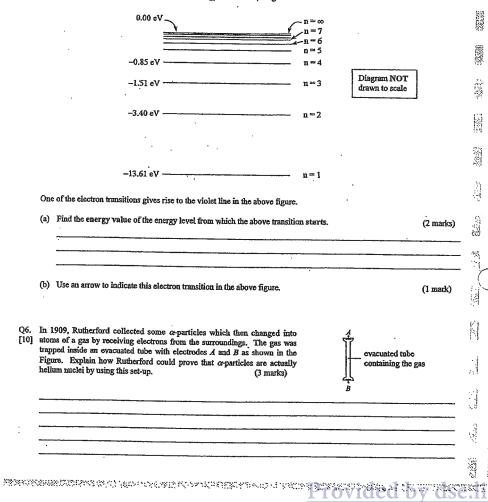
 Red
 1.80

 Green
 2.31

 Blue
 2.75

(ii) The excitation energies of the three kinds of coating atoms are different. Can a single electron beam carrying a sufficient amount of energy excite these coating atoms ? Explain briefly. (2 marks)

.


- J.J.

Q5. The table below shows the literature values of the wavelengths of the emission lines from a hydrogen discharge tube.

E.

	λ (nm)
Red	656.3
Cyan	486.1
Blue	434.1
Violet	410.2 ·

The Figure below shows some of the allowed energy levels for hydrogen.

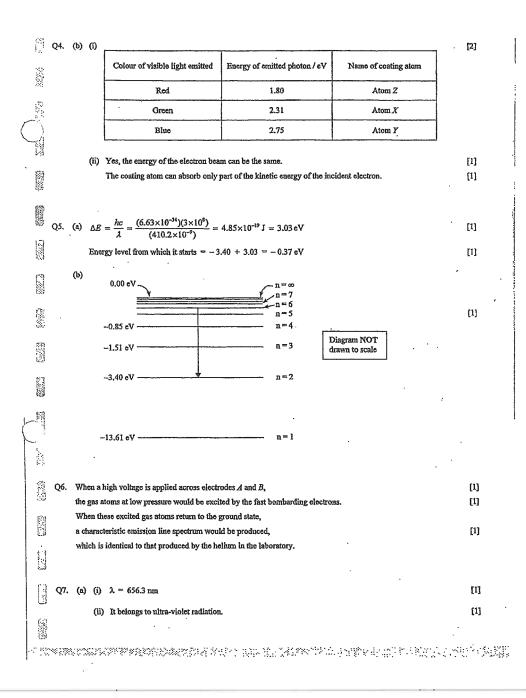
Q7.	The	follo	owing table lists some of the sp	ectral lines of hyd	rogen spectrur	n from a discha	rge tube.		
			Wavelength λ/nm	656.3	486.1	434.0	410.2	364.6]
)	(a)	(i)	Which line corresponds to rec	l light ?					(1 mark)
		(ii)	One of the lines cannot be see belongs.	m by naked eyes.	Name the reg	ion in the elect	romagnetic sp	ectrum to wh	ich this lin (1 mark)
Ciphinage:	(b)	What	at activity within an atom gives sists of discrete lines ?	s rise to these emis	ssion lines 7	What is the pby	/sical signific:	ance of the sj	ectrum th (2 marks)
					······				
						•	· · · · · · · · · · · · · · · · · · ·	·····	-
	(c)	In fa	act, the wavelengths of the emir $\lambda = (364.6 \text{ nm}) \frac{n^2}{n^2 - 4}$, w			the following s	veries :		
		(1)	$n^2 - 4$ Show that the formula can be						
Î			$hf = K(\frac{1}{n^2} - \frac{1}{4})$					•	
1	•		where f represents the frequen	cies of the emissio	on lines, <i>h</i> is th	e Planck const	ant and K is a	constant.	(1 mark)
						•		~	
				· · · · · · · · · · · · · · · · · · ·	·				
		(ii)	Find K in units of eV .				• •		
			State the physical significance	of the sign and th	e magnitude o	f the term $\frac{K}{n^2}$	in the formul	a of hf.	(4 marks)
					·				
Ì									
	• •	.`							
and a second									

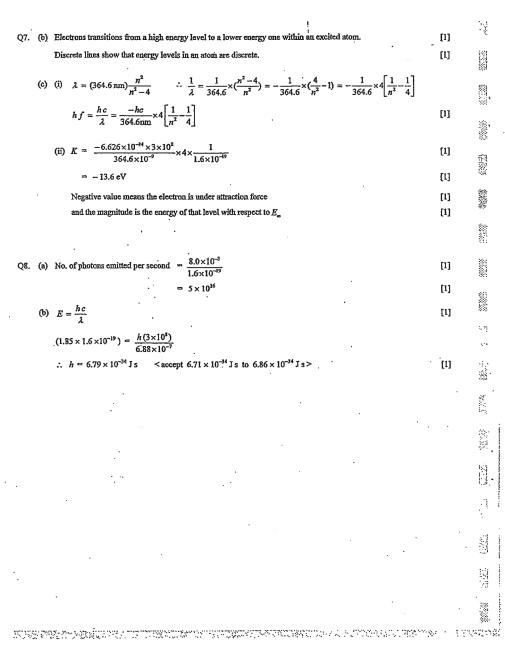
÷.

(a)	If the current in the LED is 8.0 mA, estimate the number of photons emitted by the LED per second, (2 marks	i)
		_
(b)	The energy of each photon emitted by the LED is 1.85 eV. Estimate the value of the Planck constant h. (2 marks	5)
•		_
		_
	-	

Q8. An LED is made up of two different semiconductor layers, namely p-type and n-type. The LED emits a monochromatic light

Provided by dse.life


	Q1.	(a)	Negative value means that the electron is under attraction and cannot escape from the atom.	[1]
			OR .	
			Negative value means that the electron is bounded by the atom and cannot escape from the atom.	[1]
		(b)	The electron in a hydrogen atom can revolve in certain orbits of definite energy without emitting radiation.	[1]
			The angular momentum of the electron is quantized, which is an integral multiple of a certain value.	[1]
		(c)	(i) $E = hf = \frac{hc}{\lambda} = \frac{(6.63 \times 10^{-34})(3 \times 10^6)}{(102.8 \times 10^{-9})} \times \frac{1}{1.6 \times 10^{-19}} = 12.09 \text{ eV}$	[1]
			$E_{\rm n} = (-13.6) + (12.09) = -1.51 {\rm eV}$	[1]
			$-\frac{13.6}{n^2} = -1.51$:: $n = 3$	[1]
			Quantum number of the hydrogen atom is 3.	
			(ii) There is no difference of any two energy levels equal to the energy of the photon.	[1]
			(iii) There are 3 possible transitions.	- [1]
			The transition from the second excited state to the first excited state gives the visible light.	[1]
			Since the energy of the photon in this transition is given by	
			$\Delta E = \left(-\frac{13.6}{3^2} \right) - \left(-\frac{13.6}{2^2} \right) = 1.89 \text{ eV}$	
			which is within the range of visible light photon	[1]
1	Q2.	(a)		
				[1]
			ground state	
			-	
		(b)	The condition in which the electron is in the lowest energy state available.	[1]
		(c)	The electron is free from the influence of the atom.	[1]
		(d)	$E_{\circ}(\frac{1}{2^2} - \frac{1}{3^2}) = (6.63 \times 10^{-34}) \times \frac{3 \times 10^4}{600 \times 10^{-9}}$	[1]
			$\therefore E_{\bullet} = 2.39 \times 10^{-18} \text{ J}$	[1]
			Ionization potential energy $= \frac{2.39 \times 10^{-16}}{1.6 \times 10^{-19}} = 14.9 \text{ eV}$	[1]
			1.6×10 ^{-1.}	


				17
Q2:	(e)	Level 1 : - 14.9 eV	[1]	
		Level 2 : $-14.9 \times \frac{1}{4} = -3.7 \text{ eV}$	[1]	
		Level 3 : $-14.9 \times \frac{1}{9} = -1.7 \text{ eV}$	[1]	84
				<u>.</u>
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Q3.	(a)	$\Delta E_1 = (-5.5) - (-10.4)$	[1]	) Maria
		$\Rightarrow 4.9 \text{ eV}$ < accept 7.84 × 10 ⁻¹⁹ J>	[1]	
	(b)	E = hf		
		$\therefore (4.9 \times 1.6 \times 10^{-16}) = 6.63 \times 10^{-34} \times \frac{3 \times 10^6}{2}$	[1]	535
		$\therefore \lambda = 250 \text{ nm}$	[1]	
		The radiation is ultra-violet.	[1]	
	ക	As there is no difference of any two energy levels corresponding to 9 eV,		88
	(0)	the photon will not be absorbed.	[1] [1]	Mili
		< Blastic collision occurs ; cannot be accepted >		
		•••		
		· · · · · · · · · · · · · · · · · · ·		10.5
Q4,	(a)	(i) $\Delta E = \frac{hc}{\lambda}$	[1]	
		$(6.63 \times 10^{-34}) \cdot (3 \times 10^8)$		83
		$\therefore  [(-5.52) - (-10.38)] \times (1.6 \times 10^{-19}) = \frac{(6.63 \times 10^{-14}) \cdot (3 \times 10^{9})}{\lambda}$	[1]	i 88
		$\therefore \ \lambda = 2.56 \times 10^{-7} \mathrm{m}$	[L]	
		The radiation is ultra-violet.	-[1]	
		(ii) (1) Energy of the photon emitted by the Mercury atom = $(-5.52) - (-10.38) = 4.86 \text{ eV}$		
		After absorbing this photon, coating atom has energy :		
		$E = (-7.52) + 4.86 = -2.66 \mathrm{eV}$		
		The atom is excited to level C.	[1]	
		(II) Energy of violet light = 3.11 eV		18 N.
		Energy of red light = $3.11 \times \frac{400}{700} = 1.78 \text{ eV}$		
		Thus the energy difference between two levels should be within the range of 1.78 eV to 3.11 eV.	[1]	
		Visible light is emitted :		
		$\oplus$ for transition from C to A; and	[1]	
		$\odot$ for transition from $A$ to ground state.	[1]	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19

Provided by dse.life

a the flat and is here is and the

. .





