1 天文學和航天科

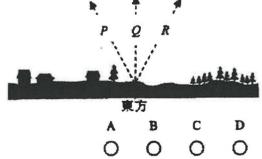
1. DSE 2012, Q1

無重狀態在沿軌道環繞地球運動的太空船內發生。下列哪一項敍述是正確的?

- 無重狀態只會發生於沿軌道環繞地球運動的太空船內物體。
- 在太空船的轨道上地球的萬有引力十分微弱,重力實際上近乎零。 B.
- 地球的萬有引力跟月球的萬有引力抵消。 C.
- 太空船及船內物體皆朝向地球自由落下。
- 2. DSE 2012, Q2

 $\frac{3GM}{R}$,其中 G 將萬有引力常數,M 第地球質量 而 R 黑地球半徑·當太空船離開地球煙遠時其速率是多少?

A.	GM R
B.	GM 2R
C.	√2GM R
D.	*


3. DSE 2012, O3

太陽距銀河系的中心約 8 kpc,而它繞著中心旋轉的速率為 220 km s⁻¹。太陽巍銀河系中心旋轉 一周書時多少?

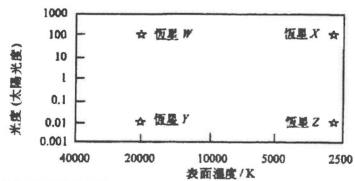
> 2.24×10°年 3.55×10⁸年 2,24×10¹¹年 3.55×10¹¹年

4. DSE 2012, Q4

圖示在香港面向東方地平線的情境。 哪一箭矢 P、Q 或 R 可代表恆星從地 平線昇起的方向?

- 箭矢P A 箭矢 2 B.
- 箭矢R C.
- 方向會隨季節變化。

下列哪一項有關地球繞太陽運動的敍述不正確?


- A. 地球在其軌道上的速率並不固定。
- B. 太陽位於地球軌道的中心 ·
- C. 地球與太陽的距離呈週期性變化。
- D. 一般而言,地球的瞬時速度並非與太陽的萬有引力垂直。
- 6. DSE 2012, Q6

参考下列資料,哪些有關恆星 X和 Y的敍述是正確的?

	福田田寺	福里拿
E X	2.8	4.7
EE Y	5.4	3.2

- (1) 恆星 X 比恆星 Y 距地球更速。
- (2) 恆星 Y比恆星 X距地球更速。
- (3) 恆星 X和 Y 與地球的距離可以利用上列資料測定。
 - A. 只有(I)
 - B. 只有(2)
 - C. 只有(1)和(3)
 - D. 只有(2)和(3)
- 7. DSE 2012, Q7

(第 1.7 和 1.8 题) 下圖顯示恆星 W·X·Y和 Z的資料·

- 1.7 下列哪些敍述是正確的?
 - (1) 就恆星 X而言,紅光的強度較其他顏色的光高。
 - (2) 就恆星 甲而曾, 藍光的強度較其他觀色的光高。
 - (3) 恆星 Z 與恆星 Y 相比, 其紅光的強度跟其他顯色光的強度的比率較高。
 - A. 只有(1)和(2) A B C D
 B. 只有(1)和(3) O O C
 C. 只有(2)和(3) O O C
 D. (1)、(2)和(3)

- 1.8 恒星 X 的吸收光體可找到氣吸收譜線。這有什麼結論可以得到?
 - (I) 仮星X主要成份爲氫氣·

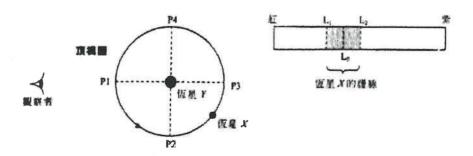
- (2) 在恆星 X的外大氣層有氫氣。
- (3) 與其他溫度相同的恆星相比·恆星X的氫氣豐度較低·

A.	只有 (l)	A	В	C	D
B.	只有 (2)	0	0	0	0
C.	只有 (1) 和 (3)	0		0	
D.	只有 (2) 和 (3)				

9. DSE 2013, Q1

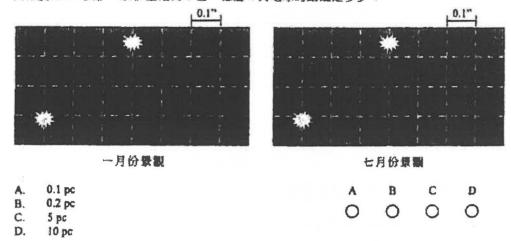
將以下天體依其跟地球的距離由近到遠排列:

- (1) 太陽
- (2) 離地球 8.6 ly 的天狼屋
- (3) 蘭地球 19 AU 的天王製
- A. (1)(2)(3)B. (1)(3)(2)0 C. (3)(1)(2)(3)(2)(1)D

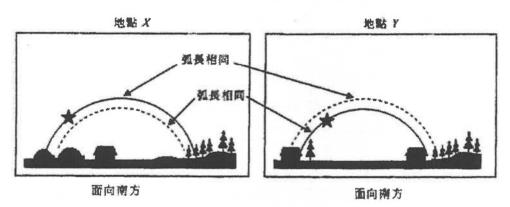

10. DSE 2013, Q2

就有關描述宇宙的托勒密地心模型和著白尼日心模型、下列哪些裁述是正確的?

- (1) 在開催模型中·軌道管路觀形。
- (2) 在開催模型中、地球货位於月球軌道的中心、
- (3) 附個模型都可用來解釋逆行運動。
- A. 只有(1) D C B. 只有(3) 0 0 只有(1)和(2) C. (1) - (2) (0 (3) D.


11. DSE 2013, Q3

1.3 恆星才於近乎實形的軌道上積恆是了運動。在地球上一個察者服務來租 X的一樣羅維、養現 其彼民於界戰以和心之間變動。心爲強調議在實驗宏觀測阱的就長。

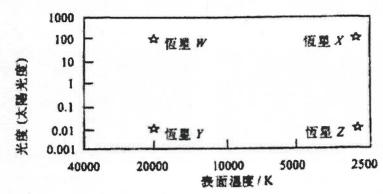

哪些波長對維於恆星 X的位置 PI·P2·P3 和 P4?

	PI	P2	P3	P4				
A.	Lu	L,	La	L ₇	A	8	C	D
B.	L, L,	L	L	L; L;	0	0	0	0
D.	Le Le	L ₂ L _n	L _o	L,				

13. DSE 2013, Q5

1.5 在北华球的地點 X 和地點 Y 觀察問一個屋。在問一晚上於賴地點所看到的景象如下圖所示。

下列鄭項描述正確?

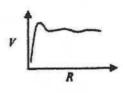

		A B	
).	X位於 Y的北方·	恆星在X從昇起至落下的時段較在Y短·	
**	Y位於 Y的北方·	饭里在X從弄起至落下的時段較在Y長。	
l.,	X位於Y的兩方·	度里在X世界起至落下的時段較在Y短。	ŀ
	X位於Y的兩方·	恒星在X從昇起至舊下的時段較在Y長、	

14. DSE 2013, Q6

1.6 恆星 P和 Q的光度相同。恆星 P的亮度為恆星 Q的 25 倍。我們可推斷出

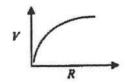
A.	P的距離是 Q的 5倍·	A	В	C	D
	Q的距離是 P的 5倍。	0	0	0	0
	P的距離是 Q的 25 倍·				
D.	Q的距離是 P的 25 倍·				

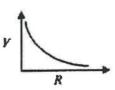
下圖顯示恆星 W·X·Y和 Z的資料·



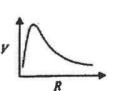
下列哪些有關恆星半徑的敍述是正確的?

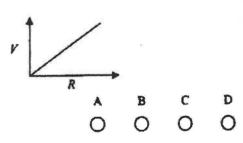
- (I) X的半徑 > W的半徑
- (2) W 的半極 > Y 的半極
- (3) Y的华權 > Z的华捷
- A. 只有(I)
- B. 只有(3)
- C. 只有(1)和(2)
- D. 只有(2)和(3)


16. DSE 2013, Q8



圖示一型系的頂視圖·以及飄測所得的旋轉速率 V 裝體是系中心的半径 R 的變化。而該自 缺攜示了暗物質的存在。倘若暗物質並不存在,則以下整個關為預期的旋轉曲線?


A


B

C.

D.

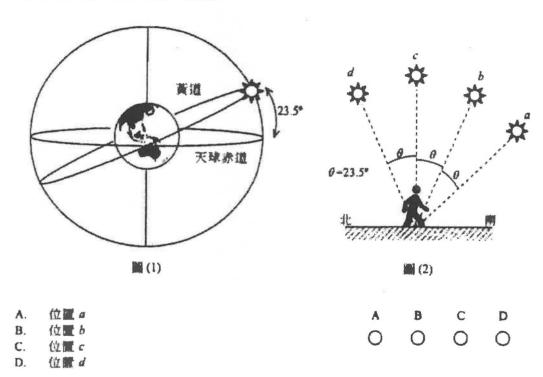
1.1 水墨距離太陽 0.39 AU。下列哪一項不可輸是水墨與地球的距離 ? 設水星和地球的軌道爲調 形並處共而。

A.	1.20 AU
B.	1.00 AU
0	0.78 ALI

D. 0.50 AU

18. DSE 2014, Q2

已知一個显圖隊形的典型是系,其實種為 10³ ly 而厚度為 10³ ly,星系內約有10¹¹ 顆恆是。 估算在這是系內轉顆相鄰恆星的平均简範。設恆星是均句分布的。


A. 4.3 ly B. 6.8 ly C. 8.9 ly

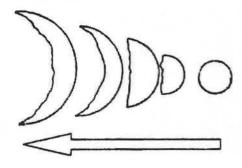
A B C D

D. 43 ly

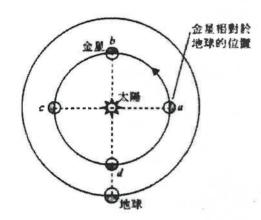
19. DSE 2014, Q3

如果太陽在黃鎖上的位置如臘 (1) 所示,身處赤道以北緯度 23.5° 的觀察者,於正午時所看到 的太陽是在瀾 (2) 所示的哪一個位置 ?

20. DSE 2014, Q4


從一遙遠天體所發出氣光譜的紫色譜線 (410 nm) 出現監移,即在觀察時波長好像短了50 nm,從同一來源發出的紅色譜線 (656 nm) 觀察得到的波長爲多少?

A.	576 nm
B.	606 run


A	В	C	D
0	0	0	0

C. 706 nm D. 736 nm

下順路凱利整在 1610年所繪書的金星相圖。

以下哪部分的金雕軌道代表上面相關由右至左的演變?

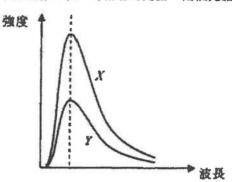
A.	a		b	 ¢	
-	L	_	_	 4	

B.
$$b \rightarrow c \rightarrow d$$

C. $c \rightarrow d \rightarrow a$

D.
$$d \rightarrow a \rightarrow b$$

22. DSE 2014, Q6


X

- A. 最終會返回地球·
- B 最終會這回地球。
- C. 會關懷在其軌道上飛行。
- D. 會繼續在其軌道上飛行。

會繼續在其軌道上飛行。 最終會返回地球, 會繼續在其軌道上飛行。 最終會返回地球。

A	B	C	D
0	0	0	0

(第 1.7 和 1.8 题) 下圆型示来白恆星 X和 Y的輻射的光譜,兩個光譜的維度同一改長。

1.	7	下	列	春里	敍	述	是	Œ	禮	m	3
----	---	---	---	----	---	---	---	---	---	---	---

A. X的表面温度 > Y的表面温度

A B C D

B. X的表面温度 < Y的表面温度 C. X的表面温度 = Y的表面温度

- 0 0 0 0
- D. 所提供的資料不足以比較 X和 Y的表面温度。

24. DSE 2014, Q8

1.8 下列哪項針號是正確的?

A. 恆星 X小於恆星 Y·

A B C D

B. 恆星 X 大於恆星 Y ·

0 0 0 0

- C. 恆星 X和恆星 Y的大小相同。
- D. 所提供的資料不足以比較 X 和 Y 的大小。

25. DSE 2015, Q1

1.1 一人達衞里沿著距離地球表面 h 的軌道擴地球運動·在軌道上的人造衡星的引力勢能相對在 地球表面增加了多少?

mm人验衡是的質量

R=地球半徑

8-地球衰弱的重力加速度

A. $mgh\left(\frac{R}{R+h}\right)$

A B C D

- B. $mgh\left(\frac{R}{R+h}\right)$
- C. $mgh\left(\frac{R+h}{R}\right)$
- D. $mgh\left(\frac{R+h}{R}\right)^2$

26. DSE 2015, Q2

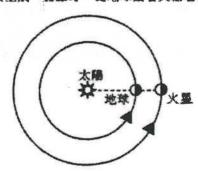
1.2 為要看到最大部分的天球、哪處是在地球上興速天文台的最佳地點?

A. 緯度 90° N

A B

B. 韓度 90°S

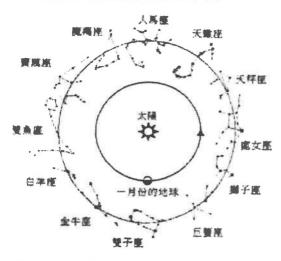
0 0 0 0


- C. 雄度 0°
- D. 在所有的緯度上都是一樣的,

- 1.3 地球上每單位面積接收到太陽輻射的功率為 Pa· 估算距離太陽 40 AU 的冥王里每單位面積所 接收到太陽輻射的功率。
 - $\frac{1}{39}P_0$

C B D 0 0

- B.
- C.
- D.
- 28. DSE 2015, Q4
- 1.4 下列哪項值利整的觀察跟宇宙的地心模型是有矛盾的?
 - (1) 木星衛星的發現
 - (2) 火星的逆行運動
 - (3) 金星相圖的變化
 - A. 只有(1)和(2) B. 只有 (1) 和 (3)
 - 只有(2)和(3)


- D
- C. D. (1) - (2)和(3)
- 29. DSE 2015, Q5
- 1.5 如鬱所示,當地珍跟太陽和火息成一直錄時,從地球觀看火息看似是怎樣在夜空中移動的?

- 火果相對於背景的惟里從西至東運動。 A.
- 火暴相對於背景的恆星從東至西運動· H.
- 火星相對於背景的恆星並沒有運動。 C.
- 火星的運動未能確定因不知東和西的方向。 D.