### 2.4 Particles or Waves

Speed of light in vacuum	$c = 3.00 \times 10^8 \mathrm{m}\mathrm{s}^{-1}$	
Charge of electron	$e = 1.60 \times 10^{-19} \mathrm{C}$	-
Electron rest mass	$m_{\rm a} = 9.11 \times 10^{-31}  \rm kg$	
Planck constant	$h \approx 6.63 \times 10^{-34}  \mathrm{Js}$	
The following list of formulae n	nay be found useful :	
de Broglie formula	$\lambda = \frac{h}{p} = \frac{h}{mv}$	
Part A :		
The following questions marked with	(PP) are the Practice Paper questions of the new DSE Examination.	
M1. The de Broglie wavelength of a p $\{PP\}$ A. $\lambda/4$	particle at speed $v$ is $\mathcal A$ . If the speed of the particle is doubled, the de Broglie wavelengt	h is
B. 1/2		
$\begin{array}{c} C. \lambda \\ D. 2\lambda \end{array}$		
D. 200		
M2. A beam of electrons is incident (PP) screen. Which physical phenome	on a thin film of crystal. A pattern of bright and dark rings is observed on a fluor enon explains the formation of the pattern ?	esc
(~, )		
electron be	erystal	
A. Photoelectric effect	screen	
B. Electron diffraction		
C. Ionization of atoms D. Lotus effect		
2. 2020		
Part B :		
The following question marked with	$\{\ \}$ is the past DSE question. The number inside the bracket represents the year	of
examination.		
M3. Which of the following has the s		
<ul><li>{12} A. A 60 kg person walking at</li><li>B. A bird of mass 0.3 kg flying</li></ul>		
C. A basketball of mass 0.6 kg	g moving at 12 m s ⁻¹ .	
D. A bullet of mass 0.05 kg m	toving at 800 m s ⁻¹ ,	

. . . .

<u>gev</u>	Part C:	M10. Arrange the de Broglie wavelengths of the following particles in ascending order. (1) a proton of kinetic energy 1000 eV (2) a neutron of kinetic energy 500 eV
	The following questions are designed to give supplemental exercise for this chapter.	
ŝ	M4. Which of the following suggests that electrons can behave like waves ?	<ul> <li>(3) an electron of kinetic energy 500 eV</li> <li>A. (1), (2), (3)</li> <li>B. (1), (3), (2)</li> <li>C. (2), (1), (3)</li> <li>D. (3), (1), (2)</li> </ul> M11. Light of frequency 5 × 10 ¹⁴ Hz consists of photons of momentum <ul> <li>A. 4.0 × 10⁻⁴⁰ kg m s⁻¹</li> <li>B. 3.7 × 10⁻³⁶ kg m s⁻¹</li> </ul>
22	<ol> <li>Electron shows diffraction pattern.</li> <li>When light is incident onto a metal surface, electrons are ejected.</li> </ol>	B. (1), (3), (2) C. (2), (1), (3)
	(3) Electron beam is deflected by an electric field.	D. (3), (1), (2)
	A. (1) only	
	B. (1) & (2) only C. (2) & (3) only	M11. Light of frequency $5 \times 10^{14}$ Hz consists of photons of momentum
618	D. (1), (2) & (3)	A. $4.0 \times 10^{-40}$ kg m s ⁻¹
63		A SHI KO KEMIS
	M5. An electron is accelerated from rest through a potential difference of 500 V. What is the final de Broglie wavelength of the	C. $1.7 \times 10^{-24}  \text{kg m s}^{-1}$
	electron?	D. $1.1 \times 10^{-27} \text{ kg m s}^{-1}$
	A. $4.4 \times 10^{-11}$ m B. $5.5^{5} \times 10^{-11}$ m	<ul> <li>M12. The de Broglie wavelength of a rifle bullet of mass 0.02 kg which is moving at a speed of 300 m s⁻¹ is</li> <li>A. 7.3 × 10⁻³⁶ m</li> <li>B. 1.8 × 10⁻³³ m</li> <li>C. 1.1 × 10⁻³⁴ m</li> </ul>
biel	C. $6.6 \times 10^{-11} \mathrm{m}$	M12. The de Broglie wavelength of a rifle bullet of mass 0.02 kg which is moving at a speed of 300 m s ⁻¹ is
	¹ D. $7.7 \times 10^{-11}$ m	A. $7.3 \times 10^{-36}$ m
		B. $1.8 \times 10^{-33}$ m C. $1.1 \times 10^{-34}$ m
<b>6</b> 3	M6. Find the momentum of each photon of light with wavelength $6.52 \times 10^{-7}$ m.	D. $9.9 \times 10^{39} \text{ m}$
	A. $1.0 \times 10^{-27}$ kg m s ⁻¹ B. $1.5 \times 10^{-27}$ kg m s ⁻¹	D. 9.9 × 10 ³⁹ m
	C. $2.0 \times 10^{-27}$ kg m s ⁻¹ D. $2.5 \times 10^{-27}$ kg m s ⁻¹	M13. The wave nature of electrons is suggested by experiments on
	D. 2.3×10 kgm3	A. line spectra of atoms
40	M7. Which of the following suggests that light can behave like particles ?	B. the production of X-rays C. the photoelectric effect
	M7. Which of the following suggests that light can behave like particles ? (1) Light shows interference pattern after passing through double slit.	D. electron diffraction by a crystalline material
c . 1	<ol><li>Light can emit electrons when it is incident onto a metal surface.</li></ol>	
63	<ul> <li>(3) Light transmits through the space by the oscillation of electric and magnetic field.</li> <li>A. (1) only</li> </ul>	M14. In 1923, de Broglie suggested that an electron of momentum p has properties corresponding to a wave of wavelength $\lambda$ .
	B. (2) only	M14. In 1923, de Broglie suggested that an electron of momentum $p$ has properties corresponding to a wave of wavelength $\lambda$ . Which one of the following graphs correctly shows the relationship between $\lambda$ and $p$ ? A. B. C. D.
	C. (1) & (3) only D. (2) & (3) only	$\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $
腳門		
ł. )	M8. Which of the following phenomena can only be explained by the wave nature of light ?	
73:	(1) reflection	
1.1	(2) diffraction (3) interference	
: "1	A. (1) only	$p \rightarrow p \rightarrow$
0	B. (2) only . C. (1) & (3) only	
	D. (2) & (3) only	M15. A beam of light of wavelength $\lambda$ is totally reflected at normal incidence by a plane mirror. The intensity of the light is such that photons hit the mirror at a rate of a final data with the mirror of a rate of a final data with the mirror of a rate of a final data with the mirror of a rate of a final data with the mirror of a rate of a final data with the mirror of a rate of a final data with the mirror of a rate of a final data with the mirror of a rate of a final data with the mirror of a rate of a final data with the mirror of a rate of a final data with the mirror of a rate of a final data with the mirror of a rate of a final data with the mirror of a rate of a final data with the mirror of a rate of a final data with the mirror of a rate of a final data with the mirror of a rate of a final data with the mirror of a rate of a final data with the mirror of a rate of a rate of a final data with the mirror of a rate of a ra
[·]		A. $n \hbar \lambda$
€, J	M9. A moving football does not show the wave properties because	$\begin{array}{c} \mathbf{B}  nh/\lambda \\ \mathbf{C}  2nh\lambda \end{array}$
11	(1) the momentum of the football is too large.	D 2-1/1
E.J	<ul><li>(2) the momentum of the football is too small.</li><li>(3) the de Broglie wavelength of the football is too long.</li></ul>	M16. If the de Broglie waves associated with each of the following particles are to have the same wavelength which matted
F-4	(4) the de Broglie wavelength of the football is too short.	M16. If the de Broglie waves associated with each of the following particles are to have the same wavelength, which particle must
	A. (1) & (3) only	have the smallest velocity ? A. proton
	B. (1) & (4) only C. (2) & (3) only	B. alpha particle
	D. (2) & (4) only	C. electron D. neutrop
169 		
• • •		
		Provided by dse.life

9	M17. What is the de Broglie wavelength of a particle of mass m and kinetic	energy E?	Answers	ļ
	A. h 12mE	· .	1. B 6. A 2. B 7. B 3. A 8. D 4. A 9. B 5. B 10. A	11. D 16. B
	B. $\frac{\sqrt{2mE}}{h}$	÷ ۱	2. B 7. B	12. C 17. D
3	C. $\frac{h}{\sqrt{mE}}$		3. A 8. D	13. D 18. C
. 13 )	L.		4. A 9. B	14. A
-	D. $\frac{n}{\sqrt{2mE}}$	:	5. B 10. A	15. D
	M18. The intensity of a beam of monochromatic light is doubled. Which of if any, in the momentum of each photon of the radiation ?	ne of the following represents the corresponding change,	Solution	
	A. increased fourfold B. doubled		L. B	
	C. the same		By $\lambda = \frac{h}{mv}$ , if v is doubled, $\lambda$ is ha	lved.
5770 1970	D. halved		I. B By $\lambda = \frac{h}{mv}$ , if v is doubled, $\lambda$ is ha 2. B The electron has wave properties with The electrons are diffracted by the cryst	
			2. B The electron has wave properties with	wavelength expressed by the de Broglie formula.
			The electrons are diffracted by the cry	tal after they passes through the crystal to give the bright and dark ring
			3. A By $\lambda = \frac{h}{a} = \frac{h}{a}$ , the one with the	
			By $\lambda = \frac{h}{h} = \frac{h}{h}$ , the one with the	greatest momentum $p$ gives the shortest de Broglie wavelength.
2 ·		· · ·	p mv Momentum of the person = $60 \times 0.8$	
61			Momentum of the bird = $0.3 \times 20$ =	•
			Momentum of the basketball $= 0.6 \times$	
R			Momentum of the bullet = 0.05 × 800 Since the person has the greatest mom	) = 40 kg m s * entum, it has the shortest de Broglie wavelength.
- 18 - 1			Momentum of the basketball = 0.6 × Momentum of the bullet = 0.05 × 800 Since the person has the greatest mom	
			- 4. A	· · · · · · · · · · · · · · · · · · ·
				idence of wave property. • offect, which is an evidence that light behaves like particles,
問題			not electrons behave	
12			* (3) This is the particle r	ature of electrons.
			5. B	
9			KE = e V	
13			The de Broglie wavelength of the elec	tron is given by $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2 m e V}}$
國			$\therefore \lambda = \frac{6.63 \times 10^{-34}}{\sqrt{2 \times 9.11 \times 10^{-31} \times 1.60 \times 10^{-12}}}$	×500

	Q	6.	A $(6.63 \times 10^{-34})$ to $10^{-27}$
			$p = \frac{h}{\lambda} = \frac{(6.63 \times 10^{-34})}{(6.52 \times 10^{-7})} \approx 1.0 \times 10^{-27} \mathrm{kg  m  s^{-1}}$
	ces.	7.	В
			* (1) This is the evidence that light behaves like waves.
	****		$\checkmark$ (2) This is photoelectric effect, which is an evidence that light behaves like particles.
į			<ul> <li>* (3) This is the propagation of electromagnetic waves.</li> </ul>
(		8.	D ·
	699		× (1) Both particle and wave can show reflection.
{			$\checkmark$ (2) Only a wave can show diffraction.
í	33		<ul> <li>(3) Only a wave can show interference.</li> </ul>
1		9.	В
,	004		Since the momentum of a football is very large, by $\lambda = h/p$ .
			the de Broglie wavelength is very short,
ŝ	*		thus the waye behaviour of diffraction and interference can hardly show.
10 M 10 M	2	10	
ç	50	10.	A Let the kinetic energy of the particle be E.
4.50			
ſ	83		$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE}}$
			The neutron has less E than the proton, but their masses are similar,
: i f	59		thus the wavelength of the neutron is longer than the proton.
			The electron has less mass than the neutron, but their kinetic energies are the same,
.			thus the wavelength of the electron is longer than the neutron.
.i			The wavelength in ascending order (from short to long) is then (1), (2), (3)
	Num (	11.	D
1.5	Ċ)		$\lambda = \frac{c}{f} = \frac{(3 \times 10^8)}{(5 \times 10^{14})} = 6 \times 10^{-7} \mathrm{m}$
lí	3		
			$p = \frac{h}{\lambda} = \frac{(6.63 \times 10^{-34})}{(6 \times 10^{-7})} = 1.1 \times 10^{-27} \mathrm{kg m  s^{-1}}$
1			X (0X10)
	3	12.	c ·
			$p = mv = (0.02) (300) = 6 \text{ kg m s}^{-1}$
	1		
	779F		$\lambda = \frac{h}{p} = \frac{(6.63 \times 10^{-34})}{(6)} = 1.1 \times 10^{-34} \mathrm{m}$
	 		KAPARES (MASAAR) AND AND AND AND AND AND AND

13. D Diffraction can show the wave nature of electrons. 14. А By de Broglie relationship :  $\lambda = \frac{h}{2}$ р  $\boldsymbol{\lambda}$  and  $\boldsymbol{p}$  are inversely proportional, thus the curve in option A is correct. 15. D Momentum of each photon :  $p = h/\lambda$ 

Change of momentum after collision = p - (-p) = 2p

Force = rate of change of momentum = rate of collision × change of momentum

Support of

 $= n \times 2p = n \times 2h/\lambda = 2nh/\lambda$ 

By  $\lambda = h/p$ , to have the same wavelength, they must have the same momentum p or mv. The particle that has the smallest velocity v corresponds to the largest mass m. Alpha particle has the largest mass among the four, thus it has the smallest velocity.

D  $E = \frac{1}{2}mv^2 = \frac{(mv)^2}{2m} = \frac{p^2}{2m} \therefore p = \sqrt{2mE}$  $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE}}$ 

The intensity of light only affects the number of photons transmitted per second. As the momentum of photon depends on the wavelength or frequency of the light, the momentum of photon should remain the same.

Provided by dse.

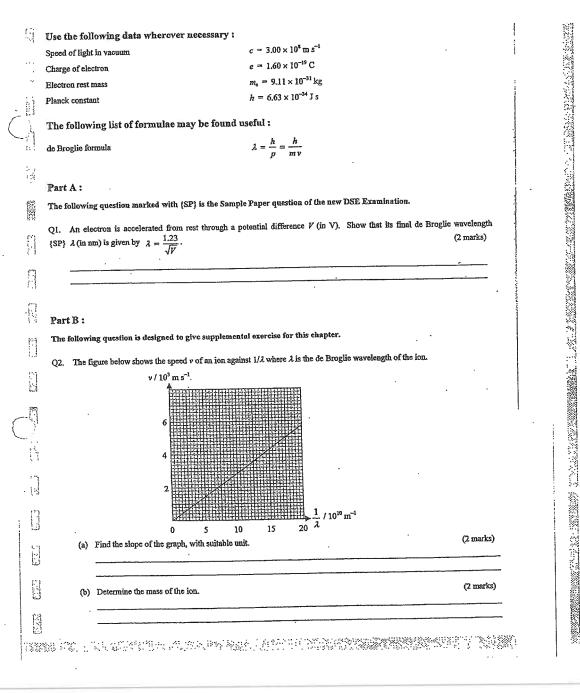
В

.... ....

.

- Baller

a service and the service of the ser


<.

N. W.

16.

17.

18. С



Q1. After accelerated through the p.d. : KE = e VRelation between KE and momentum,  $KE = \frac{1}{2}mv^2 = \frac{(mv)^2}{2m} = \frac{p^2}{2m}$  $\therefore p = 2m \times KE = 2meV$ The de Broglie wavelength of the electron is given by h  $\lambda = \frac{h}{2}$ √2meV р 6.63×10⁻³⁴ √2×9.11×10⁻³¹×1.60×10⁻¹⁹×V  $=\frac{1.23}{\sqrt{\gamma}}$ (5-0)×103 Q2. (a) slope of the graph (17.5-0)×1010  $= 2.86 \times 10^{-8} \text{ m}^2 \text{ s}^{-1}$ (b) By de Broglie relationship, ... v slope =  $\frac{h}{m}$  $(2.86 \times 10^{-8}) = (6.63 \times 10^{-34})$ m  $m = 2.32 \times 10^{-26} \,\mathrm{kg}$ 

### Provided by dse life

6.5

[1]

[1] 50403

[1]

[1]

[1]

[1]

鱁

1

찕

Sea.

#### Use the following data wherever necessary :

Speed of light in vacuum	$c = 3.00 \times 10^4 \mathrm{m  s^{-1}}$
Charge of electron	$e = 1.60 \times 10^{-19} \mathrm{C}$
Electron rest mass	$m_{\rm c} = 9.11 \times 10^{-31}  \rm kg$
Planck constant	$h = 6.63 \times 10^{-34}  \text{J s}$

#### The following list of formulae may be found useful :

de Broglie formula	$\lambda = \frac{h}{p} = \frac{h}{m\nu}$
Rayleight criterion (resolving power)	$\theta \approx \frac{1.22\lambda}{d}$

#### Part A :

#### The following question marked with (SP) is the Sample Paper question of the new DSE Examination.

M1. Graphite is a conductor because of the 'delocalization' of electrons. Where are these delocalized electrons ?

- (SP) A. formed on the surface of graphite
  - B. formed within the carbon layers of graphite
  - C. formed homogeneously within graphite

**

D. formed in a 'sea' of positive ions

#### Part B :

#### The following questions marked with {PP} are the Practice Paper questions of the new DSE Examination.

M2. Which of the following statements about different microscopes is/are correct ?

- (PP) (1) The resolution of an optical microscope will increase if red light instead of blue light is used to illuminate the specimen.
  - (2) A transmission electron microscope (TEM) uses magnetic field to focus the electron beam.
  - (3) Only specimens that conduct electricity can be studied by a scanning tunnelling microscope (STM).
  - A. (1) only
  - B. (3) only
    C. (1) & (2) only
  - D. (2) & (3) only

M3. Which of the following are possible means by which nano particles could get into the human body ?

- {PP} (1) The skin having direct contact with nano particles.
  - (2) Inhaling nano particles into the lungs while breathing.
    - (3) Ingesting food containing nano particles.
  - A. (1) & (2) only
  - B. (1) & (3) only
  - C. (2) & (3) only
  - D. (1), (2) & (3)

5. YY .....

10.00

òs.

 $\frac{1}{2}$ 

r = 1

1

	<ul> <li>M4. Estimate the wavelength of electrons when they are accelerated in a transmission electron microscope (TEM) with a voltage {PP} of 76 kV.</li> <li>A. 2.4 × 10⁻¹² m</li> <li>B. 4.5 × 10⁻¹² m</li> <li>C. 1.4 × 10⁻¹⁰ m</li> <li>D. 9.6 × 10⁻⁹ m</li> </ul>	<ul> <li>M9. Which of the following statements is/are correct ? <ol> <li>Nanomaterial refers to materials having the size of exactly 1 nm.</li> <li>Nanotechnology can be started after the electron microscopes have been invented.</li> <li>The scale of nano is close to the atomic size.</li> </ol> </li> <li>A. (1) only <ul> <li>B. (2) only</li> <li>C. (1) &amp; (3) only</li> <li>D. (2) &amp; (3) only</li> </ul> </li> </ul>	
3	The following questions marked with { } are the past DSE questions. The number inside the brackets represents the year of the examination.	M10. Nano materials have different properties compared with the large scale materials. Which of the following give(s) the creason 7	orrect
		(1) In nano scale, the area to volume ratio largely increases.	
	M5. Which of the following properties could explain Lotus effect ?	(2) In nano scale, the de Broglie wavelength of matter becomes more significant.	
	{12} A. water-attractive property	(3) In nano scale, the atoms would become smaller.	
閼	B. water-repelling property	A. (1) only	
80	C. wave-particle duality of matter D. high electrical conductivity	B. (3) only C. (1) & (2) only	9° ;
	D. ingh electrical conductivity	D. (2) & (3) only	. :
	M6. If substance is reduced in size to become particles of about 10 nm large, which of the following properties of these particles {12} would differ from those of the substance in bulk form ?	M11. The pupil of a human eye has a diameter of about 4.8 mm. If the eye is viewing a red object having a wavelength of 700 what is the angular resolution of the eye ?	19. av
. 87	(1) optical	A. $1.78 \times 10^{-4}$ rad	
	(2) mechanical	B. $2.42 \times 10^{-4}$ rad	
	(3) electrical	C. $3.76 \times 10^{-4}$ rad	44
	<ul> <li>A. (1) &amp; (2) only</li> <li>B. (1) &amp; (3) only</li> <li>C. (2) &amp; (3) only</li> <li>D. (1), (2) &amp; (3)</li> </ul>	<ul> <li>D. 4.94 × 10⁻⁴ rad</li> <li>M12. Which of the following concerning the structure of C₅₀ molecule is/are correct ?         <ol> <li>It has 60 vertices.</li> <li>It has 90 edges.</li> </ol> </li> </ul>	
6 P	19 Accession of the second	(3) It has 32 faces.	<i>\$</i> \$
	Part C:	A. (1) & (2) only	್ರ ಕೆ
	The following questions are designed to give supplemental exercise for this chapter.	B. (1) & (3) only C. (2) & (3) only	1
		C. (2) & (3) only D. (1), (2) & (3)	0
	M7. In a transmission electron microscope, electrons are accelerated by a potential difference of 50 kV. How many times is the		
98 <del>1</del>	resolving power greater than that of an optical microscope viewing object with an average wavelength of 550 nm ?	M13. Which of the following is NOT a type of electron microscope ?	
100	A. 10 ³	A. TEM	
1,214	B. 10 ⁴	B. TSM	
	C. 10 ³	C. SEM	· · · · · · · · · · · · · · · · · · ·
	D. 10 ⁶		
		D. STM	
	M8. Which of the following is NOT a possible form of nano materials ?		
·	A. nano tubes	M14. Which of the following is NOT the component of a STM?	
	B. nano films	A. piezoelectric controlled scanner	
	C. nano triangles	B. distance control and scanning unit	54 Y
20		C. electromagnetic lens system	зіģ
	D. nano spheres	D. vibration isolation system	
* <b>2</b> 2			
		I Contraction of the second	199 - LQ