A	В	C	D
0	0	0	0

1.6 於一月的夜晚在地球會見到下列哪些星運期次序經過子午總 ?

- A. 魔馬應·人馬鹿、天徹底
- B. 天職蹇、人馬里、魔羯徑
- C 全年度·餐子里·巨田區
- D. 巨蟹旗、雙子鹿、金牛鹿

A B C D

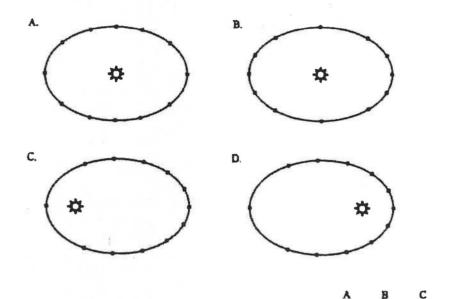
31. DSE 2016, Q1

1.1 一太空前在牛包為 r 的關形軌道上級地球 (質量 A) 運動,在太空船內,以一彈簧秤量度一物量 (質量 m) 的重量,下資源一項是正確的?

	學教育的資訊	物體系类物量力				
A.	o	0	Ŷ	B	C	D O
В.	0	GAEM P				
C.	GMm r ²	0				
D.	GMm	GA6m y ²				

32. DSE 2016, Q2

1.2 一小行蓋(質量 m)如關所示施近地球(質量 M>> m)、它最接近地球時的速度為>並與地球中心相距1、保設小行星於該程中沒有能量損失。它職地球循道時的動態為多少?


- A. 0
- $B. \qquad \frac{1}{2} anv^2$
- C. $\frac{1}{2}mv^2 \frac{GMdm}{r}$
- D. $\frac{1}{2}mv^2 + \frac{GM6n}{F}$

- 1.3 下列有關各種天體與個大小的比較、穩點是正確的?
 - (1) 重圖較是系小。
 - (2) 星条團校星条大·
 - (3) 重霉較差条大。
 - A. 只有(1)和(2) B. 只有(1)和(3)
 - B. 只有(1)和(3) C. 只有(2)和(3)
 - D. (1) (2) AD (3)

A B C D

34. DSE 2016, Q4

1.4 以下標實量能展示一行星鏡徑是運動時於相稱問等時段的位置?

- 35. DSE 2016, Q5
- 1.5 一太空船在 130 AU外傳送無線電訊號回地球·訊號爾時多久才到讀地球?
 - A. 500 s
 - B. 650 s
 - C. 43333 s
 - D. 65000 a

A B C D

D

0

0

0 0 0 0

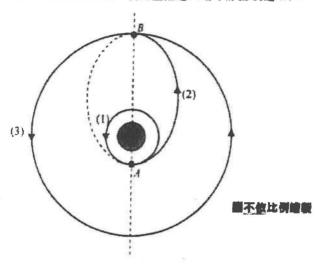
36. DSE 2016, Q6

- 1.6 大賃量的假显到維其生命終結並發生爆炸,便會於一段時間內在天空上呈現為一顆模其繼顧的超新星。在 1987年、用肉眼可看到於 163000 光年外的大麥哲肯显系出現一超新星 (SN1987A)。在 1054年,中國的天文學家觀察到於 6500 光年外的金牛壓出現另一超新星 (SN1054)。SN1987A是大約發生
 - A. 在 SN1054 之後 933 年 ·
 - B. 在 SN1054 之前 155567年 -
 - C. 在 SN1054 之前 156500 年 -
 - D. 在 SN1054 之前 162067 年 ·

- A B C D
- 0 0 0 0

1 天文學和航天科學

- 1. DSE 2012
- (a) 設 R₅、T₅和 L₅ 爲太陽的半徑、表面溫度和光度 而 R、T和 L 爲某恆星的半徑、表面溫度和光度。


(i) 證明
$$R = \left(\frac{T_S}{T}\right)^2 \left(\frac{L}{L_S}\right)^{\frac{1}{2}} R_S$$
 (2分)

- (ii) 獵戶座身宿四是一颗恆星,它的表面溫度為 3650 K,而其光度是太陽的 126000 倍。求身 宿四的半徑,以 Rs 表達。取太陽的表面溫度為 5780 K。 (2分)
- (b) (i) 參宿四的距離據估算爲 197 pc·而該距離對應於 (a)(ii) 部所提供的光度。於 2008 年其距離測定爲 197 ± 45 pc。不器計算出其實限數值,解釋當取該測定距離的上限時,在 (a)(ii) 求得的參宿四半徑會怎樣改變。參宿四於這距離可當作點光源,並向各方均勻地發光。 (2分)
- (ii) 提出一個原因說明然何難以用觀差法準確量度參宿四的距離。 (1分)
- (c) 在 2011 年·有媒體報道當參宿四數生超新星爆炸時(即完成其恆星生命嚴程),在數星期內參 宿四在天空上會好像「第二個太陽」。參考下述資料,將參宿四的超新星爆炸與太陽開者 的亮度相比較,解釋道現象會否成真。 (3分)
 - 一顆與參復四質重相的的便量經歷經新星爆炸時,在同一時段內能放出比太陽強 10³ 倍的 光度,而大約 1% 爆炸的功率會轉化成可見光。取參復四的距離為 200 pc。

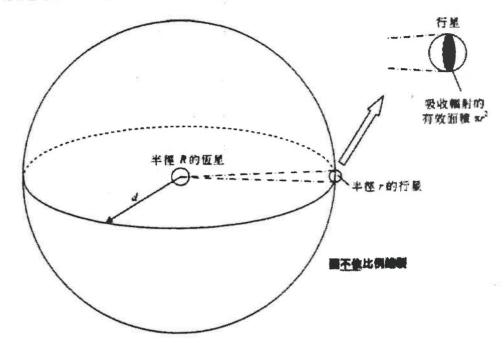
已矩: $GM=4.0\times10^{11}\,\mathrm{N}\,\mathrm{m}^2\,\mathrm{kg}^{-1}$,其中G穩萬有引力常數,M寫地球實量。 地球的平均半提=6400 $\,\mathrm{km}$ 。 地球靜止軌道的半徑約將 42400 $\,\mathrm{km}$,即位於地球表面之上 36000 $\,\mathrm{km}$ 。

以下描述把一個人造衡型發射到地球靜止軌道的一個方法:

- 用運載火箭把人造新星發射到距地球表面 300 km 的圖形近地軌道 (1)。
- 於 A 點,人造衡星的引擎得動一段短時間,便衡是推進入橢礦形轉移軌道 (2),而 AB 將橢個的長輪。
- 於B點,人邀衞墓的引擎再次啓動片刻、便衡組推進入地球靜止軌道(3)。

假設三組軌道應共而,而橢圓軌道分別於 A和 B點跟兩個圖形軌道相切。當人遊衝星在轉移軌道上由 A 至 B 運動期間,引擎是關土的。

- (0) 潛訊衡單一般會被發射到地球靜止軌道,指出並解釋這個安排的好應。
- (2分)

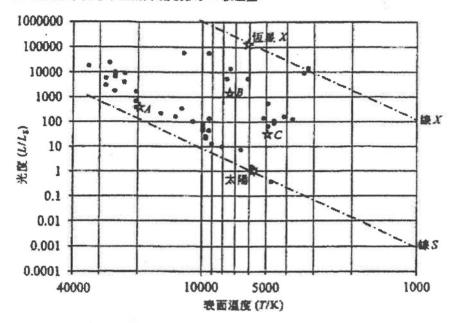

(b) 求人造衛星在近地軌道(I)上的進涨。

- (2分)
- (c) (i) 就質量與 m 的人證衡星在半徑 r 的圓形軌道繞地球運動、證明其總機械能爲 GAIm , 其中 M 跨地球的質量、設人透衡是在無窮速處的重力勢能爲零。 (2分)
 - (ii) 利用 (c)(i) 的結果計算將實量幾 m = 2000 kg 的人遊術是,從透過 A 點的近地軌道 (1) 轉移 至透過 B 點的地球靜止軌道 (3) 所需的能量。 (2分)
 - (iii) 人造衛星指轉移軌道 (2) 由 A 至 B 運動器時多久?

(2分)

Q.1: 結構式單目

(a) 一半徑 R 和表面温度 T₄ (單位 K) 的恒星向各方發射輻射,一半徑 r 的行置於距離 d 的軌道繞 這個星運動,而 d 速較 R 和 r 大,設值星和行星網者對表現為黑體。


- (i) 取行量吸收從便累所發射輻射的有效面積為 m^2 ,證明行單所吸收的功率為 $\pi\sigma(\frac{rR}{d})^2T_i^4$ 、其中 σ 為斯特潛常數,假設行果是一個理想的輻射吸收體。 (2分)
- (ii) 如果行星只吸收能量,它的温度會不斷上升,但這情況不會發生,因為行星吸收能量 時亦會輻射出能量從而維持平衡狀態、證明行星的平衡表面温度為 $T_{s} = \sqrt{\frac{R}{2d}}T_{s}$ 、(2分)
- (b) 一颗名為閱書勒-22b的行业被發现總書一顆擴太陽恆是運動、軌道半徑為 0.84 AU (I AU = 1.50×10¹¹ m)、恆星的半徑為 6.82×10⁸ m,而其表面温度為 5518 K。
 - (i) 利用 (a) 部的結果估算開普勒-22b 的平衡表面温度。 (2 分)
 - (ii) 一般認為液態水差行惠上有否生物存活的關鍵。基於在 (b)(i) 部所得的資料。解釋 開普勒-22b 行星是否適合生物存活。(2分)
 - (iii) 如果開善勒-22b以相同的軌道半極鏡一顆 K 等主序是運動,而非繞着一顆器 G 等的類 太陽恆星,它的平衡表面温度會增加。減少還是保持不要? 試寫出你的理據、已知: 显等的次序為OBAFGKM。 (2分)

Q.1: 結構式雕目

(a) 定性說明一顆饭屋的 鑑點溫等、複溫等和 光度 的關係。

(2分)

下面的結論圖圖原示從地球觀察到最光亮的 50 置恆星。

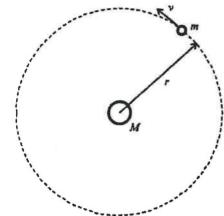
(b) (i) L、R和T為一顆恆星的光度、半徑和表面温度。利用斯特潛定律證明

$$\frac{L}{L_{5}} = (\frac{R}{R_{5}})^{2} (\frac{T}{T_{5}})^{4}$$

其中4、6、和7。為太陽的光度、半徑和表面溫度、推出你所作的一個報設。 (2分)

(ii) 在蘇羅爾中的恆星 X, 其表面温度 T = 6100 K 而光度 L = 126000 L, 求恆區 X 的半 程 R, 以太陽的半復 R, 表達。據此指出它所屬仮量類別的名稱。 已知:太陽的表面温度為 T₂=5840 K。 (3分)

(c) (i) 將(b)(i)部的等式取對數可得以下等式:


$$\log\left(\frac{L}{L_{\rm S}}\right) = 4\log T + 2\log\left(\frac{R}{R_{\rm S}}\right) - 4\log T_{\rm S}$$

證明這等式代表離羅圖上<u>一條直繼</u>,而線上所有的恆星<u>大小相同</u>。蘇羅圖兩軸皆為對 數標度,而 x-軸趨向左方顯示較高温度。於 和 T₈ 為常數。[註:圖中線 S 和線 X 是兩 輸導體從左上到右下的宣線,並分別包括着太陽和恆星 X =] (2 分)

(ii) 就隸護國中的恆星 A、B和C、試推斷哪一顆是最大的。 (1分)

Q.1: 結構式題目

(a) 圖 1.1 顯示一個質量為 m 的物體围绕質量為 M 的恆星運動, 軌道半徑為 r · 該物體的速度 為 v ·

1.1

(i) 以牛頓萬有引力定律證明

(1分)

(ii) 據此或其他方法,證明

$$T^2 = \frac{4\pi^2}{GM}r^3$$

其中 T為該物體運動的週期·

(2分)

- (b) 恆星和氣體團繞 M33 墨系的中心運行·於靠近星系邊緣的位置 X 處(距星系的中心 3.98×10²⁰ m)·氦氣的軌道速度約為 1.23×10³ m s⁻¹·可以假設於 X 處的氫氣以圖形軌道運行。
 - (i) 氫氯的其中一條光譜線 (HI線) 的波長為 21.106 cm · 若在 X處的氫氣沿視線方向朝向地 球運動,所觀測到 HI線的波長是多少? (2分)
 - (ii) 在X處的氫氯沿軌道環繞 M33 星系一周精時多久? (1分)
 - (iii) 利用 (a)(ii) 部的結果或其他方法,估算 M33 星系的質量,以太陽質量表達答案。 已知: $1AU=1.50\times 10^{11}\,\mathrm{m}$,而 1 年= $3.16\times 10^7\,\mathrm{s}$ (3 分)
 - (iv) 天文學家估計 M33 盈系中發光物體的總質量為 7×10° 太陽質量·將這數據與 (b)(iii) 部 的答案比較·若有差異·提供一個理由解釋。 (1分)

1 天文學和航天科學

1. DSE 2012

1. (a) (i) $L_3 = \sigma T_8^4 (4\pi R_s^2)$ $L = \sigma T^4 (4\pi R^2)$ $\therefore \frac{L_5}{L} = \frac{T_5^4 R_5^2}{T^4 R^2}$ $R = \left(\frac{T_5}{T}\right)^2 \left(\frac{L}{L_8}\right)^{\frac{1}{2}} R_3$