- .1.-

a)1. B6. D11. A16. Ba)1. B6. D11. A16. Ba)1. B6. D11. A16. Ba)2. D7. C11. Db)1. B6. D11. A16. Ba)1. B1. D1. C1. Db)1. C1. D1. C1. Db)1. C1. D1. C1. Da)1. D1. C1. D1. Cb)1. C1. D1. C1. Dc)1. D1. C1. D1. Cc)1. D1. C1. D1. Ca)1. D1. C1. D1. Cb)1. D1. C1. D1. Cc)1. D1. C1. D1. Cc)1. D1. C1. Dc)1. D1. D1. C1. Dc)1. D1. D1. D1. Dc)1. D <th>473 143 143</th> <th>M15. A typical TEM consists of 4 components :</th> <th>1</th> <th>Ans</th> <th>wers</th> <th></th> <th></th> <th></th> <th></th> <th>:</th> <th>:</th> <th></th>	473 143 143	M15. A typical TEM consists of 4 components :	1	Ans	wers					:	:	
$ \begin{array}{c} 2 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 $	•	(a) Electromagnetic lens system								16 D		
(4) Samphender 11. Prove the sequence is not adde a decision to max word pane diverge. 4. (6) $0,0(0,0(0,0(0,0(0,0(0,0(0,0(0,0(0,0(0,0$										10. B		
Label 4 compared in loady that the adverse bare would prescharge it. A (6) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	*			2.	D							
A (0,0,0) (0,4) A (0,0,0,0) B (0,0,0,0,0) C (0,0,0,0,0) C (0,0,0,0,0) C (0,0,0,0,0) M (6, Veb 1:0 the determined of a Loba let 7 () Yes in the interval () Yes	425 750			3.	D	8.	С		13. B			••• -1
5. B (0, C C, 0, 0) C, (0, (0, (0, 0)) C, (0, (0, (0, 0)) M15. What is do domained of a bala half? (1) We do not as the bala (2) We share out is found as hald. (3) We share out is found as hald. (4) We share out is found as hald. (5) We do not a the bala. (6) We share out is found as hald. (7) We do not at the bala. (8) We share out is found as hald. (9) We do not at the bala. (9) We do not at the notion by the subject Containt = # 1222.01. The does the bala for a bala bala for the bala bala bala bala bala bala bala bal			{	4.	в	9.	D		14. C			÷
<b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solution</b> <b>Solu</b>		· · · · ·		5.	В	14	D. C		15. B			<u>6</u> 1
<b>Solution</b> <b>D</b> : $\Theta_{1} \Theta_{2} \Theta_{2} \Theta_{3} \Theta_{4}$ <b>D</b> : $\Theta_{1} \Theta_{2} \Theta_{3} \Theta_{4}$ <b>D</b> : $\Theta_{1} \Theta_{2} \Theta_{2} \Theta_{3} \Theta_{4}$ <b>D</b> : $\Theta_{1} \Theta_{2} \Theta_{2} \Theta_{3} \Theta_{4}$ <b>D</b> : $\Theta_{2} \Theta_{2} \Theta_{3} \Theta_{3}$ <b>D</b> : $\Theta_{2} \Theta_{2} \Theta_{3} \Theta_{3} \Theta_{4}$ <b>D</b> : $\Theta_{2} \Theta_{2} \Theta_{3} \Theta_{3} \Theta_{4}$ <b>D</b> : $\Theta_{2} \Theta_{2} \Theta_{3} \Theta_{3} \Theta_{4} \Theta_{$												Чх.
N1.6. While is the densatorithes of the surface of a Lotes half?1.B(1) but the test formed on the half.(1) Where explore formed as the half.(2) Whet explore formed as the half.(2) Whet explore formed to be half.(2) Or W(3) Or W(3) Or W(3) Or W(3) Or W(3) Or W(3) Or W(2) Or W(3) Or W(4) Or W(3) Or W(3) Or W(3) Or W(3) Or W(3) Or W(5) Or W(3) Or W(3) Or W(3) Or W(3) Or W(3) Or W(4) Or W(3) Or W(3) Or W(3) Or W(3) Or W(3) Or W(5) Or W(3) Or W(3) Or W(3) Or W(3) Or W(3) Or W(5) Or W(3) Or W(3) Or W(3) Or W(3) Or W(3) Or W(5) Or W(3) Or W(3) Or W(3) Or W(3) Or W(3) Or W(2) Or W(3) Or W(4) Or W(3) Or W(3) Or W(3) Or W(3) Or W(3) Or W(5) Or W(3) Or W(3) Or W(3) Or W(3) Or W(3) Or W(4) Or W(3) Or W(3) Or W(3) Or W(3) Or W(3) Or W(5) Or W(3) Or W(3) Or W(3) Or W(3) Or W(3) Or W(6) Or W(3) Or W(3) Or W(3)				Sal	tion							3月
The first show the definition of the first show the local line of		D. (c), (a), (b), (d)										
<ul> <li>(i) No dire mis fead a lab fad.</li> <li>(c) No water cale band in the fad.</li> <li>(c) Water copies can vid off the haf saily.</li> <li>(c) (c) a bar direction of lab fad.</li> <li>(c) (c)</li></ul>	65	M16. What is the characteristics of the surface of a Lotus leaf?		1.			-1 1!					
(a) Weter depicts can rule off the had saily. (b) At the wavelength of red light is increased, (c) and the magnetic prior derived its depicts and the increased of the National Control (c) = 1.22 M.D. (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	調	(1) No dirt can be found on the leaf.	1		The tre	e mobile d	elocalize	1 electrons e	XIST DETWEEN IA	yers of graphile.		
(i) Water depict carrol of the last cauly. A (1) obspin the squares applies of ad light is increased by the RayAdja Collector: $10 - 122 J.D.$ the singular sequences of a increase by the RayAdja Collector: $10 - 122 J.D.$ The dot encoding power of red light is determined by the singular sequences at analler 9 gives groats resolving power. (1) Ad the wavelength of red light is increased by the RayAdja Collector: $10 - 122 J.D.$ The dot encoding power of red light is determined by the sequences of the second by the second by the sequences of the second by the	673	(2) No water can be found on the leaf.		•	n							
A $(0)$ dety <b>B</b> , $(0)$ dety <b>C</b> , $(0)$ and $(0)$ subprints <b>C</b> , $(0)$ and $(0)$ may <b>C</b> , $(0)$ and $(0)$ may antices are so intry due they cater the human body from uph the state. <b>C</b> , $(0)$ The same particles are so intry due they cater the human body for a state of the human body. <b>C</b> , $(0)$ The same particles are so intry due they cater the human body for a state of the human body. <b>C</b> (1) What been hing, the same particles are so intry due the worth from $(0)$ to sate of the human body. <b>C</b> (1) The same particles are so intry due they cater the human body for a state of the human body. <b>C</b> (1) The same particles are so intry due they cater the human body for a state of the human body. <b>C</b> (1) The same particles are so intry due they cater the human body. <b>C</b> (1) The same particle may cater the hold state of the human body. <b>C</b> (1) The same particle may cater the hold state of the human body. <b>C</b> (2) What been higher at the human body. <b>C</b> (2) The same particle may cater the hold state of the human body. <b>C</b> (3) The same particle may cater the hold state of the human body. <b>C</b> (3) The same particle may cater the hold state of the human body. <b>C</b> (3) The same particle may cater the hold state of the human body. <b>C</b> (4) The same particle may cater the hold state of the human body. <b>C</b> (3) The same particle may cater the hold state of the human body. <b>C</b> (4) The same particle may cater the hold state of the human body. <b>C</b> (3)		(3) Water droplet can roll off the leaf easily.		<i>L.</i>		<i>(</i> <b>1</b> )						
Thus the inclusion power of red light is determined in Figure greater resolving power. <b>a</b> . $(3 \times 60) \operatorname{anly}$ <b>b</b> . $(3 \times 60) \operatorname{anly}$ <b>c</b> . $(3 \times 60) \operatorname{anl}$ <b>c</b> . $(3 \times 61) \operatorname{anl}$ <b>c</b> . $(3 \times $					× .						rion : $\theta = 1.22 \lambda / D$ .	1.24
x' = (2) The detector barn is focused by the magnetic field of the electromagnets in a 1 keV. x' = (2) The detector barn should conduct electricity. y' = (2) Nano particles are so key fait day crater holowing both face barn of electrons, the specimen about constrained with the sit to enter the lump. x' = (2) While breaking, the num body farcupit the skin. x' = (2) While breaking, the num particles may move together with the sit to enter the lump. x' = (2) While breaking, the num particles may move together with the sit to enter the lump. x' = (2) The mean particles may enter the blood vessels through the digetive canal of the lumma body. 4. D By $e^{2} = \frac{1}{2}m^{2} - \frac{p^{2}}{2m}$ $\therefore p = \sqrt{2meY} = \sqrt{2(0.11 \times 10^{-01})(76 \times 10^{-0})} = 1.484 \times 10^{-25} \text{ kg m s}^{-4}$ De Brongite working the $z = \frac{h}{p} = \frac{6.63 \times 10^{-24}}{1.488 \times 10^{-25}} \text{ kg m s}^{-4}$ De Brongite working the zero burden states equiling. 5. B The Loon left has a mage-hydrophobic surface, which is water-repailing. so that water would not we the leaf surface but forms doptet. 6. D In namo scale, the substance would have different optical, mechanical and electrical properties.		C. (1) & (2) only	*									ž.
the specimen should conduct electricity. 3. D $\langle (1)$ Nano particles are so kay that they mater the human body through the kin. $\langle (2)$ While breaking, the maso particles may enter the human body. 4. B By $d^2 = \frac{1}{2}m^2 = \frac{D^2}{2m}$ $\therefore p = \sqrt{2me^2} - \sqrt{2(11 \times 10^{-11})(1.6 \times 10^{-11})(1.6 \times 10^{-12})(1.6 \times 10^{-12})} = 1.488 \times 10^{-22} \text{ kg m s}^{-1}$ De Brogile wavelength: $\lambda = \frac{A}{p} = \frac{6.63 \times 10^{-21}}{1.488 \times 10^{-22}} \text{ kg m s}^{-1}$ De Brogile wavelength: $\lambda = \frac{A}{p} = \frac{6.63 \times 10^{-21}}{1.488 \times 10^{-22}} \text{ kg m s}^{-1}$ B ( $D = 1000 \text{ km}^2$ ) and $D = 1000 \text{ km}^2$ ( $D = 1000 \text{ km}^2$ ) and $D = 1.488 \times 10^{-22} \text{ kg m s}^{-1}$ De Brogile wavelength: $\lambda = \frac{A}{p} = \frac{6.63 \times 10^{-21}}{1.488 \times 10^{-22}} \text{ kg m s}^{-1}$ ( $D = 1000 \text{ km}^2$ ) and $D = 1000 \text{ km}^2$ ( $D = 1000 \text{ km}^2$ ) and $D = 1000 \text{ km}^2$ ( $D = 1000 \text{ km}^2$ ) and $D = 1000 \text{ km}^2$ ( $D = 1000 \text{ km}^2$ ) and $D = 1000 \text{ km}^2$ ( $D = 1000 \text{ km}^2$ ) and $D = 1000 \text{ km}^2$ ( $D = 1000 \text{ km}^2$ ) and $D = 1000 \text{ km}^2$ . ( $D = 1000 \text{ km}^2$ ) and $D = 1000 \text{ km}^2$ .		D. (2) & (3) only			1	(2)	The elect	ron beam is	focused by the	magnetic field of the e	electromagnets in a TEM.	
3. D (1) Nano particles are so fary that they eater the human body through the sin. (2) While breaking, the maso particles may more together with the sir to eater the lungs. (3) The maso particles may enter the blood versels through the digestive canal of the human body. (4) B By $eV = \frac{1}{2}m^2 = \frac{p^2}{2m}$ $\therefore p = \sqrt{2meV} = \sqrt{2(2(1+x)t^{-1})(1.6\times10^{-10})(1.6\times10^{-10})(1.6\times10^{-10})} = 1.488 \times 10^{-21}$ kg m s ⁻¹ . De Broglie wavelength: $A \sim \frac{h}{p} = \frac{6.653\times10^{-11}}{1.488\times10^{-21}} = 4.5\times10^{-11}$ m 5. B The Lons leaf has a super-loydrophobic surface, which is water-repelling. so that water would have with leaf surface but form droples. 6. D In mano scale, the substance would have different optical, mechanical and electrical properties.					~	(3)					nning tip to give the fine beam of elec	ctrons,
3. D (1) None particles are so biny that they enter the human body through the skin. (2) While breakhing, the nano particles may more together with the sit to cater the lungs. (3) The nano particles may enter the blood vessels through the digestive canal of the human body. (4) B By $eV = \frac{1}{2}m^2 = \frac{p^2}{2m}$ $\therefore p = \sqrt{2meV} = \sqrt{2(0,11\times10^{-10})(1.6\times10^{-10})(7.6\times10^{-1})} = 1.488 \times 10^{-22} \text{ kg m s}^{-1}$ De Breglie wavelength: $\lambda = \frac{h}{p} = \frac{6.63\times10^{-4}}{1.488\times10^{-2}} = 4.5\times10^{-2} \text{ m}$ 5. B The Lons harft has a super-hydropholic earther, which is water-septilling, so that water would not wet the leaf surface but forms droplets. 6. D In nano scale, the substance would have different optical, mechanical and electrical properties.							the speci	men should o	conduct electri	city.		
(1) Nano particles are so thay that they enter the human body through the skin. (2) While breaking, the nano particles may move together with the air to enter the large. (3) The nano particles may enter the blood vessels through the digestive canal of the human body. (4. B By $eV = \frac{1}{2}m^2 = \frac{p^2}{2m}$ $\therefore p = \sqrt{2meV} = \sqrt{2(9.11 \times 10^{-91})(1.6 \times 10^{-41})(76 \times 10^{-9})} = 1.488 \times 10^{-22} \text{ gm s}^{-1}$ De Broglie wavelength: $\lambda = \frac{h}{p} = \frac{6.53 \times 10^{-42}}{1.488 \times 10^{-22}} = 4.5 \times 10^{-22} \text{ m}$ (5. B The Lotus leaf has a super-hydrophobic surface, which is water-sepelling, so that water would not wert he start are but forms droplets. (6. D In nano scale, the substance would have different optical, mechanical and electrical properties.												
$\frac{1}{\sqrt{2}}$ While breaking, the nano particles may more together with the first center the langs. $\frac{1}{\sqrt{2}}$ (3) The mano particles may enter the blood vessels through the digertive cmail of the human body. 4. B By $eT = \frac{1}{2}mr^2 = \frac{p^2}{2m}$ $p = \sqrt{2meT^2} = \sqrt{2}(9.11\times10^{-11})(1.6\times10^{-11}\sqrt{7}(6\times10^{-11}) = 1.488\times10^{-22} \text{ kg m s}^{-1}$ De Brogdie wavelength: $\lambda = \frac{h}{p} = \frac{6.63\times10^{-24}}{1.488\times10^{-24}} = 4.5\times10^{-12} \text{ m}$ 5. B The Lotus leaf has a super-hydrophobic surface, which is water-repelling, so that water would not wet the leaf surface but forms droplets. 6. D In nano scale, the substance would have different optical, mechanical and electrical properties.	6.07			3.		~~~				and the housen he feed	theorych the claim	
(i) The nano particles may enter the blood vessels through the digestive canal of the human body. 4. B By $e^{V} = \frac{1}{2} m v^2 = \frac{D^2}{2m}$ $\therefore p = \sqrt{2meV} = \sqrt{2(9(11 \times 10^{-9})(1.6 \times 10^{-9})(76 \times 10^{-9}) = 1.488 \times 10^{-22} \text{ kg m s}^{-1}}$ Do Broglie wavelength: $\lambda = \frac{h}{p} = \frac{6.63 \times 10^{-21} \text{ m}}{1.488 \times 10^{-22}} = 4.5 \times 10^{-21} \text{ m}}$ 5. B The Lotus leaf has a super-hydrophobic surface, which is water-repulling, so that water would not wet the leaf surface out form droplets. 6. D In nano scale, the substance would have different optical, mechanical and electrical properties.			\$ ·									
<ul> <li>4. B</li> <li>By e² = ¹/₂m x² = ^{2²}/_{2m}</li> <li>∴ p = √2me² = √2(9.11×10⁻⁹¹)(1.6×10⁻¹⁹)(76×10³) = 1.488 × 10⁻²² kg m s⁻¹</li> <li>De Broglie wavelength : A = ^h/_p = <u>6.63×10⁻²¹ m</u></li> <li>5. B</li> <li>The Lohas leaf has a super-hydrophobie surface, which is water-repelling, so that water would not we the leaf surface but forms droplets.</li> <li>6. D</li> <li>In nano scale, the substance would have different optical, mechanical and electrical properties.</li> </ul>			100		*							
By $eV = \frac{1}{2}mv^2 = \frac{p^2}{2m}$ $\therefore p = \sqrt{2meV} = \sqrt{2}(9.11\times10^{-1})(1.6\times10^{-19})(76\times10^3)} = 1.488 \times 10^{-22} \text{ kg m s}^{-1}$ De Broglie wavelength: $\lambda = \frac{h}{p} - \frac{6.63\times10^{-41}}{1.488\times10^{-22}} = 4.5 \times 10^{-12} \text{ m}$ 5. B The Lotus leaf has a super-hydrophobic surface, which is water-repelling. so that water would not wet the leaf surface but forms droplets. 6. D In nano scale, the substance would have different optical, mechanical and electrical properties.			2		v	(3)	THC Hand	particles in	ay chief the on	ion vessens anough me	a different of an and and and a	100 A
By $eV = \frac{1}{2}mv^2 = \frac{p^2}{2m}$ $\therefore p = \sqrt{2meV} = \sqrt{2}(9.11\times10^{-1})(1.6\times10^{-19})(76\times10^3)} = 1.488 \times 10^{-22} \text{ kg m s}^{-1}$ De Broglie wavelength: $\lambda = \frac{h}{p} - \frac{6.63\times10^{-41}}{1.488\times10^{-22}} = 4.5 \times 10^{-12} \text{ m}$ 5. B The Lotus leaf has a super-hydrophobic surface, which is water-repelling. so that water would not wet the leaf surface but forms droplets. 6. D In nano scale, the substance would have different optical, mechanical and electrical properties.	()			4	в							··· .
<ul> <li>∴ p = √2meV = √2(9.11×10⁻⁴¹)(1.6×10⁻¹⁹)(76×10⁻¹) = 1.488 × 10⁻²² kg m s⁻¹</li> <li>De Broglie wavelength : A = h/p = 6.63×10⁻²⁴</li> <li>De Broglie wavelength : A = h/p = 6.63×10⁻²⁴ m</li> <li>5. B</li> <li>The Lotus leaf has a super-hydrophobic surface, which is water-repelling.</li> <li>so that water would not wet the leaf surface but forms droplets.</li> <li>6. D</li> <li>In nano scale, the substance would have different optical, mechanical and electrical properties.</li> </ul>	- Bi			-1.	_		2 p ²					97 g
<ul> <li>De Broglie wavelength: \$\lambda = \frac{h}{p} = \frac{6.63 \times 10^{-12}}{1.488 \times 10^{-21}} = 4.5 \times 10^{-12} m\$</li> <li>5. B The Lotus leaf has a super-lydrophobic surface, which is water-repelling, so that water would not wet the leaf surface but forms droplets.</li> <li>6. D In nano scale, the substance would have different optical, mechanical and electrical properties.</li> </ul>	. ()		ġ. l		By ek	$v = \frac{1}{2}mv$	$\frac{p}{2m}$					-3
<ul> <li>De Broglie wavelength: \$\lambda = \frac{h}{p} = \frac{6.63 \times 10^{-12}}{1.488 \times 10^{-21}} = 4.5 \times 10^{-12} m\$</li> <li>5. B The Lotus leaf has a super-lydrophobic surface, which is water-repelling, so that water would not wet the leaf surface but forms droplets.</li> <li>6. D In nano scale, the substance would have different optical, mechanical and electrical properties.</li> </ul>	•				∴p=	= √2meV	= $\sqrt{2(9)}$	11×10 ⁻³¹ )(1	.6×10 ⁻¹⁹ )(76×	$10^3$ = 1.488 × 10 ⁻²²	kg m s ⁻¹	
<ul> <li>5. B The Lotus leaf has a super-hydrophobic surface, which is water-repelling. so that water would not wet the leaf surface but forms droplets.</li> <li>6. D In nano scale, the substance would have different optical, mechanical and electrical properties.</li> </ul>												
<ul> <li>The Lotus leaf has a super-hydrophobic surface, which is water-repelling, so that water would not wet the leaf surface but forms droplets.</li> <li>6. D</li> <li>In nano scale, the substance would have different optical, mechanical and electrical properties.</li> </ul>	· ,				De Br	oglie wave	length :	$l = \frac{n}{p} = \frac{1}{1}$	.488×10 ⁻²¹	4.5 × 10  m		á ľ
<ul> <li>The Lotus leaf has a super-hydrophobic surface, which is water-repelling, so that water would not wet the leaf surface but forms droplets.</li> <li>6. D</li> <li>In nano scale, the substance would have different optical, mechanical and electrical properties.</li> </ul>												
The Lotus leaf has a super-hydrophobic surface, which is water-repelling. so that water would not wet the leaf surface but forms droplets. 6. D In nano scale, the substance would have different optical, mechanical and electrical properties.	1		E i	5.	в							
so that water would not wet the leaf surface but forms droplets. 6. D In nano scale, the substance would have different optical, mechanical and electrical properties.		n	3		The L	otus leaf h	as a super	-hydrophobi	c surface, which	h is water-repolling,		• •
In nano scale, the substance would have different optical, mechanical and electrical properties.	100		2		so tha	it water wo	uld not w	et the leaf su	rface but form	s droplets.		
In nano scale, the substance would have different optical, mechanical and electrical properties.												
				6.	, D							
	國				In nai	no scale, th	e substan	ce would hav	ve different opt	ical, mechanical and el	lectrical properties.	
Provided by dse.life	18		<i>2</i>									74.7
Provided by dse.life												
Provided by dse.life	,										D • 1 11	1 1.0
											Provided by	<u>dse.lite</u>