- IM
- IM

2

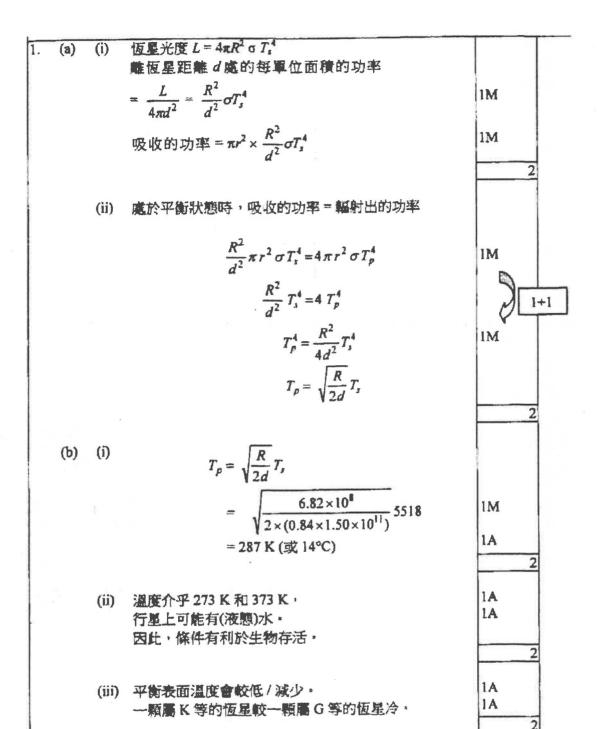
- (ii) 太陽 $T_3 = 5780 \text{ K}$ L_6 R_8 9 帝四 T = 3650 K $L = 126000 L_6$ R $R = \left(\frac{5780}{126000}\right)^2 \left(\frac{126000 L_2}{126000}\right)^{\frac{1}{2}} R_6$
- IM IA 2

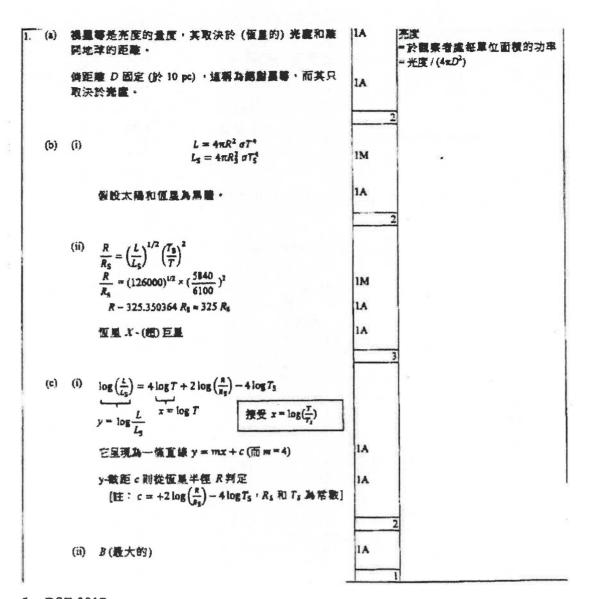
14 2

IM

即就争得四而言・・・・レベル

室 $M = m - 5(\log_{10} d - 1)$ 収 $M = m - 5(\log_{10} \frac{d}{10})$ (M: 絕對星等, m: 觀星等)


(ii) 麗楚法 (d = 1/p, 準確至約 100 pc 之內) 太棚或 d 太大/太遠 (~(1/200)**= 5 zailliarcsoc)


14

(c) $L = 10^{9} L_{s}$ 、完度 = $\frac{(0.01 \times 10^{9} L_{s})}{4\pi d^{2}}$ $d = 200 \times 206265 \text{ AU} = 41253000 \text{ AU}$ 完度 = $\frac{(0.01 \times 10^{9})}{41253000^{2}} \frac{L_{s}}{4\pi (1\text{AU})^{2}} \approx \frac{(0.01 \times 10^{9})}{41253000^{2}}$ 太陽的亮度 = 5.84 × 10⁻⁹太陽的亮度

- IM
- 1M
- 1A 3

T=10.6小野=1=53小時)

. (a)	(i)	$\frac{GMm}{r^2} = \frac{mv^2}{r}$ $v^2 = \frac{GM}{r}$	ІМ
	()i	$T = \frac{2\pi r}{\nu}$ $T^2 = \frac{4\pi^2 r^2}{\nu^2}$	1M
		$= \frac{4\pi^2 r^2}{\left(\frac{GM}{r}\right)}$ 根據(i) $= \frac{4\pi^2}{GM} r^3$	IM
(b)	()	利用 $\frac{\Delta \lambda}{\lambda_0} \approx \frac{v}{c}$	
		$\Delta \lambda \approx \frac{v}{c} \lambda_0 = \frac{1.23 \times 10^5}{3 \times 10^8} \times 21.106$ $= 8.65346 \times 10^{-3} \text{ cm}$	IM
		$\lambda = \lambda_0 - \Delta \lambda$ = 21.106 - 8.65346 × 10 ⁻³ = 21.097 cm	1A
	(ii)	$T = \frac{2\pi r}{\nu}$ $= \frac{2 \times 3.14 \times (3.98 \times 10^{20})}{1.23 \times 10^{5}}$ $= 2.03 \times 10^{16} \text{ s } (\text$	Į.

I. (b) (i	對在X處關鍵 M33 星系運行的氫氣而言。	
	$T^2 = \frac{4\pi^2}{GM}r^3 \dots (1)$	
	其中 T為 (b)(ii) 部的答案, M 為 M33 星系的質量,而 r為 X 處與星系中心的距離。	
	考慮地球圍繞太陽運行,	
	$T_{\rm S}^2 = \frac{4\pi^2}{GM_{\rm S}}^3 \dots (2)$	
	其中 T ₅ =1年 · T ₅ =1 AU 而 M ₅ 為太陽質量 ·	1M
	(1) 得	
	$\frac{T^2}{T_S^2} = \frac{M_S}{Mr_S^3} r^3$	
	$M = \frac{T_3^2 r^3}{T^2 r_5^3} M_3$	1M
	$= \left(\frac{3.16 \times 10^7}{2.03 \times 10^{16}}\right)^2 \left(\frac{3.98 \times 10^{20}}{1.50 \times 10^{11}}\right)^3 M_S$	Annual Control of the
	$=4.526 \times 10^{10} M_{\rm S} \approx 4.53 \times 10^{10} M_{\rm S}$	1A
	另解:	
	利用 $T^2 = \frac{4\pi^2}{GM}r^3$ 找出 M33 的質量	lM
	$M = \frac{4\pi^2 (3.98 \times 10^{20})^3}{G(2.03 \times 10^{16})^2} = 9.055 \times 10^{40} \text{ kg}$ 利用 $T_5^2 = \frac{4\pi^2}{GM_5} r_5^3$ 計算太陽實量	
		1M
	$M_{\rm S} = \frac{4\pi^2 (1.5 \times 10^{11})^3}{G(3.16 \times 10^7)^2} = 2.0 \times 10^{10} \mathrm{kg}$	
	特出 M = 4.526 × 10 ¹⁰ M _S	1A
131	星系內有暗物質/ 質量(非常) 巨大的黑洞/非發光	IA
(4)	至永行为唯物黄/黄重(非常) 巨大的黑洞/非安尤 置存在。	
		1

2 原子世界

1. DSE 2012, Q1

依據古典物理學的觀點,盧瑟福的原子模型有什麼局限?

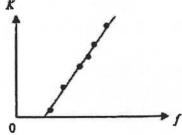
- (1) 這原子會不斷發出電磁輻射。
- (2) 這原子會變得不穩定而最終會坍塌。
- (3) 原子發射光譜會是連續而非分立的。
 - A. 只有(1)和(2)
 - B. 只有(1)和(3)
 - 只有 (2) 和 (3)
 - D. (1)、(2)和(3)
- 2. DSE 2012, Q2

下列哪些有關光體的敍述是正確的?

- (1) 錦絲燈所發射出的是連續光譜。
- (2) 透過一些氫氣觀看鎢絲燈可得到線狀吸收光譜。
- (3) 氫的發射光譜包含一明亮背景並有一些暗線。
 - 只有 (I) 和 (2)
 - B. 只有(1)和(3)
 - C. 只有(2)和(3)
 - D. (1)·(2)和(3)
- 3. DSE 2012, Q3

以能量爲 7 eV 的光子照射光電池的陰極,發射出光電子的最大動能爲 4 eV · 當能量爲 4 eV 的光子照射除極時,遏止電勢應是

A	Ö	V	-
PA.	13	· Y	•


1 V .

2 V .

D. 3 V .

C D 0 0 0 0

在探究光電效應時,以不同頻率 f 的紫外線照射某金屬,並量度所發射出光電子的最大動能 K · 所示為標論長的線圖 · K

如以強度較高的紫外線照射同一金屬,線圖會發生什麼變化?

	準備制率	練腦於水平賴的舊距				
A.	減少	不變	A	B	C	D
B.	增大	不變	0	0	0	0
C.	不變	不變	•	•		
D.	不變	減少				

5. DSE 2012, Q5

根據玻爾的氫原子模型,電子在第一受激態的軌道半徑與第二受激態的比例是

A.	1:2 •	A	В	C	D
	1:√2 •	0	0	0	0
C.	4:9 •				
D.	2:3 •				

6. DSE 2012, Q6

下列哪一項的德布羅意波長最短?

- A. 一個 60 kg 的人以 0.8 m s 1 步行。
- B. 一隻質量為 0.3 kg的鳥以 20 m s 1 飛行。
- C. 一個質量為 0.6 kg的藍球以 12 m s 1 移動。
- D. 一顆質量爲 0.05 kg 的子彈以 800 m s 1 移動 =

7. DSE 2012, Q7

下列哪一性質可解釋蓮花效應?

- A. 吸水性質
- B. 斥水性質
- C. 物質的波粒二象性
- D. 高導電性

8. DSE 2012, Q8					
如果將物質的大小漢至成爲 10 mm 大小的粒子,以下哪里 體的有所不同?	些有關這	地种子	的性質的	1级数1	力質量
(1) 光學性質 (2) 力學性質 (3) 電學性質					
A. 只有 (1) 和 (2) B. 只有 (1) 和 (3) C. 只有 (2) 和 (3) D. (1) · (2) 和 (3)	A O		0	C	
9. DSE 2013, Q1					
21 在一個 α-粒子的散射實驗中,原子內的電子對入射 α 的原因是	- 机子约路	型近乎	没有影	第 一数	有可能
 A. 電子非常細小以致 α-粒子不會碰撞到電子。 B. 電子平均分布於原子內,因此作用於 α-粒子的包C. 電子和 α-粒子之間沒有電相互作用。 D. α-粒子與電子碰撞時,其動能改變可以忽略。 	合力選等・				
	A			C	
10. DSE 2013, Q2					
2.2 根據古典電磁理論·從盧緊播原子模型可得到什麼	HE BA ?				
A. 原子是標定的,而原子光譜循連續譜, B. 原子是標定的,而原子光譜無線狀譜。 C. 原子是不穩定的,而原子光譜鴻連續譜。 D. 原子是不穩定的,而原子光譜鴻線狀譜。		^ O	В	c O	D O
11. DSE 2013, Q3					
2.3 下列哪些光體是連續的?					
(1) 燃燒蠟燭所產生的光譜 (2) 白燉燉所產生的光譜 (3) 氣體放電管所產生的光譜					
A. 只有 (I) B. 只有 (3) C. 只有 (I)和(2) D. 只有 (2)和(3)		A O	В	с О	0

KF S.A	的電子所處 的光子,其	提款M E, 最大波英	是多少?	共中 Ec (h = 哲意	. c=	在真空	· 胜那 中光的		
A. 3/4/	he E					٨	В	C	D
B. $\frac{hc}{E_i}$						O	0	0	0
C. $\frac{41}{31}$	ic So								
$D. \frac{4/E}{E}$	K O	120							
OSE 2013,	Q5								
Α. γ Β. 1	能子在一新! 解射 深外輻射 工外輻射					A O	В	С	
A. 77 B. 1 C. 10 D. 10	報射 資外輻射 I外輻射 I列光					A	В	С	(
A. 77 B. 1 C. 10 D. 10	解射 資外輻射 工外輻射 丁見光 Q6					A	В	С	
A. 7 B. 1 C. ii D. E	報射 資外輻射 I外輻射 I列光		<u> </u>			A	В	С	
A. 77 B. 1 C. 1 D. 16	解射 資外輻射 工外輻射 丁見光 Q6					A	В	С	
A. 7 B. 1 C. ii D. E	解射 深外輻射 工外輻射 可見光 Q6					A	В	С	

- A. B. X
- C. Z
- D. 以上三者皆存在於礦物中。

2.7 典型的透射電子順微鏡 (TEM) 的最小可分辨長度約算 0.2 mm。如果有一種粒子膜電子的電管 相間而質量大四倍,而這粒子束以相同電腦在 TEM 內加速,最小可分辨長度會變爲

- B. 0.1 nm ·
- C. 0.4 nm ·
- 0.8 nm ·

- 0 0 0 0

16.	DSE	2013,	Q8									
2.1	6		I mm 的红	7方體被分	割成進長	1 nm 89	約火權8	定立方	数・大	建装置	面领增	双丁多少
	A. B. C. D.	10 ¹⁰						,	A O	В	с О	0
17.	DSE	2014,	Q1									
2.1	下夕	學些有	阿康瑟州	原子模型	的該述是	正確的:	?					
	(2)	带食物	首的電子	产在轨道 。	乎其所有質 上國 納 原子 毛垫軌道上	核運動	*					
			(1)和(2) (1)和(3)						A	В	C	
	C.	只有	(2)和(3)						0	0	0	0
	D,		(2)和(3)									
18.	DSE	2014,	Q2									
2.2	太阳	光的光	建中存	E時級·	下列原生的	这是正	確的?					
	(1) (2) (3)	太陽大	大氣層中	的原子吸	的原子吸引 收光搜再# 太陽大無用	中各方量	A4 .		•			
			(1)和(2						A	В		D
	B. C.	只有 只有	(1)和(3))					0	0	0	0
			(2)和(3)									
19.	DSE	2014,	Q3									
2.3	多原	FXER	UMM子母 MELL eV		λ的光于 。	使其注意	t Filt a	- 1 受	建 有"			l dis
	٨.,	$\frac{3hc}{2\lambda}$.						A	В	0	D O	
	В.	$\frac{2hc}{3\lambda}$.						O	0	O	0	
	C.	9hc .										
	D.	8hc										
20.	DSE	2014,	Q4									
2.4				4		MAN OV						
				3		.53 eV						
				2		1.4 aV						
			1	r~1		13.6 eV						
	机原子	量低的图	9個能級如	上面所示。	下列等項引	[[本本司4	表子的	技术是	NEW I	7		
					是完全彈性 可以終非彈		٨	B	c	D		
					至第一党数		0	0	0	O		

- 2.5 當每個能量稱 3.41 eV 的光于入射金麗而時,所發射出光電子的最大動能爲 0.54 eV·該金麗 的强型领率是多少?
 - 4.33×10^{33} Hz A.
 - 9.53 × 10¹⁴ Hz B. 8.23 × 10¹⁴ Hz
 - C.
 - 6.93 × 10¹⁴ Hz D.