Proof 
$$r = \frac{1}{2} m s^3 = \frac{p^3}{2m}$$
  
 $\therefore p = \sqrt{2\pi e F} = \sqrt{2(3(11\times10^{-11})(1.6\times10^{-11})(2.0\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^{-11})(1.6\times10^$ 

- .....

3

16.

В Dirt may be found on a Lotus leaf, but it may be washed away by water droplets if there is rainfall. ж (1) (2) Water droplets may be found on the Lotus leaf. × Since the leaf surface is water repelling, the water droplet can roll of easily. ✓ (3) 3727S  $\langle x \rangle \langle y \rangle$ 2.000 

> 1994 1995 1995 Provided by dse.life

• • • ]

....

<u>.</u>

ARCE:

Use the following data wherever necessary :

Speed of light in vacuum	$c = 3.00 \times 10^8 \mathrm{m  s^{-1}}$
Charge of electron	$e = 1.60 \times 10^{-19} \mathrm{C}$
Electron rest mass	$m_{\rm e} = 9.11 \times 10^{-31}  \rm kg$
Planck constant	$h = 6.63 \times 10^{-34} \mathrm{Js}$

The following list of formulae may be found useful :

de Broglie formula	

<u>_____</u>

11. 12. 12.

100 N 100

and the

New York

۵,

.

Rayleight criterion (resolving power)

1. SP}	(a)	An ε λ (in	electron is accelerated from rest through a potential difference $V$ (in V). Show that its final de Broglie nm) is given by $\lambda = \frac{1.23}{\sqrt{\nu}}$ .	wavelength (2 marks)
	(b)	 In a	ransmission electron microscope (TEM), electrons are accelerated by a potential difference of 50 kV.	
		(i)	Estimate the final de Broglie wavelength of the electrons.	(1 mark)
		(ii)	Describe how the electrons are focused in the TEM and explain how the image of the sample is formed.	(3 marks)
		(iii)	Suggest ONE method to increase the resolving power of the TEM. Explain.	(2 marks)
	(c)	Stat	e ONE daily life application of nanotechnology and discuss any potential health risks associated with it.	(2 marks)

 $\geq$ 

 $\lambda = \frac{h}{p} = \frac{h}{mv}$  $\theta \approx \frac{1.22\lambda}{d}$ 

<ul> <li> <i>x</i> =  ⁻ √50×10³ </li> <li>             (ii) The electron beam is focused onto the sample by the magnetic field of the condenser lens.             [1]             The transmitted beam through the sample is then projected by the objective and projector lenses             onto an imaging device.             [1]             Due to the different degree of transmission of electrons at different regions of fhe sample,             the details of the sample can be displayed by the imaging device             according to the information carried by the transmitted beam.             [1]             (iii) The resolving power can be increased by increasing the accelerating voltage <i>V</i> so that             the wavelength <i>λ</i> of the electrons can be further decreased,             and by Rayleigh criterion, the minimum angular separation angle can be further reduced.             [1]             (c) Any ONE of the following OR other remembels answers:</li></ul>	The de Broglie wavelength of the electron is given by $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2meV}}$ [1] $= \frac{h}{\sqrt{2meV}}$ [1] $= \frac{h}{\sqrt{2meV}}$ [1] $= \frac{h}{\sqrt{2meV}}$ [1] $= \frac{1.23}{\sqrt{V}}$ [6) (i) De Broglie wavelength : $\lambda = \frac{1.23}{\sqrt{50 \times 10^2}} = 0.0055 \text{ mm}$ [1] (ii) The electron beam is focused onto the sample by the magnetic field of the condenser lens. [1] (ii) The electron beam is focused onto the sample by the magnetic field of the condenser lens. [1] (ii) The electron beam is focused onto the sample by the magnetic field of the condenser lens. [1] The transmitted beam through the sample is then projected by the objective and projector lenses onto an imaging device. [1] Due to the different degree of transmission of electrons at different regions of the sample, the details of the sample can be displayed by the imaging device according to the information carried by the transmitted beam. [1] (iii) The resolving power can be increased by increasing the accelerating voltage <i>V</i> so that the wavelength $\lambda$ of the electrons can be forther decreased, and by Rayleigh criterion, the minimum angular separation angle can be further reduced. [1] (c) Any ONE of the following OR other reasonable answers : [1] * Nanoparticles used in cosmetic products to improve cleasing effect on our skin. * A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities. These nanoparticles are so small that they may enter our body through the skin. Their long-term effects on human body are not known, and may pose threat to our health. [1]		;		.(
$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2meV}}$ [1] $= \frac{6.63 \times 10^{-44}}{\sqrt{2 \times 9.11 \times 10^{-91} \times 1.60 \times 10^{-19} \times V}}$ [2] $= \frac{1.23}{\sqrt{V}}$ [3] (b) (i) De Broglie wavelength : $\lambda = \frac{1.23}{\sqrt{50 \times 10^{-2}}} = 0.0055 \text{ nm}$ [1] (ii) The electron beam is focused onto the sample by the magnetic field of the condenser lens. [1] (ii) The electron beam is focused onto the sample by the magnetic field of the condenser lens. [1] The transmitted beam through the sample is then projected by the objective and projector lenses onto an imaging device. [1] Due to the different degree of transmission of electrons at different regions of the sample, the details of the sample can be displayed by the imaging device according to the information carried by the transmitted beam. [1] (ii) The resolving power can be increased by increasing the accelerating voltage $V$ so that the wavelength $\lambda$ of the electrons can be further decreased, and by Rayleigh criterion, the minimum angular separation angle can be further reduced. (i) (c) Any ONE of the following OR other remonable answers : * Nanoparticles used in cosmetic products to improve cleaning effect on our skin. * A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities. These nanoparticles are so small that they may enter our body through the skin. Their long-term effects on human body are not known, and may pose threat to our health. (1] (2)	$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2meV}}$ [1] $= \frac{6.63 \times 10^{-4}}{\sqrt{2\times 9.11 \times 10^{-91} \times 1.60 \times 10^{-19} \times V}}$ [3] $= \frac{1.23}{\sqrt{V}}$ [4] (b) (i) De Broglie wavelength : $\lambda = \frac{1.23}{\sqrt{50 \times 10^{2}}} = 0.0055 \text{ mm}$ [1] (ii) The electron beam is focused onto the sample by the magnetic field of the condenser lens. The transmitted beam through the sample is then projected by the objective and projector lenses onto an imaging device. Due to the different degree of transmission of electrons at different regions of the sample, the details of the sample can be displayed by the imaging device according to the information carried by the transmitted beam. (1] (ii) The resolving power can be increased by increasing the accelerating voltage $V$ so that the wavelength $\lambda$ of the electrons can be further decreased, and by Rayleigh criterion, the minimum angular separation angle can be further reduced. (2) (c) Any ONE of the following OR other remembels answers : * Nanoparticles used in cosmetic products to improve cleaning effect on our skin. * A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities. These nanoparticles are so small that they may enter our body through the skin. Their long-term effects on human body are not known, and may pose threat to our health. (1) (2) Accord other remeanable answers >	(a)			
<ul> <li>= 1.23/√V</li> <li>(b) (i) De Broglie wavelength : <ul> <li>λ = 1.23/√(50×10²) = 0.0055 nm</li> <li>[1]</li> <li>(ii) The electron beam is focused onto the sample by the magnetic field of the condenser lens.</li> <li>[1]</li> <li>(ii) The electron beam is focused onto the sample by the magnetic field of the condenser lens.</li> <li>[1] The transmitted beam through the sample is then projected by the objective and projector lenses onto an imaging device.</li> <li>[1] Due to the different degree of transmission of electrons at different regions of the sample, the details of the sample can be displayed by the imaging device according to the information carried by the transmitted beam.</li> <li>[1]</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that the wavelength λ of the electrons can be further decreased, and by Rayleigh criterion, the minimum angular separation angle can be further reduced.</li> <li>(ii) (c) Any ONE of the following OR other reasonable answers : <ul> <li>* Nanoparticles used in cosmetic products to improve cleaning effect on our skin.</li> <li>* A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.</li> <li>These nanoparticles are so small that they may enter our body through the skin.</li> <li>Their long-term effects on human body are not known, and may pose threat to our health.</li> </ul> </li> </ul></li></ul>	<ul> <li>= 1.23/√V</li> <li>(b) (i) De Broglie wavelength:</li> <li>λ = 1.23/√(50×10²) = 0.0055 nm</li> <li>[1]</li> <li>(ii) The electron beam is focused onto the sample by the magnetic field of the condenser lens.</li> <li>[1] The transmitted beam through the sample is then projected by the objective and projector lenses onto an imaging device.</li> <li>[1] Due to the different degree of transmission of electrons at different regions of the sample, the details of the sample can be displayed by the imaging device according to the information carried by the transmitted beam.</li> <li>[1]</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>[1] the wavelength λ of the electrons can be further decreased, and by Rayleigh criterion, the minimum angular separation angle can be further reduced.</li> <li>(ii) (c) Any ONE of the following OR other reasonable answers :</li> <li>* Nanoparticles used in cosmetic products to improve cleaning effect on our skin.</li> <li>* A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.</li> <li>These nanoparticles are so small that they may enter our body through the skin.</li> <li>Their long-term effects on human body are not known, and may pose threat to our health.</li> <li>(1)</li> </ul>			[1]	Ĩ
<ul> <li>(b) (i) De Broglie wavelength :</li> <li>λ = 1.23/(√50×10³) = 0.0055 nm</li> <li>[1]</li> <li>(ii) The electron beam is focused onto the sample by the magnetic field of the condenser lens.</li> <li>[1] The transmitted beam through the sample is then projected by the objective and projector lenses onto an imaging device.</li> <li>[1] Due to the different degree of transmission of electrons at different regions of the sample, the details of the sample can be displayed by the imaging device according to the information carried by the transmitted beam.</li> <li>(ii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving of the following OR other reasonable answers:</li> <li>[1]</li> <li>* Nanoparticles used in cosmetic products to improve cleaning effect o</li></ul>	<ul> <li>(b) (i) De Broglie wavelength :</li> <li>λ = 1.23/(√50×10³) = 0.0055 nm</li> <li>[1]</li> <li>(ii) The electron beam is focused onto the sample by the magnetic field of the condenser lens.</li> <li>[1] The transmitted beam through the sample is then projected by the objective and projector lenses onto an imaging device.</li> <li>[1] Due to the different degree of transmission of electrons at different regions of the sample, the details of the sample can be displayed by the imaging device according to the information carried by the transmitted beam.</li> <li>[1]</li> <li>(ii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>[1] the wavelength λ of the electrons can be further decreased, and by Rayleigh criterion, the minimum angular separation angle can be further reduced.</li> <li>[1]</li> <li>(c) Any ONE of the following OR other reasonable answers :</li> <li>* Nanoparticles used in cosmetic products to improve cleaning effect on our skin.</li> <li>* A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.</li> <li>These nanoparticles are so small that they may enter our body through the skin.</li> <li>Their long-term effects on human body are not known, and may pose threat to our health.</li> <li>(1)</li> </ul>		$=\frac{6.63\times10^{-34}}{\sqrt{2\times9.11\times10^{-31}\times1.60\times10^{-19}\times V}}$	[1]	
<ul> <li>λ = 1.23/√50×10³ = 0.0055 nm</li> <li>(ii) The electron beam is focused onto the sample by the magnetic field of the condenser lens.</li> <li>(ii) The electron beam is focused onto the sample is then projected by the objective and projector lenses onto an imaging device.</li> <li>Due to the different degree of transmission of electrons at different regions of the sample, the details of the sample can be displayed by the imaging device according to the information carried by the transmitted beam.</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(ii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving OR other remonable answers :</li> <li>(iii)</li> <li>(iii) Any ONE of the following OR other remonable answers :</li> <li>(iii)</li> <li>* Nanoparticles used in cosmetic products to improve cleaning effect on our skin.</li> <li>* A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.</li> <li>These nanoparticles are so small that they may enter our body through the skin.</li> <li>Their long-term effects on human body are not known, and may pose threat to our health.</li> <li>(i)</li> </ul>	<ul> <li>λ = 1.23/√50×10³ = 0.0055 nm</li> <li>(ii) The electron beam is focused onto the sample by the magnetic field of the condenser lens.</li> <li>(ii) The electron beam is focused onto the sample is then projected by the objective and projector lenses onto an imaging device.</li> <li>Due to the different degree of transmission of electrons at different regions of the sample, the details of the sample can be displayed by the imaging device according to the information carried by the transmitted beam.</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(ii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(ii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(ii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(ii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving OR other remonable answers :</li> <li>(iii)</li> <li>(c) Any ONE of the following OR other remonable answers :</li> <li>(iii)</li> <li>* Nanoparticles used in cosmetic products to improve cleaning effect on our skin.</li> <li>* A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.</li> <li>These nanoparticles are so small that they may enter our body through the skin.</li> <li>Their long-term effects on human body are not known, and may pose threat to our health.</li> <li>(i)</li> </ul>		$=\frac{1.23}{\sqrt{V}}$		:
<ul> <li> <i>x</i> =  ⁻ √50×10³ </li> <li>             (ii) The electron beam is focused onto the sample by the magnetic field of the condenser lens.             [1]             The transmitted beam through the sample is then projected by the objective and projector lenses             onto an imaging device.             [1]             Due to the different degree of transmission of electrons at different regions of fhe sample,             the details of the sample can be displayed by the imaging device             according to the information carried by the transmitted beam.             [1]             (iii) The resolving power can be increased by increasing the accelerating voltage <i>V</i> so that             the wavelength <i>λ</i> of the electrons can be further decreased,             and by Rayleigh criterion, the minimum angular separation angle can be further reduced.             [1]             (c) Any ONE of the following OR other remembels answers:</li></ul>	<ul> <li>λ = √50×10³ = 0.0005 mm</li> <li>(ii) The electron beam is focused onto the sample by the magnetic field of the condenser lens.</li> <li>[1] The transmitted beam through the sample is then projected by the objective and projector lenses onto an imaging device.</li> <li>[1] Due to the different degree of transmission of electrons at different regions of the sample, the details of the sample can be displayed by the imaging device according to the information carried by the transmitted beam.</li> <li>[1]</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>[1] the wavelength λ of the electrons can be further decreased, and by Rayleigh criterion, the minimum angular separation angle can be further reduced.</li> <li>[1]</li> <li>(c) Any ONE of the following OR other remembel answers :</li> <li>[1]</li> <li>* Nanoparticles used in cosmetic products to improve cleaning effect on our skin.</li> <li>* A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.</li> <li>These nanoparticles are so small that they may enter our body through the skin.</li> <li>Their long-term effects on human body are not known, and may pose threat to our health.</li> <li>(1)</li> </ul>	(b)	(i) De Broglie wavelength :		