22. DSE 2014, Q6

2.6 賴率爲了的光京照射光電池的陰極使其發射出光電子。如果以頻率 25 而強度相同的另一光 京取代,下列各項物理量會有何改變?設備一入射光子能發射出一粒光電子。

74: 議止電勢

1:飽和光電流的量值

	V_{*}	1				
À.	维加	增加	A	B	C	D
B.	地加	减少	0	0	0	0
C.	保持不變	減少				
D.	重少	增加				

23. DSE 2014, Q7

- 2.7 物體 X 的楼布羅索波長較物體 Y 的短 · 下列零些推斷必定正確 ?
 - (1) X的速率高於 Y。

 - (2) X的動量大於 Y・ (3) X的動能大於 Y・
 - 只有(2)
 - B. 只有(1)和(2)
 - C. 只有(2)和(3)
 - (1) (2) 和(3) D.

C D B 0 0 0 0

C

O

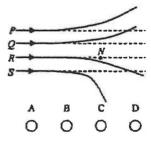
0

0

D

0

24. DSE 2014, Q8

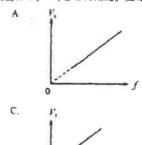

- 2.8 下列哪些有關納米科技的敍述是正確的?
 - (1) 复上納米棚度氧化钛的玻璃能自我清潔。
 - (2) 嚴約米管和體石中的碳原子空間布局相同·
 - (3) 當金的大小減至約米標度時,它的跨點跟其整體形態的會有所不同。
 - 只有(1)和(2) R.
 - 只有(1)和(3)
 - C, 只有(2)和(3)
 - (1) (2) 和(3) n.

D В C 0 0 0

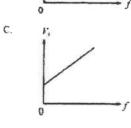
25. DSE 2015, Q1

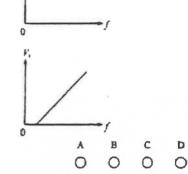
Q.2: 多項重提置

- 2.1 初始勤能相同的一束 a-粒子被难原子核 N 散射· 在圖中若 P 為其中一粒 a-粒子的可能路徑,路径 Q·R和S之中何看可以是追於 o-粒子的路徑?
 - RTQRR 只有R和S
 - B. C. 只有 Q
 - D. 只有S



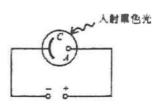
- 2.2 下列哪項提供了原子內有分立體體的實驗證據 7
 - (1) 納放電管的光譜
 - (2) 協脉燈的光譜
 - (3) 電子被晶體内的原子間距衍射
 - A. 只有(I)
 - B. 只有(3)
 - C. 只有(1)和(2)
 - D. 只有(2)和(3)


A B C D
O O O


27. DSE 2015, Q3

23 在一光電管幹中使用頻率了的單色光照射一金屬表面、所要射出光電子的連止電勢為 N。如 提改雙線率力· N 會如何跟聽了變化?

B. F.


28. DSE 2015, Q4

- 2.4 一架間諜偵察機在地球表面上 10 km 的高度巡航、機上所配備的照相機其物鏡的孔徑為 10 cm。估算這照相機能分辨在地球表面開細小物體的最小問題。 假設兩物體均發射出波長 500 mm 的光。
 - A. 0.05 m
 - B. 0.061 m C. 0.10 m
 - D. 0.122 m

A B C D

29. DSE 2015, Q5

2.5

光電池知關所示接較了直流電源。單色光限射光電池的降極 C 使其發射出光電子。光電子到 循陽框 A 的最大動能取決於

- (1) 陰極表面由哪種企業造成。
- (2) 直流電源的電腦。
- (3) 所用單色光的強度。
- A. 只有(1)
- B. 只有(3)
- C. 只有(I)和(2)
- D. 只有(2)和(3)

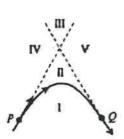
- A B C D
- 0 0 0

原子會被激發,職後所發射出的光通常為波長 558 nm 的綠光 量級為	· 道生	高差電	子的最小	(重年的
A. 10 ² m s ⁻¹ *	A	B	C	D
B. 10 ⁴ m s ⁻¹ •	0	0	0	0
C. 10 ⁴ m s ⁻¹ ·		_		•
D. 10^8 m s^{-1}				
31. DSE 2015, Q7				
2.7 下列哪項可增加进射電子顯微鏡 (TEM) 的解像能力?				
(1) 增加電子檢的陽極電影				
(2) 減小磁物鏡的孔徑				
(3) 增加投影磁线鏡和萤光牌的問距				
A. 只有 (1)	A	В	C	D
B. 只有 (2)	0	0	0	0
C. 只有 (1) 和 (3)	0	0	0	0
D. 只有 (2) 和 (3)				
32. DSE 2015, Q8				
2.8 氧化鉀 (ZnO)用於某些防職獨·下列鄉項被這是正確的?				
(I) 納米大小的 ZnO 能阻隔 繁外輻射, 而較大的 ZnO 則不	is .			
(2) 納米大小的 ZnO 相比較大的 ZnO 更能有效反射可見光				
(3) 含有钠米大小 ZnO 的防電精造於皮膚上是呈蚯明的,				

A.

B. C.

D.


只有(1)

只有(3)

只有(1)和(2)

只有(2)和(3)

2.1

在上圈中,實線是一 α 粒子被金原子被 (沒有在圖中關示) 散射的軌節,進線是軌節上點 P 和 點 Q 的切線。兩虛線進門軌點將平面分成五個區域 (I-V),金原子核可處於第一/哪些區域?

A.	I.	A	В	C	D
B.	Ц	0	0	0	0
C.	[1]	0			0
n	TV w V				

34. DSE	2016, Q2					
2.2 下列	哪些有關遊散二重性的叙述是正確的?					
(1) (2) (3)	光的干涉是光表現其故動性質的遺籍。 光電效器是光表現其粒子性質的遺籍。 電子被品體衍射顯示電子表現其故動性質。					
A. B. C. D.	只有(1)和(2) 只有(1)和(3) 只有(2)和(3) (1)、(2)和(3)	Ô	О	0	0	
35. DSE	2016, Q3					
2.3	n=1	的數樣			(1) 電子原	
E I	Miles of the second sec	光智 电阻	356.37	AVEN EN		
A. B. C. D.	無事境沈	0	8	с О	D O	
	2016, Q4 以下截原子能級之間的電子罐體。哪一個所發射出		射的液	表表	E ?	
A. B. C. D.	n=2至n=1 n=3至n=2 n=4至n=2		0	В	C	D O
37. DSE	2016, Q5					
2.5 din	·果一賞子和一 a 粒子的锑布羅重波有相同的滾長。	旅費3	·異 at	注于的	的能之	走多少?
A B C	1:4 4:1 1:2		Ô	:		D
38. DSE	2016, Q6					
2.6 在	正常照明下·可被人眼 (瞳孔直径 4 mm) 分辨的阴	起其意	小角型	距的	REU.)
A. B. C. D.	10 ⁻¹ rad • 10 ⁻³ rad • 10 ⁻³ rad •		0	E	3 C	D O

2.7	國家 光可以	的米大小的結構是用證射電子服微鏡 (TEM) 而不是光學關微鏡。這是因為電子遊比可見 以有
	A. B.	教授的波長·故此其衍射的程度較緩。 教授的波長·故此其衍射的程度較大。
	Ç.	較長的波長・故此其衍射的程度較維・

A	В	C	D
0	0	0	0

40. DSE 2016, Q8

D.

2.8 以下哪項納米科技的應用是利用了雜花效應?

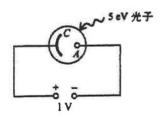
(1) 冰农所用的斥水性鳞物是以钠米滤层裹成。

較長的波長,故此其衍射的程度較大。

- (2) 蔣親水性物料的納米被層加於玻璃上便其能夠每我清潔。
- (3) 納米大小的氧化鉢添加於鐵物作為光催化劑以助污。

A.	只有(1)		A	В	C	D
B.	只有(1)和(2)		O	0	0	0
C.	只有(1)和(3)		_	_		
D.	只有(2)和(3)					

41. DSE 2017, Q1

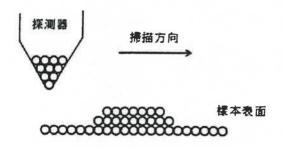

2.1 根據盧瑟福原子模型,下列哪些描述正確?

- (1) 原子的差不多所有質量皆集中在其原子核。
- (2) 原子的差不多所有電荷音集中在其原子核·
- (3) 電子關線原子核運行·

A.	只有(1)和(2)	A	В	C	D
B.	只有(1)和(3)	0	0	0	0
C.	只有(2)和(3)	•			
D.	(1)、(2)和(3)				

42. DSE 2017, Q2

2.2



圖示一個光電池與 1 V d.c. 電源連接 • 一單色光束照射光電池的陰極 C 使光電子射出,光束中每一光子的能量為 5 eV • 若陰極 C 的功函數為 2 eV · 到途陽極 A 的光電子其最高動能為多少?

Α.	2 eV	A	B	C	D
	3 eV	0	0	0	0
C.	4 eV	0			
n	6 eV				

43. DSE 2017, Q3				
2.3 當波長分別為 A和 → A的單色光照射一光電池的陰極表面, 光電池發射出光電子的單色光,其波長最長是多少?	基止電	势的比较	列為 1:	2、能使該
A. λ B. $\frac{4}{3}\lambda$ C. $\frac{1}{2}\lambda$ D. $\frac{1}{3}\lambda$	0	В	0	
44. DSE 2017, Q4				
2.4 蔣來自動放電管的一束平行黃光射向戰有動氣的玻璃管、當 一種情況?	納無受	及收費光	後,會	出现以下哪
A. 再見不到有責光。 B. 納無沿入射光束的方向發射出黃光。 C. 納無向各個方向發射出黃光。 D. 納無向各個方向發射出白光。	^ O	В	c O	
45. DSE 2017, Q5				
2.5 將一束 8 keV 的電子射向一品體以觀測電子的繞射,一粒 8 keV り電子射向一品體以觀測電子的繞射,一粒 8 keV	teV 的	電子共	8布羅第	接受為多
A. 4.34×10^{-10} m B. 1.37×10^{-11} m C. 1.74×10^{-19} m D. 5.49×10^{-21} m	0		c O	
46. DSE 2017, Q6				
2.6 位於貴州省的射電篮遊鏡、供觀測用的有效口徑為 300 m·它至 3×10°Hz 的電磁波。估算額望遊鏡可分辨的最小角間距。	可用於	觀測頻	率介於	7 × 10 ⁷ Hz
A. 4.07×10^{-4} rad B. 9.49×10^{-4} rad C. 1.74×10^{-2} rad D. 4.07×10^{-2} rad	A O	В	с О	0
47. DSE 2017, Q7				
2.7 植物雲絨花的葉被納米標度的細線覆蓋。這些細線吸收紫外線 些描述正確?	的但	反射所	有可见为	と・下列哪
(1) 由於細緣反射所有可見光,在陽光下觀看,禁子成白色。(2) 細緣不能以光學顯微鏡觀測。(3) 因細緣太微小,即使被人體吸收,亦對健康無害。	٤			
A. 只有(1)和(2) B. 只有(1)和(3) C. 只有(2)和(3) D. (1)、(2)和(3)	A O	В	с О	0

2.8 關示一座掃描腱穿顯微鏡 (STM) 掃描經過一個樣本表面·探測器水平地以固定高度掃描經過 該樣本表面。

B.

D.

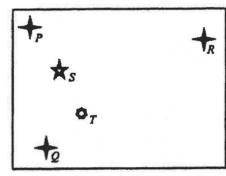
下列哪一個線圖最能表示醛穿電流隨探鴻器所移動距離的變化?

37. E	OSE 2	016, Q	7											
1.7	肉觀	听見復襲	X和Y的	光度相同	- 恒星	X 量度	多的视频是	TE I	的開倍、	祖是	X 的光 Y 的光	度之		
		多少?								•		į		
	Α.	1/4						A	8	c	D	ì		
	B.	1						O	O	U	O			
	D.	2										1		
		4										4		
38 I	D.	2016, Q	2									-2		
					0 - 提號	河水觀測	量素X的	11。禮線	出现。此	的紅衫	, a			
1,4	==	M. W. W.	## (M-10.42)		196.50			2						
			6	<u>→</u>	→((S)	D	→ (J	9					
			銀河本			x		1	r					
	T	· 要項錄並	是正確的	7										
	m	经重领	A WEST ST	k reg H	推練出	果的紅衫	大於山							
	(2) (3)	24. W. W.	YERM	HOAR	- 開始 /	有出现	河流的思					n.		
	A. B.	只有(只有(^ O	0	C) i	Ö		
	C, D.	只有(()和(2) ()和(3)								3			
39.	DSE :	2017, 0	1											
1.1		而言· 下列哪				向東移	動・在:	2016年1	的五月	和六		到火	是的逆	厅運
	(1)	在缺段												
	(2) (3)	可觀測到托勒密域	测逆行理 也心模型	動是因: 不能解	為地球 釋逆行	移動較 運動・	火星快。							
		只有(I)							A		В			
ř	C.	只有(3) 只有(1)	和(2)						C)	O	0	0	
	D.	只有 (2)	和(3)											
40.	DSE	2017, C	12											
1.5		太空站内 建正確?	的兩名人	(空人感	受「失	₹ 1 , ′	太空人的	質量分	別為 5	0 kg 🌴	70 1	g · 下列	哪項/	哪些
	(2)	地球沒 作用於 該兩名	該兩名太	大空人的	净力机	目司 •								
		只有(В	С		
		只有() 只有()									0	0	0	
		只有(

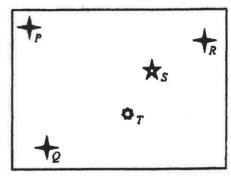
1.3 已知月球的半徑為 0.273 R、其中 R 為地球的半徑。而月球表面的重力加速度為 $\frac{1}{2}g$ 、其中 g 為地球表面的重力加速度。若 ν 為在地球表面的逃逸速度,在月球表面的迅速速度是多少?

A. 0.046 v

B. 0.167 v


C. 0,213 v

D. 0.273 v


A B C D O O O

42. DSE 2017, Q4

1.4 下面顯示在某年的一月和五月所拍攝天空中相同區域的圖像 · P · Q · R · S 和 T 為五顆恆 星 ·

一月景觀

五月景觀

下列專項/哪些描述必定正確?