<ul> <li>(a) The excitor term in reduced into the tangene of the angle of the angle of the sample is then projected by the objective and projector lenses onto an imaging device. [1]</li> <li>Due to the different degree of transmission of electrons at different regions of the sample, the details of the sample can be displayed by the imaging device according to the information carried by the transmitted beam. [1]</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that [1]</li> <li>the wavelength λ of the electrons can be further decreased so as to minimize the effects of diffraction. [1]</li> <li>&lt; OR &gt;</li> <li>The resolving power can be increased by increasing the accelerating voltage V so that [1]</li> <li>the wavelength λ of the electrons can be further decreased, and by Rayleigh criterion, the minimum angular separation angle can be further reduced. [1]</li> <li>(c) Any ONE of the following OR other reasonable answers : [1]</li> <li>* Nanoparticles used in cosmetic products to improve cleaning effect on our skin.</li> <li>* A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities. These nanoparticles are so small that they may enter our body through the skin. Their long-term effects on human body are not known, and may pose threat to our health. [1]</li> </ul>	<ul> <li>(a) In a coordination contain instance into the tangents of the tangents of the sample is then projected by the objective and projector lenses onto an imaging device.</li> <li>[1] Due to the different degree of transmission of electrons at different regions of the sample, the details of the sample can be displayed by the imaging device according to the information carried by the transmitted beam.</li> <li>[1]</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(1] the wavelength λ of the electrons can be further decreased so as to minimize the effects of diffraction.</li> <li>(1] the wavelength λ of the electrons can be further decreased, and by Rayleigh criterion, the minimum angular separation angle can be further reduced.</li> <li>(1]</li> <li>(c) Any ONE of the following OR other reasonable answers :</li> <li>(1)</li> <li>* Nanoparticles used in cosmetic products to improve cleaning effect on our skin.</li> <li>* A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.</li> <li>These nanoparticles are so small that they may enter our body through the skin.</li> <li>Their long-term effects on human body are not known, and may pose threat to our health.</li> <li>(1)</li> </ul>		$\lambda = \frac{1.23}{\sqrt{50 \times 10^3}} = 0.0055 \text{ nm}$	[1]	20070W
onto an imaging device.       [1]         Due to the different degree of transmission of electrons at different regions of the sample, the details of the sample can be displayed by the imaging device according to the information carried by the transmitted beam.       [1]         (iii) The resolving power can be increased by increasing the accelerating voltage V so that       [1]         the wavelength λ of the electrons can be further decreased so as to minimize the effects of diffraction.       [1] <or>       [1]         The resolving power can be increased by increasing the accelerating voltage V so that       [1]         <or>       [1]         (c) Any ONE of the following OR other reasonable answers :       [1]         * Nanoparticles used in cosmetic products to improve cleaning effect on our skin.       *         * A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.       [1]         Their long-term effects on human body are not known, and may pose threat to our health.       [1]</or></or>	onto an imaging device.       [1]         Due to the different degree of transmission of electrons at different regions of the sample, the details of the sample can be displayed by the imaging device according to the information carried by the transmitted beam.       [1]         (iii) The resolving power can be increased by increasing the accelerating voltage V so that       [1]         (iii) The resolving power can be increased by increasing the accelerating voltage V so that       [1]         the wavelength λ of the electrons can be further decreased so as to minimize the effects of diffraction.       [1] <or>       [1]         The resolving power can be increased by increasing the accelerating voltage V so that       [1]         (c) Any ONE of the following OR other remonable answers :       [1]         * Nanoparticles used in cosmetic products to improve cleaning effect on our skin.       *         * A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.       [1]         Their long-term effects on human body are not known, and may pose threat to our health.       [1]</or>		(ii) The electron beam is focused onto the sample by the magnetic field of the condenser lens.	[1]	1011 - 11 - 1
<ul> <li>the details of the sample can be displayed by the imaging device according to the information carried by the transmitted beam.</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(i)</li> <li>&lt; OR &gt;</li> <li>The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(i)</li> <li>&lt; OR &gt;</li> <li>(ii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) the resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(i)</li> <li>&lt; OR &gt;</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) the wavelength λ of the electrons can be further decreased,</li> <li>and by Rayleigh criterion, the minimum angular separation angle can be further reduced.</li> <li>(iii)</li> <li>(c) Any ONE of the following OR other reasonable answers :</li> <li>(iii) * Nanoparticles used in cosmetic products to improve cleaning effect on our skin.</li> <li>* A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.</li> <li>These nanoparticles are so small that they may enter our body through the skin.</li> <li>Their long-term effects on human body are not known, and may pose threat to our health.</li> <li>(1)</li> </ul>	<ul> <li>the details of the sample can be displayed by the imaging device according to the information carried by the transmitted beam.</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) The resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) the resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) the resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) the resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) the resolving power can be increased by increasing the accelerating voltage V so that</li> <li>(iii) the vavelength λ of the electrons can be further decreased,</li> <li>and by Rayleigh criterion, the minimum angular separation angle can be further reduced.</li> <li>(iii)</li> <li>(c) Any ONE of the following OR other reasonable answers :</li> <li>(iii) * Nanoparticles used in cosmetic products to improve cleaning effect on our skin.</li> <li>* A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.</li> <li>These nanoparticles are so small that they may enter our body through the skin.</li> <li>Their long-term effects on human body are not known, and may pose threat to our health.</li> <li>(1)</li> </ul>			[1]	
<ul> <li>the wavelength λ of the electrons can be further decreased so as to minimize the effects of diffraction. [1]</li> <li>&lt; OR &gt;</li> <li>The resolving power can be increased by increasing the accelerating voltage V so that [1]</li> <li>the wavelength λ of the electrons can be further decreased, and by Rayleigh criterion, the minimum angular separation angle can be further reduced. [1]</li> <li>(c) Any ONE of the following OR other reasonable answers : [1]</li> <li>* Nanoparticles used in cosmetic products to improve cleaning effect on our skin.</li> <li>* A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.</li> <li>These nanoparticles are so small that they may enter our body through the skin.</li> <li>Their long-term effects on human body are not known, and may pose threat to our health. [1]</li> </ul>	<ul> <li>the wavelength λ of the electrons can be further decreased so as to minimize the effects of diffraction. [1]</li> <li>&lt; OR &gt;</li> <li>The resolving power can be increased by increasing the accelerating voltage V so that [1]</li> <li>the wavelength λ of the electrons can be further decreased,</li> <li>and by Rayleigh criterion, the minimum angular separation angle can be further reduced. [1]</li> <li>(c) Any ONE of the following OR other reasonable answers : [1]</li> <li>* Nanoparticles used in cosmetic products to improve cleaning effect on our skin.</li> <li>* A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.</li> <li>These nanoparticles are so small that they may enter our body through the skin.</li> <li>Their long-term effects on human body are not known, and may pose threat to our health. [1]</li> </ul>		the details of the sample can be displayed by the imaging device	[1]	
<ul> <li>the wavelength λ of the electrons can be further decreased so as to minimize the effects of diffraction. [1]</li> <li>&lt; OR &gt;</li> <li>The resolving power can be increased by increasing the accelerating voltage V so that [1]</li> <li>the wavelength λ of the electrons can be further decreased, and by Rayleigh criterion, the minimum angular separation angle can be further reduced. [1]</li> <li>(c) Any ONE of the following OR other reasonable answers : [1]</li> <li>* Nanoparticles used in cosmetic products to improve cleaning effect on our skin.</li> <li>* A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.</li> <li>These nanoparticles are so small that they may enter our body through the skin.</li> <li>Their long-term effects on human body are not known, and may pose threat to our health. [1]</li> </ul>	<ul> <li>the wavelength λ of the electrons can be further decreased so as to minimize the effects of diffraction. [1]</li> <li>&lt; OR &gt;</li> <li>The resolving power can be increased by increasing the accelerating voltage V so that [1]</li> <li>the wavelength λ of the electrons can be further decreased,</li> <li>and by Rayleigh criterion, the minimum angular separation angle can be further reduced. [1]</li> <li>(c) Any ONE of the following OR other reasonable answers : [1]</li> <li>* Nanoparticles used in cosmetic products to improve cleaning effect on our skin.</li> <li>* A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.</li> <li>These nanoparticles are so small that they may enter our body through the skin.</li> <li>Their long-term effects on human body are not known, and may pose threat to our health. [1]</li> </ul>		(iii) The resolving power can be increased by increasing the accelerating voltage $V$ so that	[1]	
The resolving power can be increased by increasing the accelerating voltage V so that       [1]         the wavelength λ of the electrons can be further decreased,       [1]         and by Rayleigh criterion, the minimum angular separation angle can be further reduced.       [1]         (c) Any ONE of the following OR other reasonable answers :       [1]         * Nanoparticles used in cosmetic products to improve cleaning effect on our skin.       [1]         * A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.       These nanoparticles are so small that they may enter our body through the skin.         Their long-term effects on human body are not known, and may pose threat to our health.       [1]	The resolving power can be increased by increasing the accelerating voltage V so that       [1]         the wavelength λ of the electrons can be further decreased,       [1]         and by Rayleigh criterion, the minimum angular separation angle can be further reduced.       [1]         (c) Any ONE of the following OR other reasonable answers :       [1]         * Nanoparticles used in cosmetic products to improve cleaning effect on our skin.       [1]         * A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.       These nanoparticles are so small that they may enter our body through the skin.         Their long-term effects on human body are not known, and may pose threat to our health.       [1]		the wavelength $\lambda$ of the electrons can be further decreased so as to minimize the effects of diffraction.	[1]	
the wavelength λ of the electrons can be further decreased, and by Rayleigh criterion, the minimum angular separation angle can be further reduced. [1] (c) Any ONE of the following OR other reasonable answers : [1] * Nanoparticles used in cosmetic products to improve cleaning effect on our skin. * A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities. These nanoparticles are so small that they may enter our body through the skin. Their long-term effects on human body are not known, and may pose threat to our health. [1]	the wavelength λ of the electrons can be further decreased, and by Rayleigh criterion, the minimum angular separation angle can be further reduced. [1] (c) Any ONE of the following OR other reasonable answers : [1] * Nanoparticles used in cosmetic products to improve cleaning effect on our skin. * A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities. These nanoparticles are so small that they may enter our body through the skin. Their long-term effects on human body are not known, and may pose threat to our health. [1]		<or></or>		
and by Rayleigh criterion, the minimum angular separation angle can be further reduced.       [1]         (c) Any ONE of the following OR other reasonable answers :       [1]         * Nanoparticles used in cosmetic products to improve cleaning effect on our skin.       [1]         * A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.       [1]         These nanoparticles are so small that they may enter our body through the skin.       [1]         Their long-term effects on human body are not known, and may pose threat to our health.       [1]	and by Rayleigh criterion, the minimum angular separation angle can be further reduced.       [1]         (c) Any ONE of the following OR other reasonable answers :       [1]         * Nanoparticles used in cosmetic products to improve cleaning effect on our skin.       [1]         * A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.       [1]         These nanoparticles are so small that they may enter our body through the skin.       [1]         Their long-term effects on human body are not known, and may pose threat to our health.       [1]			[1]	
<ul> <li>Nanoparticles used in cosmetic products to improve cleaning effect on our skin.</li> <li>A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.</li> <li>These nanoparticles are so small that they may enter our body through the skin.</li> <li>Their long-term effects on human body are not known, and may pose threat to our health.</li> <li>(1)</li> </ul>	<ul> <li>Nanoparticles used in cosmetic products to improve cleaning effect on our skin.</li> <li>A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.</li> <li>These nanoparticles are so small that they may enter our body through the skin.</li> <li>Their long-term effects on human body are not known, and may pose threat to our health. [1]</li> </ul>		and by Rayleigh criterion, the minimum angular separation angle can be further reduced.	[1]	
<ul> <li>A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.</li> <li>These nanoparticles are so small that they may enter our body through the skin.</li> <li>Their long-term effects on human body are not known, and may pose threat to our health.</li> <li>A count other reasonable answers &gt;</li> </ul>	<ul> <li>A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.</li> <li>These nanoparticles are so small that they may enter our body through the skin.</li> <li>Their long-term effects on human body are not known, and may pose threat to our health.</li> </ul>	(c)	Any ONE of the following OR other reasonable answers :	[1]	
These nanoparticles are so small that they may enter our body through the skin. Their long-term effects on human body are not known, and may pose threat to our health. [1]	These nanoparticles are so small that they may enter our body through the skin. Their long-term effects on human body are not known, and may pose threat to our health. [1]		* Nanoparticles used in cosmetic products to improve cleaning effect on our skin.		
Their long-term effects on human body are not known, and may pose threat to our health. [1]	Their long-term effects on human body are not known, and may pose threat to our health. [1]		* A thin layer of nano paint containing nanoparticles possesses anti-bacterial and detoxicating abilities.		
< Accent other reasonable answere >	< Accent other reasonable answere >		These nanoparticles are so small that they may enter our body through the skin.		;
< Accept other reasonable answers. >	< Accept other reasonable answers. >		Their long-term effects on human body are not known, and may pose threat to our health.	[1]	
			< Accept other reasonable answers. >		
			· · ·		