- (1) 恆星 P· Q和 R與地球等距。
- (2) 恆星 S的视差較恆星 T的小。
- (3) 恆星 S 較恆星 T接近地球。

A. 只有(1)

B. 只有(3)

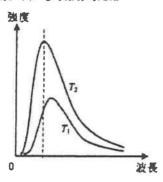
C. 只有(1)和(2)

D. 只有(2)和(3)

A B C D

43. DSE 2017, Q5

1.5 下表顯示三顆恆星的視星等和絕對星等。


	祖皇 等	MHE*
天狼里人	-1.47	1.42
異女一	0.03	0.58
北海軍人	1.98	-3.64

下列導項正確?

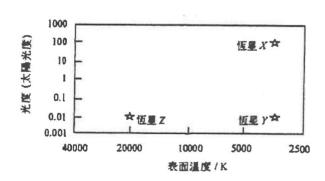
	光度最大	無地學是這	经地址制度是其			
A.	天被基A	天狼墓▲	北極里人			
B.	天狼星A	業女一	天雅·墨A			
C.	北極星A	置女一	北極星人			
D.	北極是人	北極星人	天猿星A			
			A	B	C	D
			0	0	0	0

44. DSE 2017, Q6

1.6 圖示為一無難於兩不問溫度 万和 万的辐射的光譜。

下列等項正確?

	温度收定	缺 7;時的報告				
A. B. C. D.	T ₁ T ₁ T ₂ T ₃	顯持較紅 顕得較藍 顯得較紅 顯得較藍	A O	В	с О	D


45. DSE 2017, Q7

1.7 已知太陽為一顆 G型扳星,而船尾座ζ為一顆 O型超巨星。下列哪項正確? 已知:光體型的次序為 OB A F G K M。

	有自然或实现	元素素大				
A.	船馬座与	船尾座与	A	В	С	D
B.	船港運车	太陽	4			
C.	太陽	船尾亚ς		0	0	O
D.	太陽	太陽				

46. DSE 2017, Q8

1.8 下關原示恆星 X · Y和 Z的資料 ·

下列骤填有關三顆恆星大小的比較是正確的?

A. X>Y>Z
B. X=Y>Z
C. X>Y=Z
D. Z>Y>X

2 原子世界

1. DSE 2012, Q2

氰原子中的電子所獻能級係

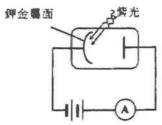
$$E = -\frac{13.6}{n^2} \text{ eV}$$

(a) 解釋 E 爲負値的物理意義。

(1分)

(b) 說出玻璃氣原子模型照備非「古典」的公設。

(2分)


- (c) 以波長溝 102.8 mm 和 100.0 nm 的一束紫外光照射遮於基膜的氦集、結果 102.8 nm 的紫外光被氦 氯吸收,而 100.0 nm 的紫外光卻不受影響。
 - (i) 計算波長篇 102.8 nm 紫外光的光子能量,以 eV 表示、常量原子吸收這欄光子後,其量子數是多少? (3分)
- (ii) 獨什麼 100.0 nm 的繫外光通過氫氣沒有被吸收?

(1分)

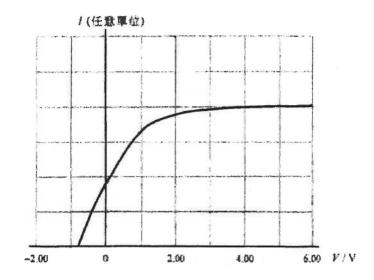
- (iii) 當該粒受激的氦原子回到基態時,有多少個體遷的可能性 ? 指出其中哪一個罐運會放出 可見光,並加以解釋。已知:一粒可見光的光子的能量介乎 1.7 eV 至 3.2 eV。 (3 分)
- 2. DSE 2013

O.2: 結構式題目

以某波找的常光照射鉀金屬面,便金屬面發射出電子,其最大動能係 0.81 eV。鉀的功函數 錄 2.30 eV。

(a) (i) 求一粒繁光光子的能量,以 eV 簡單位。

(1分)


(ii) 所發射出的電子並非全部擁有最大動能、試解釋。

(1分)

所用紫光的微度黑 0.01 W m-2。

- (b) (i) 根據古典波動理論,原子階從光波吸收足夠能量才會發射電子。估算鉀原子最少需多少 時間吸收能量才能發射進子。設一個鉀原子吸收能量的有效面積為 0.01 nm² (1 nm = 10⁻⁹ m)。 (2分)
 - (ii) 解釋為何即使光的強度非常弱,在實驗中能子從金攤面發射出來時差不多沒有時間延潤, (1分)
- (c) 如果鉀金屬面接收紫光的面積換 4.00×10⁻¹ m²,每移有多少光子撞擊金屬面?倘若鏈 10 粒光子 撞擊金屬面會發射出一粒電子,求最大光電流。 (3 分)

(d) 下面據圖縣光電流 / 對陸櫃和陽報之間電勢差 V 的曲線·

抄續總匯至你的普遍簿。如果光的強度減至原來的一半,在你所抄線的圈上以<u>應線</u>單線相應的曲線。 (2分)

3. DSE 2014

Q.2: 結構式題目

(a) 在透射電子順微鏡 (TEM) 中,從陰極發射出的電子通過樣本以及下列四個功能部分後在屏幕 上成像。

功能部分:(1) 磁物鏡

- (2) 投影磁透鏡
- (3) 聚焦磁透鏡
- (4) 陽極

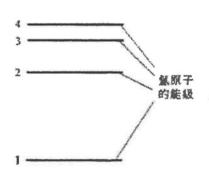
参照下面的 TEM 方框圖・配對圖中 A・B・C 和 D 所代表的功能部分・

(2 1)

- (b) (i) 當質量 m 和電荷 e 的電子以電壓 P 使其從靜止加速、證明其德布羅意波長 λ 指 $\frac{h}{\sqrt{2meV}}$,其中 h 為音朗克常數。 (2分)
 - (ii) 一台 TEM 的加速電影系 10 kV・求え・

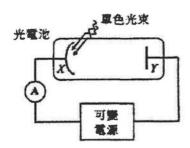
(2分)

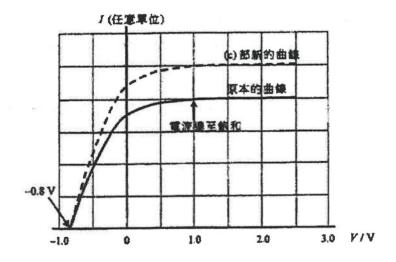
(iii) 解釋爲何 TEM 的解像能力比光學顯微鏡高。


(2分)

(c) 掃描雕穿顯微鏡 (STM) 與透射電子顯微鏡 (TEM) 皆有極高的解像能力。現有一片金屬樣本無 研究其內部結構,上述哪一種顯微鏡適用還是兩者皆適用? 試加以說明。 (2分)

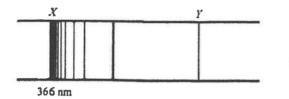
Q.2: 偿模式题目


在玻頭模型中, 凯尔子内的量子的能级 6. 写由下式表理:


- (a) 驳解的構想不時被部分物理學家批評為半古典半量子·指出较層模型<u>一項屬於古典方面</u>的地方· (1分)
- (1分) 就從能量的角度親出一無限子正處於書廳在物理上的意思。 (1分)
- (c) 如果電離一個混於基態的凱原子是少需要能量 E·以 E 和另一物理常數表示出可電離被包 原子的光子的最少動量 P· (2分)
- (d) 一些處於基態的無原子被電子撞擊、每粒電子的動能為 12.9 eV。
 - (i) 體明這些氣原子最高可被激發至第三受激態 (即n=4)。 (2分)
 - (ii) 就處於第三受激態 (n=4)的氫原子而言。在其軌道上運動的電子的標布羅素液及及多少? 已知:在玻璃模型的氫源子內,電子的軌道半徑 n 熔於 0.053 n² (單位: nm),其中 n=1,2,3,...。 (2分)
 - (iii) **珍緒下面的報酬職至你的答臘籍**、並繪畫新矢以表示這些受激的戲原子所有導致發射 出光子的可能羅纏。 (2分)

Q.2: 結構式服目

E 2.1



- (a) (i) V進来數值後、光電流 / 遠至飽和、解釋為何如此。 (1分)
 (ii) 據此推斷 / 剛飽和時光電子到遠陽程 / 的最大動態 (單位 eV)。 (2分)
 (b) (i) 求陰程 / 所用金屬的功函數 (單位 eV)。並計算對應這金屬的趣間這長。 (3分)
 (ii) 據此解釋波長 576 xm 的黃光能否對陰極 / 產生光電效應。 (2分)
- (c) 如以另一光束射柱间一光電池來重複實驗。所得新的曲線如圖所示 (虛線)。有關這光束的 頻率和強度可得知些什麼? (2分)

Q.2: 結構式題目

圖 2.1 顯示氫的緣狀光譜的一部分。

2.1

波長增加

(2分)

它包括一系列的光譜線,其波長 1 可表達為

$$\frac{1}{\lambda} = R(\frac{1}{2^2} - \frac{1}{n^2}) \quad \cdot$$

其中 R 為一常數而 $H=3\times4\times5$... 。在該系列內沒有光譜線的波長較線 X (366 nm) 的更短,亦沒有光譜線的波長較線 Y 的更長。

- (a) 利用玻爾的氫原子模型解釋為什麼光譜線是分立的而非連續的。
- (b) (i) 線 X 屬於電磁波譜中的哪一個範圍? (1分)
 - (ii) 線 X 的一粒光子的能量是多少 ? 以 eV 表達答案。 (2分)
 - (iii) 當一束液長與線 X相同的輻射射向一些處於第一受激態 (n=2) 的氯原子時,會出現什麼情況?試簡單解釋。 (2分)
- (c) (i) 指出在氯原子內可以產生線 Y 的薩遵。 (1分)
 - (ii) 求線 Y 的波長 · (2 分)

2 原子世界

- 1. DSE 2012
 - 2. (4) 負債的物理意義:
 - ·電子便原子「束縛」。
 -原子核與電子之間的力指吸引力。
 必須作功才可將電子移往無窮遠慮。

1A ______1

- (b) -電子角動量異 h 的整數倍,即量子化、
 - -電子經於某些穩定的軌道而沒有發出任何輻射·
 - ·電子只在分立的軌道上/原子的總能量差量化的/能級幾分立的
 - -當電子從某能發體運至其他能級時,原子只能發射減吸收光子形式 的輻射

2A 2

任何問題

(c) (i) 能量"好

$$= \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{102.8 \times 10^{-6}} = 1.93 \times 10^{-11} \text{ J}$$
$$= 1.93 \times 10^{-18} / (1.60 \times 10^{-16}) = 12.09 \text{ (eV)}$$

IA

IM

$$\Delta E = 12.09 \,\text{eV} = -\left(\frac{1}{n^2} - \frac{1}{1^2}\right) 13.6 \,\text{eV}$$

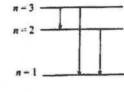
$$n^2 = \frac{1}{1 \cdot 12.05}$$

$$n^2 = 9.007 \implies n = 3$$

4 3

1

- (ii) 100.0 mm 紫外光的能量並不聽合製的基態與其他能級的能量差。
- A


1A

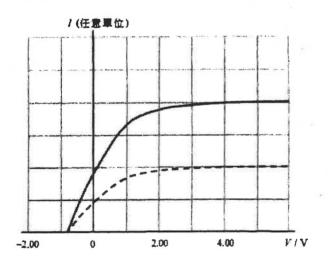
(iii) 共有三個層遷的可能性·

包罩于建於 n-3 的受象器,

$$E_3 = \frac{13.6}{3^2} \text{ eV} = -1.51 \text{ eV}$$

$$E_2 = -\frac{13.6}{2^2} \text{ eV} = -3.40 \text{ eV}$$

- $E_i = -\frac{13.6}{1^2} \text{ eV} = -13.60 \text{ eV}$
- 3至1 AE=12.09 eV (=-1.51-(-13.6))
- 3 至 2 ΔE=1.89 eV (=-1.51-(-3.40))
- 2至1 ΔE=10.2 eV (=-3.40-(-13.6))

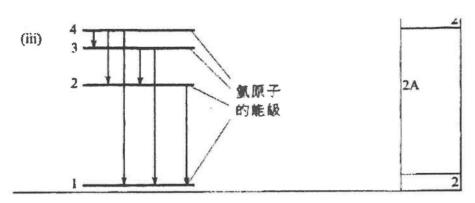

從3至2的隨邊會放出可見光·這由於1.89 eV介乎相應範圍內·

1A 2

IM

分數 2. (a) (i) E = M = 功函數 + KE_{max}(最大動能) - 2.30 eV + 0.81 eV - 3.11 (eV) IA (ii) 只有金屬表面的傳導 / 自由電子才携有最大動能。 変 金屬的功函數只是射出一粒電子所需的最小能量。 或 金屬內的傳導 / 自由電子各自有不同的能量。 业 能量較少的電子受原子核束縛,需要更多能量才能擴脫原子核的吸引而自 由運動· 1 並 一些電子不在金屬的表面,故它們不會擁有最大動能。 (b) (i) 原子吸收的能量 = 功函數 IM $(0.01 \text{ W m}^{-2}) \times [0.01 \times (10^{-9})^2 \text{ m}^3] \times rs = 2.30 \times (1.60 \times 10^{-19}) \text{ J}$ IA 2 r=3680s=61.3分量 IA (ii) 如果單一光子有足夠能量把電子轟出,則電子只在一次的碰撞便會獲得足夠的 能量・ 1 這是一對一的過程 / 若一粒電子接受了一粒能量較金屬功函數大的光子,則電子可立即發射出來。 (c) (0.01 W m⁻²) × (4.00×10⁻⁴ m²) + [3.11 × (1.60 ×10⁻¹⁹) J] = 8.04×10¹² (郵砂的光子數目) IA IM $(8.04 \times 10^{12}) \times 0.1 \times (1.60 \times 10^{-19}) A$ = 1.29 × 10⁻⁷ A = 0.13 μ A 3 IA

(d)


3. DSE 2014

24

2

_			
2.	(a)	A - (4): 陽極	
1		B-(3): 聚焦磁透鏡	L. 1
		C-(1): 磁物鏡	2A
		D - (2): 投影磁透鏡	
			2
	4.5	CTA AND AND THE WAY AND	
	(b)	(i) 動能-電子獲得的能量	
Ţ		$\frac{1}{2}mv^2 = eV$	м
		$(mv)^2 = 2meV$	
		$p = mv = \sqrt{2meV}$	IM
		:. 2 = h Jamev	
			2
		110	
		$\lambda = \frac{h}{\sqrt{2meV}}$	
		6.63×10 ⁻³⁴	
			1M
		$\sqrt{2(9.11\times10^{-31})(1.60\times10^{-19})(10\times10^{3})}$	
		$\lambda = 1.2279 \times 10^{-11} \mathrm{m} \ (= 0.012 \mathrm{nm})$	1.20×10 ⁻¹¹ - 1.23×10 ⁻¹¹ m
			2
		(iii) 由於電子來的波長 (~10 ⁻¹¹ m) 較可見光的波長 (~10 ⁻² m) 小/短·	1A
		顯微鏈採用的波長較短(衍射較少)則其解像能力	
			l'A
		$\theta = \frac{1.22\lambda}{d}$ 較大 -	
		_	2
	(c)		IA
		掃描雕字顯微鏡 (STM) 只能展示權本的表面結構。	IA
			2

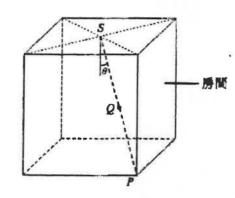
2.	(a)	- 電子被認為是以特定軌道/圓周運動團繞着原子核旋轉 的粒子,或	1A
		- 向心力由庫倫力提供,或	
		- 電子的運動連從牛頓運動定律	
		all 1 and some play was that 1 and some play with this	
	(b)	最低能級 荥 最穩定態	IA
	1-2	are imparting SQT on hor veryon	
		h hc 1	
	(c)	$p = \frac{h}{\lambda} = \frac{hc}{\lambda} \cdot \frac{1}{c}$	1M
		$p = \frac{E}{c}$	IA
		p = c	

	(d)	(i) $E_4 = -\frac{13.6}{42} = -0.85 \text{ eV}$,	IM
		•	
		$\Delta E_{1 \to 4} = E_4 - E_1 = -0.85 - (-13.6) \approx 12.75 \text{ eV}$	
		$E_s = -\frac{13.6}{s^2} = -0.544 \text{ eV}$	
		3	
		ΔE _{1→5} ™E ₅ -E ₁ =-0.544-(-13.6)=13.056 eV 12.75 eV < 12.9 eV < 13.06 eV,所以最多只能读第	1A
		12.73 cV < 12.9 cV < 13.00 cV · 所以数多风能运用 三受激版 (n=4) *	l'A
		或 $\Delta E = E_n - E_1 = -13.6(\frac{1}{n^2} - \frac{1}{1^2}) = 129 \text{ eV}$ $n = 4.41 \text{ 而由於 } n $	1M
	1		
		(ii) nh nh	
		(ii) $mvr_n = \frac{nh}{2\pi} \Rightarrow 2\pi r_n = \frac{nh}{mv} = n\lambda$ (由公設得知)	1M
		新以 A= 1.33 nm	IA
m(2)	w == 11	$0.053) 4^2 \text{ nm} = 0.848 \text{ nm} = 8.48 \times 10^{-10} \text{ m}$	
Z.			1M
	Apr	$\frac{e^2}{r^2} = \frac{mv^2}{r} \Rightarrow v^2 = \frac{1}{4n\varepsilon_0} \cdot \frac{e^2}{r} \cdot \frac{1}{m} = 9 \times 10^9 \times \frac{(1.6 \times 10^{-19})^2}{8.48 \times 10^{-10}} \cdot \frac{1}{9.11 \times 10^{-31}}$	
	7000	$=>v=5.46\times10^5\text{ms}^{-1}$	
		$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-14}}{(9.11 \times 10^{-31})(5.46 \times 10^5)} = 1.33 \times 10^{-9} \mathrm{m} = 1.33 \mathrm{nm}$	
		mv (9.11×10 ⁻¹¹)(5.46×10 ¹)	1A
-	-		

6. DSE 2017

2.	(a)	當所	子從較高能級覆遷到低能級,便會發出光子(其能	TIA T
	, ,		等於該兩能級的能量差) *	
		****	能級皆為量子化,因此所發射光子的能量(以及由	1A
		此的	波長)只能為分立的數值。	
				- 1
	(b)	(i)	線X屬於紫外線範圍。	IA
				1
		(ii)	h.c.	
		()	能量 **	
			(6.63×10 ⁻³⁴ (3×10*)	im
			$= \frac{\left(6.63 \times 10^{-34} \right) \left(3 \times 10^{8}\right)}{\left(366 \times 10^{-9} \right) \left(1.60 \times 10^{-19}\right)}$	
ł.			= 3.40 eV	1A
				2
í		(iii)	輻射會被吸收。	la l
1		(****)	而象原子電池・	1A
				2
ŀ	(c)	(i)	從 n = 3 到 n = 2 的 图 遵 。	la l
	127	(3)	(即從第二到第一受激點)	
ī				1
A Library		/::N	から 新春 ビ 次子 新種	
		(0)	由線工可得	IM
			$\frac{1}{366} = R(\frac{1}{2^2} - 0)$	
1			$R \approx 0.0109 (\text{nm}^{-1}) (32 1.09 \times 10^7 \text{m}^{-1})$	
į.			對線 Y:	
4			$\frac{1}{\lambda} = R(\frac{1}{2^2} - \frac{1}{3^2})$	
				la l
			λ ≈ 658.8 nm	
			另解:	
			$R = \frac{13.6 \text{eV}}{hc}$	
,			he $E = E_2 - E_1$	
			$= \frac{13.6 \times (1.6 \times 10^{-19})}{10^{-19}} $ c (1 1)	IM
			$= \frac{13.6 \times (1.6 \times 10^{-19})}{(6.63 \times 10^{-34})(3 \times 10^{8})} \begin{cases} E = E_2 - E_3 \\ h \frac{c}{\lambda} = 13.6 \left(\frac{1}{2^2} - \frac{1}{3^2}\right) \text{ eV} \end{cases}$	
(Common State of Stat			= 1.094 × 10' (m")	
			$\lambda = 2^{2} - 3^{4}$ $\lambda = 6.58 \times 10^{-7} \mathrm{m}$	IA
				2

3 能量和能源的使用


1. DSE 2012, Q1

下列哪個燈泡的最終能源效益最高?

	光量量	原定功率		
A.	750 lm	15 W		
B.	900 lm	30 W		
C.	750 lm	60 W		
D.	600 lm	90 W		

2. DSE 2012, Q2

在下圖所示房間中有一點光源 5 作照明,角 P 的照明度為 E · 房間內各個面的反射可忽略不計。

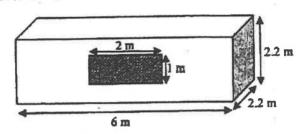
Q是P與S的中點,其照明度需

A.
$$\frac{\sqrt{2}E}{\cos\theta}$$

A B C D

- B. 2E cos θ •
- C. 4E .
- D. 8E .
- 3. DSE 2012, Q3

以下哪一序列最能描述電動車於樹動時,其再生制動系統的能量轉換?


- A. 動能 → 電能
- B. 動能 → 化學能
- C. 動能 → 化學能 → 電能
- D. 動能 → 電能 → 化學能

A	В	C	D
0	0	0	0

4. DSE 2012, Q4

一個貨權箱如圖所示改裝成辦公室。一題 I m×2 m 的數安裝在貨糧箱的前側上。而在五個外 黨的面上,貨糧箱裏外的等效溫差為 7°C。(在計算中忽略太陽報射透過窗戶所造成的能量流 入。)

已知: 貨權箱金屬物料的 U-值=26.2 W m⁻² K⁻¹ 窗戶的玻璃的 U-值=1.8 W m⁻² K⁻¹

估算貨價箱辦公室的總熱傳送值 (OTTV),以Wm⁻²表達。

A.	25.2	A	В	C	D
	26.2	0	0	0	0
C.	176.5				
D.	183.4				

5. DSE 2012, Q5

如在一內部體積爲 29.0 m³ 的隔熱房間安裝一部冷卻能力爲 2.2 kW 的空調機,估算使該房間從 37°C 路溫至 24°C 所需的時間。

已知:空氣的密度 = 1.2 kg m⁻³ 空氣的比熱容 = 1000 J kg⁻¹ K⁻¹

A.	171 s		A	В	C	D
B.	206 s		0	0	0	0
C.	380 s					
73	596 m					

6. DSE 2012, Q6

一風力渦輪機的扇葉長 5 m,並在 12 m s⁻¹ 的風正面吹動下轉動。風力渦輪機的整體效率為 25%。估算要產生 1 MW 電功率輸出所需的風力渦輪機數目。已知:空氣的密度= 1.2 kg m⁻³

A.	12		A	В	C	D
B.	49		0	0	0	0
C.	122		•	•		
D.	196					

7. DSE 2012, Q7

一水力發電站的水位相差為 50 m。在較低水位處,水以 3000 kg s^{-1} 的流率通過發電站的渦輪機・偷發電站的功率輸出為 1 MW,估算渦輪機的效率。 $(g=9.81 \text{ m s}^{-2})$

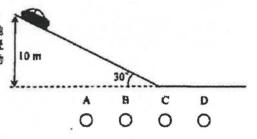
					•	-
A.	32%		Α	B	C	D
	60%		\circ	0	0	C
C.	68%				_	
-	7584					

8. DSE 2012, Q8

如果核裂變反應堆的減速劑失效會有什麼事發生?

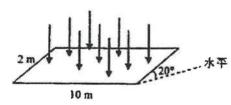
- A. 連鎖反應最終或會停止。
- B. 中子不能被減速劑吸收 *
- C. 熟不能傳遞至蒸汽產生器·
- D. 燃料棒或會熔解·

9. DSE 2013, Q1


- - A. 一枚 LED 中的 p-槽 和 n-槽的能級相差形固定的。
 - B. 一枚 LED 表面的速層只有一種螢光物料。
 - C. 一枚 LFD 的運作進度是固定的·
 - D. 一枚 LED 只容許單流於一個方向通過·

A	B	C	D
0	0	0	0

10. DSE 2013, Q2


32 一輔質量為 1000 kg 的汽車裝有再生劇動系統, 可將動能轉換爲化學能並貯存於系統中的電池 組。當汽車以恆定逐率下坡並移動了 10 m 的豎 直距離後,電池組貯存了多少能量 7 再生制動 系統的整體效率編 30%。(g=9.81 ms⁻²)

11. DSE 2013, Q3

3.3 假数豐溫照射地球表面茶處的太陽能功率與 1000 W m⁻²,以 2 m 和長 10 m 的太陽能電池面板 銀水平成 20^e 傾角,面板於該處接收到的功率是多少?

A. 6840 W B. 7280 W

C. 18800 W

D. 20000 W

A B C I

12. DSE 2013, Q4

3.4	水泵以風力渦輪機驅動,把水泵上一蓄水廠、風力渦輪機的顯葉長 10 m,而平均展連接
	5 m s · 如果系統的整體效率稱 20%,在 8 小時內可泵多少水往臺水寨 ? 假設水的重力勢能
	平均增加 9#1 J kg 已知:空氣的密度 = 1.23 kg m -

A. 39.4 kg

2.84 × 10° kg B.

C. $1.15 \times 10^5 \text{ kg}$

1.42 × 105 kg

13. DSE 2013, Q5

3.5 一個原程語 1 cm 的封閉發泡膠箱載有一些正在無化的冰。箱的尺寸將 0.5 m×0.3 m×0.4 m× 如果室道為 28℃、估算熱從影圖環境傳導至精內的率、

已知:發泡膠的導熱率為 0.03 W m 1 °C 1

39.5 W

В. 79 W

C. 3950 W

7900 W D.

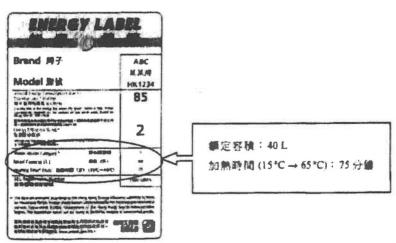
C D 0

14. DSE 2013, Q6

- 3.6 透過縮小建築物的玻璃窗戶可以減低其總熱傳送值 (OTTV)、原因是
 - (1) 玻璃的導熱率進高於混凝土。
 - (2) 如將歐戶打開會因對流讓熱傳遞。
 - (3) 玻璃容許輻射形式的熱傳遞。

只有(1) A.

В. 只有 (2)


C. 只有(1)和(3)

只有(2)和(3)

D

15. DSE 2013, Q7

3.7

根據上脂所示的對水式熱水器能源標籤。若該熱水器注滿 40 L (1 L = 1000 cm³)的水面温度場 15℃,估算其有效输出功率。已短:水的比熱容 = 4200 J kg ⁻¹ °C · 水的密度 = 1000 kg m ⁻³

٨. 1870 W

2430 W B.

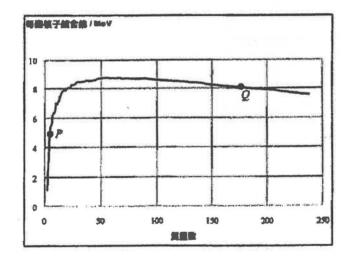
C. D.

15000 W 112000 W

A	В	C	D

0

16. [OSE 2	013, Q8								
3.8		個 數 版 子 # 2603 u·下列			7825 u · 📆 💃	en - N	元常	2 的原	于维。	RTT
	(2)	低原子核構 過程中釋出 光常 Q 異故	的框置的層	來啓動智變 26.7 MeV。	34 ·					
	B. C.	只有 (1) 只有 (3) 只有 (1) 和 只有 (2) 和					0	В	c O	0
17. 0	OSE 2	014, Q1								
3.1	at 1	E 色光源而常	1、下列各	對的亮度哪	對看起來相同	1 7				
	(2)	1 漢明的和 1 瓦特的和 1 瓦特的和	光與1瓦	特的棘光						
	B. C.	只有 (1) 只有 (3) 只有 (1) 只有 (2)				a	0) C	
18. D	SE 20	014, Q2								
		以上的能数。 第一都空間(8			消耗 (以每年	E 1200 小	時源作	ell n)	以及其	中卻能力
		每年1	**************************************	kW h	冷都能力	/kW				
	A. B. C. D.		672 684 696 750		2.44 2.58 2.89 2.63		0	0	с О	O
19. D	SE 20	014, Q3								
3.3	下列才	、同厚度的基	蒸物料中	· 何等的關	的效能最佳?					
		物料		K/Wm ⁻¹ K ⁻¹	Ţ.	[/m				
	A. B. C. D.	組製土 木 玻璃 石膏		0.50 0.15 1.00 0.24	0.0 0.0 0.0 1.0	04	A	О	0	O


20. DSE 2014, Q4

3.4 3	百低粉料	14 1	層的場	喜可援少	於條梁	入相	热物报	JL 因,	主要反射
-------	------	------	-----	-------------	-----	----	------------	-------	------

A.	紫外辐射 ·	A	B	C	D
B.	可見光·		0	0	0
C.	紅外輻射。		~		_
D.	微波・				

21. DSE 2014, Q5

- 3.5 風速不定的風正面吹着一台風力減輪發電機,首萬分體的風速傷 1 m s⁻¹ 而第三分體的風速 爲 2 m s⁻¹。如果發電機的整體效率爲 30%而每一編葉長 20 m,在該 3 分鐘時段內的平均功率 輸出 (單位 W) 是多少?已知:p = 空氣的密度,以 kg m⁻¹ 病單位。
 - A. 180 mp
 - B. 200 mp
 - C. 600 xp
 - D. 667 xp
- 22. DSE 2014, Q6
- 3.6 下列哪些有關混合動力車的敍進是正確的?
 - (1) 混合動力車在行駛前須用外體電源將其電池組再充電。
 - (2) 混合動力車的內燃機的功率小於重量和性能相同的傳統燃油汽車。
 - (3) 混合動力車的原始能量來源 100% 馬汽油。
 - A. 只有(1)
 - B. 只有(3)
 - C. 只有(1)和(2)
 - D. 只有(2)和(3)
- 23. DSE 2014, Q7
 - 3.7 下圖曲線顯示不同質量數的核素的每個核子結合能。

以下哪些敏速是正確的?

- (I) P的原子核可透過核聚變釋放能量。
- (2) Q的原子核可透過核裂變釋放能量。
- (3) P的原子核比 Q的原子核穩定。
- A. 只有(2)
- B. 只有(1)和(2)
- C. 只有(1)和(3)
- D. (1)·(2)和(3)

A B C D

D

0

0

0

0

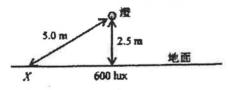
0

0 0 0

24, DSE 2014, Q8

- 3.8 下列哪些有關正常運作的核電廠歷水式反應堆的敍述是正確的?
 - (1) 從反應堆帶走能量的冷卻劑帶有放射性。
 - (2) 用以推動渦輪機的蒸氣帶有放射性。
 - (3) 從核電廠排出海中的冷卻水含有反應地的一些放射性物質。

Á. 只有(1)

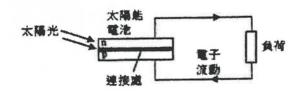

只有(3) B.

只有(1)和(2) C.

D. 只有(2)和(3)

25. DSE 2015, Q1

3.1 一房間內固定於天花板的堤影喀一的光源。直接在维下的地圖上的照明度為 600 lm、假設燈 光是均匀地向各方验射的,關示在地面上的點 X 附近的照明度是多少? 建理和天花板的反射 可保格不計。


75 hax A. B.

130 hax 150 lux

C. 300 hax D.

26. DSE 2015, Q2

3.2 下面的示意圖顯示一太陽能電池被太陽光照射者。人射光子到遠電池的 p型和 a型半導體夹 腦遊技成·以下哪一序列正確解釋魔能如何供應予負荷?

- (1) 連接應內所產生的電場將自由電子和空穴分別帶往 n 型和 p型夾腦。
- (2) 自由電子通過負荷流往 p型夾層,並跟那裏的空穴重新結合。
- (3) 人射光子將連接處的原子內的電子擊出成為自由電子,並遵留下空穴。

 $(1) \rightarrow (2) \rightarrow (3)$ A.

B. $(1) \rightarrow (3) \rightarrow (2)$

 $(3) \rightarrow (2) \rightarrow (1)$ C.

 $(3) \rightarrow (1) \rightarrow (2)$ D.

C D A В

C

D

C

B

B

D

0 0 0 0

27. DSE 2015, Q3

3.3 一人進變星以面積為 100 m² 的太陽能電池板供電,電池板的轉換效率為 15%。太陽光照射的 方向跟電池板的法線成 30° 角。太陽常數為 1370 W m⁻²。估算這太陽能電池板的電功率輸 8 .

10.3 kW A.

B. 17.8 kW

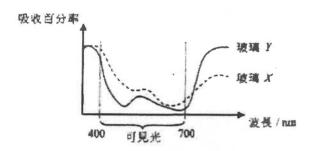
20.6 kW C.

58.2 kW D.

C D 0 0 0 0

28. DSE 2015, Q4

3.4 一燃煤發電廠產生的電能傳輸至維方的用戶。當一用戶接級一白嫩煙至市電電源。下列數據 提示煤度所含每 1000 J 能量如何轉換為電能並供應給白嫩燈。

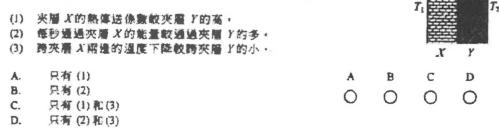

在電腦的發電過程中的損耗	600 J
在到姚白墩堰之前的傳輸機模	100 J
白橄欖所產生的熱	250 1
白鹭脂所產生的可見光	50 J

装白账提的最终提票效益是多少?

A.	5 %		A	В	C	D
B.	12.5 %		0	\circ	0	0
C.	16.7 %		0	\cup	\cup	O
n	30 %					

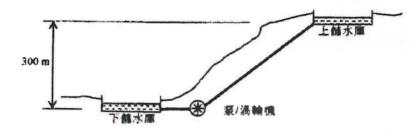
29. DSE 2015, Q5

3.5 下面線圖攝示當不同的電磁報射穿過階種玻璃 X 和 Y 時的吸收百分率。其中一體玻璃會選作 為普港建築物的資戶,就建築物能源效益的考慮。下列構項數據是正確的?



- A. 思題 X 因它比 Y 更能演形空調和原明的需求 »
- B. 應應 Y 因它比 X 更能減低空調和照明的需求。
- C. 建豐 X 图它能大大減低空調的需求,而它只比 Y 多一些類明的需求,
- D. 摩選 Y 因它能大大濒低空间的需求,而它只让 X 多一些照明的需求。

A	В	C	D
0	0	0	0


30. DSE 2015, Q6

3.6 圖示由厚度相同的夾腦 X 和 Y 構成的關鍵 · 夾腦 X 所用物料的導點率較 Y 的 高 · 蓋體的簡優維持於不同温度 7. 和 5 · 下列聯項數據是正確的 ?

31, DSE 2015, Q7

3.7 一發電廠一直以最高輸出功率 1800 MW 運作、熱而、超日内的用電票求變動很大,故此一抽 水質能發電系統設計用來增加在希腊求時段的輸出。在銀日低需求時段的 14 小時內的平均 需求只有 600 MW,而過剩的輸出用以從下額水庫抽水至上額水準、當需求大於 1800 MW 時,水通過清輪模型因下循水庫以產生質。



設抽水蓄能發電系統的效率為 100%, 法上額水庫所需的最小容蓋 (以多少 kg 的水表示)。 (g = 9.81 m s⁻²)

- $1.03 \times 10^{10} \text{ kg}$ $1.47 \times 10^{10} \text{ kg}$
- 8.
- 2.06 × 1010 kg C.
- 3.08 × 1010 kg D.

32. DSE 2015, Q8

- 3.8 在複製變反應地中的層體體有何功能?
 - 它使中子就應而進有助增加核製量的速率。
 - 它使中于減速而這有助減低複製數的逐率。 B.
 - C. 它會吸收中子而這有助減低複製鹽的產業。
 - D. 它為領制量產生中子、

C

0

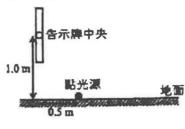
D

0

33. DSE 2016, Q1

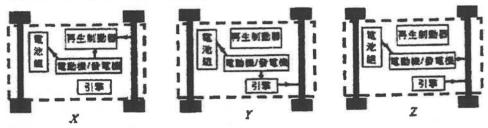
- 3.1 在一電調室中,每一書桌正上方都有一光湖,而光源大部分如圖 所示被凹反射罩包着。這安排的目的為
 - (1) 使到维鲁桌面的光量最大化。
 - (2) 減少到達電腦顯示解的光量,從而減低眩光。
 - (3) 增加光源的光强量。

- B. 只有(1)和(2)
- C. 只有(1)和(3)
- D. 只有(2)和(3)


0 O

34. DSE 2016, Q2

32 下面的告示牌以地面上的點光潔照明·如圖斯示·要在告示牌中央有 200 lox 的照明度·光源 需有多大的光理量?假設光源均匀地向各方發射·並可忽略地面上的反射。


- B. 3512 lm
- 3142 lm
- D. 560 lm

0

35. DSE 2016, Q3

3.3 下面圖 X·Y和 Z顯示一輛混合動力車於三備不同情況的能量流動。

以下哪一項為各種關鍵達些情況的正確配對?

		以强功率加重	以强定董事行駛	
A. B. C. D.	X Y X Y	Y X Z Z	Z Z Y X	
	*		A B C	D O

36. DSE 2016, Q4

- 3.4 下列哪一項有關太陽能電池的數據是不正確的?
 - 當陽光照射太陽能電池時・在半導體中有些電子 A. 被激励成自由電子。
 - 當太陽能電池發放功率時,電流只在 p-n 连接處 B. 的分界面流動·
 - 當光照的強度增加時,太陽能電池的輸出電腦大 C. 致保持不要·
 - 典型太陽能電池的效率的為 10%至 20%。 D.

A	В	C	D
0	0	0	0

37. DSE 2016, Q5

3.5	一房間以一空調機製冷	·並維持着較繁外温度低 AT的穩定温度	· 下列聯起因素會影響 AF?
-----	------------	---------------------	-----------------

- (1) 房間潛壁所用物料的導熱率
- (2) 空調機的冷卻能力
- (3) 空氣的比熱容
- 只有(1)和(2) A.
- 只有(1)和(3) B.
- 只有(2)和(3) C. (1) · (2) 和(3) D.

38. DSE 2016, Q6

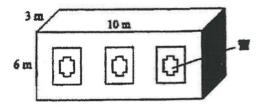
3.6 下列每一/哪些表達式是以瓦特 (W) 為單位?

- (1) 光邊量×面積
- (2) 太陽常數×面積
- (3) 熱傳送像數×面積×溫整
- 只有(2) A.
- 只有(1)和(2) B.
- 只有(1)和(3) C.
- 只有(2)和(3) D.

39. DSE 2016, Q7

3.7 一空調機每耗用 0.5 J 即可從一房間移走 1 J 的熱量至室外。空調機從房間移走 1500 J 的熟量 時, 估算釋放到室外的總熱能,

- 750 J A.
- B.
- 1000 J 2250 J C.
- D. 4500 J

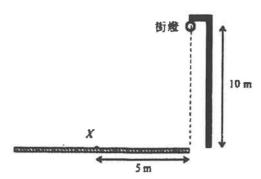

D

0

D

40. DSE 2016, Q8

3.8 圖示房腦的鏡熱傳送值 (OTTV) 為 25 W m²。而由屋内的人類活動產生熱量的率為 2000 W。 異機以下哪一冷卻能力的空調系統是這房屋繼合確的選擇?



- 2 kW A.
- SkW B.
- 10 kW C.
- D. 15 kW

A	В	C	D	
0	O	0	0	

41. DSE 2017, Q1

3.1 在路旁離地面 10 m高處安裝一支街燈,在路面上離路旁 5 m的 X 點處,照明度為 30 lux。

設街燈為一點光源均勻地向各方發射,並可忽略反射和其他光源的照射。估算街燈的光通 量。

A.	4.21 × 104	lm
B.	5.27 × 104	lm
0	5 20 × 104	leve.

C. $5.80 \times 10^4 \text{ km}$ D. $6.59 \times 10^4 \text{ km}$

A	В	C	D
0	0	0	0

42. DSE 2017, Q2

3.2 將下列光源按其效能從大至小排列。

	X	Y	Z
震定功率	II W	13 W	20 W
* 6 6	300 lm	400 lm	500 km

A.	X	*	Y	*	Z
n	Y		7	4	3"

C. $Y \cdot X \cdot Z$ D. $Y \cdot Z \cdot X$

A	В	C	D
0	0	0	C

43. DSE 2017, Q3

- 33 電磁爐的表面一般以強化玻璃製造。使用後玻璃表面會變熱的主要原因為
 - A. 電磁爐的能源效益高。
 - B. 當煮食器具變熱時,煮食器具將熱傳遞到玻璃表面。
 - C. 滿電流在玻璃中流動·
 - D. 爐內的螺線管會產生熟。

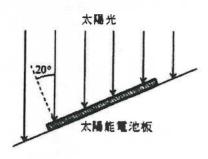
A	B	C	D
0	0	0	0

44. DSE 2017, Q4

3.4 下列哪一項變動不會減少一座大廈的總熱傳送值 (OTTV)?

A. 建始天台花圃·

B. 在牆上裝上隔熱材料·


C. 在窗戶加上太陽隔熟膜。 D. 將大廈外牆塗成深色。 0 0

0 0

557

45. DSE 2017, Q5

3.5 在屋頂安裝面積為 3 m² 的太陽能電池板,正午時,陽光與太陽能電池板的法線形成 20° 角,太陽常數為 1366 W m⁻²,而大氣吸收了 40% 的輻射功率。

B

0

C

0

D

0

若太陽能電池板的效率為10%,它在正午時所產生的電功率為多少?

A.	84 W	A
B.	154 W	
C.	231 W	O

46. DSE 2017, Q6

D.

3.6 圖示一風力湯輪機・

246 W

下列哪些描述解釋了為什麼該無力渦輪機不能以 100% 的效率將順的動能轉換皮電能 ?

- (1) 活動組件有機械能損耗。
- (2) 經過轉子後、臘不會完全停止。
- (3) 風向會不規則地轉變。

A.	只有(1)和(2)	A	В	C	D
B.	只有(1)和(3)		0		0
C.	只有(2)和(3)	O	0	0	U
D.	(1) · (2) 和 (3)				

47. DSE 2017, Q8

3.8 下列輪-235的模裂變會釋出能量。

 $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{94}_{40}Zr + ^{139}_{52}Te + 3^{1}_{0}n$

下列哪項/哪些有關該反應的描述是正確的?

- (1) 反應率可以透過吸收部分所產生的中子來控制。
- (2) 在反應中質量守恆·
- (3) 型U的每一接子结合能数 40亿的或 22 Te的海高。

A.	只有(1)	A	B	С	D
B.	只有 (3)				
C.	只有(1)和(2)		0	U	O
D.	只有(2)和(3)				

3 能量和能源的使用

- 1. DSE 2012
- (a) 已知即使於晴空下,大氣層平均吸收 26.8% 太陽能,求在地球表面每單位面積所接收到的太 陽能最大功率,已知:太陽常數 = 1366 W m⁻² (1分)
- (b) 指出太陽能電池的能量轉換,並建議一個方法以改善太陽能電池的能量吸收。 (2分)
- (c) Solar Impulse 是瑞士的一個太陽能驅動長途飛機研究計劃,其原始模型 HB-SIA 有四個以電池 相驅動的引擎,安裝在機上的太陽能電池則無道些電池組充電,在 2011 年 5 月, HB-SIA 曾成功進行國際飛行。HB-SIA 的規格詳例如下:
 - 経備引擎的功率% 7.35 kW
 - 挺一太陽能電池面板的表面面積 = 0.0172 m²
 - 在中午正入射的太陽輻射下,太陽能電池的轉換效率=12%
 - (i) 假設太陽能電池輸出的所有電功率平均地分配至四個引擎。如每個引擎以最高功率運作。估算所需的太陽能電池數目。假設所有在 HB-SIA 上的太陽能電池,每單位面積接收到的太陽能功率跟 (a) 部計算得的相同。 (3 分)
- (ii) 基於某種原因,在 2011年的飛行中 HB-SIA 安裝了 11628 枚太陽能電池,這並不足以醫動四個引擎達至最大功率。提出採用此設計的一個實際原因, (1分)
- (d) 解釋為什麼太陽能被稱爲可釋生主羅·除太陽能外,建職另一種於香港最可行的可再生能 源·寫出你作此選擇所持的理由。 (3分)

Q.3: 結構式題目

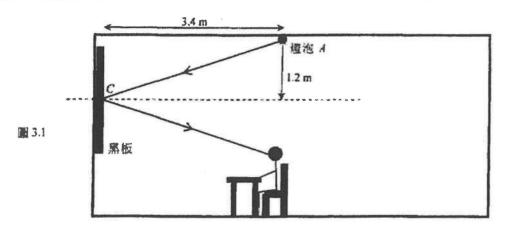
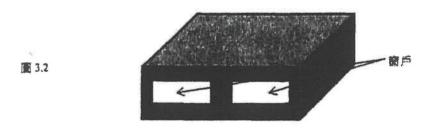
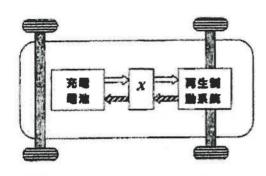



圖 3.1 所示課室有一個白橄燈泡 A · 燈泡的光鹽量器 2000 lm (說明) · 你可將燈泡網路點光源 ·

- (a) 求燈泡 A 於黑板中央 C 附近的照明度、答案以 lm m⁻² 為單位、光的反射可忽略不計。 (2分)
- (b) 權泡 A 主要為學生書桌作照明·然而腦示反射入學生眼睛的光練有欠理想·解釋照板應寫何 種表面以減輕數問題。 (2分)
- (c) 圖 3.2 顯示課室的外觀,課室從外面的平均得熱率號 14.5 kW,


課室的設計最多可閱時容納 15 人,每個人平均每秒產生 100 J 的票。課室一共裝有 6 個相周的白纖維液提供照明,而每個機泡每秒產生 80 J 的票。

- (i) 估算課室的空間系統所需的冷都能力(源於課室內所產生的熟以及從外面所得的熱)·答案以 kW表達。假設課室內沒有其他裝置產生熟。 (2分)
- (ii) 每個權泡的額定功率為 100 W·空間系統從歷密語移走 1 J 的熱會消耗 0.5 J 的電能·如果 課室每個月開放 20 日且每天運作 8 小時,估算每月用於照明和空調的報費總支出。 已知:電費收費 ~ \$1.0/kW h (3分)
- (iii) 建議一個改動建築結構或電器用具的方法,透過節能以源低電費。 (1分)

Q.3: 結構式題目

- (a) 已完全放電的電動車鐵池組·用 220 V 的端電壓及 13 A 的平均電流將其完全充電。可儲存 23 kW h 的能量·估算將鐵池組完全充電所將的時間,以小時表出。電池組的內阻可忽略。 (2分)
- (b) 圖 3.1 顯示一輔電動車的示意圖·

圖 3.1

顯示當車輔行戰時的能量傳輸

展示當車輛制動時的能量傳輸

- (i) 當車輛向前加速時,圖 3.1 的元件 X 的功能是什麼 ? 模據圖 3.1 描述将生制動系統在制動 時如何能節省能量 * (3 分)
- (ii) 假設於制動期間有固定百分比的能量耗散爲熱,再生制動系統在電動車低速還是高速 、運動時效能較佳?試解釋。 (2分)
- (iii) 然何策動車除了裝配再生制動系統外、亦須配價機械制動系統?

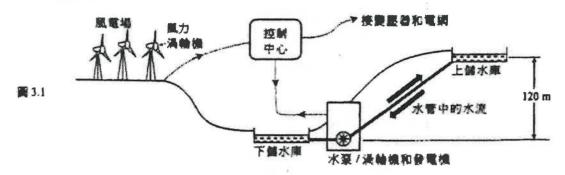
(1 5)

(c) 已知典型的電動車能把 60% 所供應的電能轉化循車額的機械輸出,考慮下列以不同模式運作 的車輛:

	傳統繼續汽車:能把汽油內 20% 所傷存的能量轉化穩率額的機械 輸出。
模式 2	遊賞電腦 + 電腦車:燃煤電廠把煤所條序的能量轉化捣電插座所供輸電能的效率為 45% •
模式 3	養體廳 → 體劃車:核電廠把燃料棒所撒存的能量轉化機電插座所供輸 電能的效率器 35% ×

哪一種模式的總體讓效益最高?該模式的空氣污染物總據放在三種模式中是否最低?試加以 說明。 (2分)

Q3: 拍模式器目


酬 3.1 戰示一空間機 X 的能源閱查。

- (a) 該空調機裝置在一房間內,房間的地面面積為 20.0 m^2 而高度為 3.0 m 。 已知:空氣的密度 $\sim 1.2 \text{ kg m}^3$,空氣的比熱容 $\sim 1000 \text{ J kg}^{-1} \, ^{\circ}\text{C}^{-2}$
 - (i) 估算將勝閒從 33°C 縣溫至 25°C 所需的時間,設空氣的密度和比熱容一直保持不要。 (2分)
 - (ii) 提出一個原因解釋為何從 33°C 降溫至 25°C 的實際期時數 (a)(i) 部所得的結果長。 (1分)
- (b) (i) 求空觀機 X在連作時所輸入的平均電功率 (以 kW 為單位)。 (1分)
 - (ii) 求道空調機 冷仰能力 键功理輸入 的值,一學生認為該比率的值大於 1 是進反了能量守恆原理, 因為空調機所移定的熱量大於單功率輸入,試到論級名學生的觀點。 (3分)

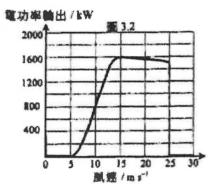
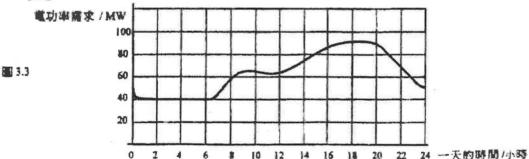
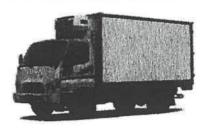

Q.3: 搶橋式驅目

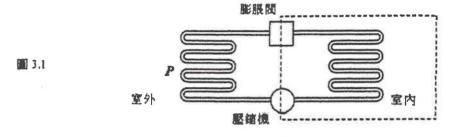
圖 3.1 顯示一風力發電廠透過控制中心以抽水蓄能水力發電系統作輔助。在低需求時段,風電場 過剩的電功率可用以從下儲水摩抽水至上儲水廠。於需求高峰期,水從上額水庫柱下液驅動渦輪 機和發電機以產生電。



黑力清輪模稱一農業長 30 m。每一清輪模可經密動控制使器装旋轉的平面距與何保持監查。 面 3.2 的銀圖顯示每一清輪機的電功率輸出您複製黑態變化。

- (a) (i) 於實際操作中·當縣據 (i) 係於 5 m s⁻¹; 以及 (ii) 高於 25 m s⁻¹ 時·指出為什麼滿輪機沒有功 率輸出。 (2分)
 - (비) 消輪機於黑遮 15 m s⁻¹ 時線最高功率輸出。求監 力消輪機在這底遮下將凱能轉換為電能的效率。已知:空氣的密度 == 1.23 kg m⁻¹ (2 分)

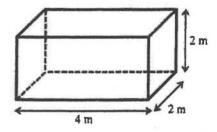

(b) 風電場共有 50 台風力消輪機為一市鎮供電。區 3.3 顯示被市鎮一天當中電功率需求競時間的 要化。


- (i) 在不使用抽水蓄能水力發電系統的情況下,利用所提供的兩個線關求可滿足市鎮一天當 中最小電功率傳求的最低風速。 (2分)
- (前) 假股茶天的原源证 15 四年1。
 - (I) 估算風電場的總電功率輸出。據此指出拍水蓄能水力發電系統需為市鎮發電的時段。
 - (II) 在市鎮電功率需求最小的時段,水從下儲水庫泵至位建 120 m 高的上儲水庫的流率 (章位 kg s⁻¹)為多少?水泵的整體效率為 80% · (g + 9.81 m s⁻²) (2分)

Q.3:結構式題目

一輔冷藏貨車用以運送冷凍貨物,其冷藏器室安裝有冷凍系統。

(a) 圖 3.1 顯示一冷凍系統的簡化示意圖·



(i) 製冷劑從哪個方向流過壓縮機(從室內流向室外還是從室外流向室内)? (1分)

(ii) 當製冷劑流經部件 P時,描述其物態改變和熱交換。 (2分)

(b) 圖 3.2 顯示冷藏隔室的尺寸,隔室以厚度為 0.08 m 的激苯乙烯作絕緣,聚苯乙烯的導熱率為 0.03 W m⁻¹ K⁻¹ -

3.2

- (i) 若要保持外層和內層表面的溫差為 50℃,估算冷凍系統所需的最低製冷能力。(提示: 考慮隔室的所有表面。) (3分)
- (ii) 在一個陽光普照的下午,無温為 35°C・利用具有 (b)(i) 部所計算製冷能力的冷凍系統, 簡單解釋為什麼隔室內的溫度不體保持於-15°C。 (2分)
- (c) 冷藏隔室內安裝了發光二極管 (LED) 作照明用·指出票項使用 LED 較使用其他常用照明器具 優勝之處· (2分)

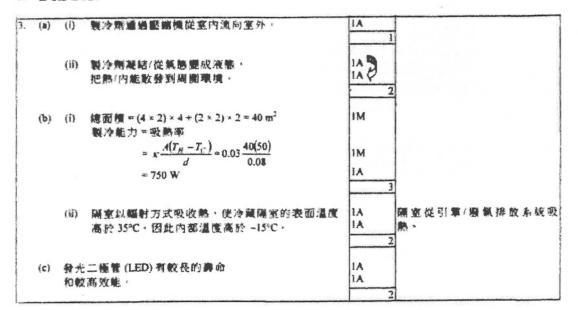
3 能量和能源的使用

1. DSE 2012

3.	(a)	地球表面每單位面積所接收到的太陽能最大功率 ~ 1366×(1-0.268) ~ 1000 W m ⁻² 或 W	iA	1
	(b)	太陽能/輻射/輻射能/光能 轉化器 電能。 在太陽能電池面板貼上避光的防胶光膜。	1A	
		太陽追蹤法以接收最多陽光。 使用透鏡/鏡來聚焦/反射以收集太陽光等方法。	14	2
	(c)	(i)	lM	
		每一太陽能電池所輸出電功率 → 17.2 W × 0.12 → 2.064 W	IM	
		所需的太陽能電池數目 - 7.35 kW×4 - 2.064 W		
		~ 14244	IA	1
		(ii) -限制飛機重量/將飛機重量減至最少。 -機上安裝太陽能域池的面積是有限的。		
		- 只電池組需以最大功率驅動引擎,電池組充電阻無必要用最高功率。 J 一項	1A	I
	(d)	從恆常補充的自然資源/過程而來的能量。	1A	
		風能 因爲 香港普通會(分別在多季和夏季)吹(東北和西南)季養風。	1A 1A	3

			Ź	· N
3. (a)		$0\left[\frac{1}{4\pi(3.4)^2}\cos^3(\tan^{-1}(\frac{1.2}{3.4}))\right]$	1M	
	* []	1.5 (lm m ⁻²)	1A	2
(b)	-	使用粗糙的表面以達到 反射來減少刺眼眩光。	IA IA	2
(c)	(i)	14.5 kW + 15 × 0.1 kW + 6 × 0.08 kW = 16.48 (kW) (接受 16.48 kW 或 16.5 kW)	1M IA	2
	(ii)	(6×0.1 kW + 16.48 kW × 50%) ×8×20×1.0 =\$ 1414.4 (接受\$ 1414.4 欺\$1416)	IM IM IA	2
	(iii)	使用節能低輻射塗脂御戶。 選 較厚的糖號。 選 以費光燈取代燈泡。 選 採用冷卻能力(製冷能力)/能效 較高的空調系統。	1.4	1

3. DSE 2014

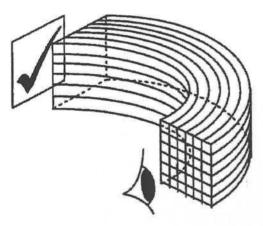


4. DSE 2015

3.	(8)	(i)	所幣的時間 = 移走的熱量 $(mc\Delta T)$	1M
		(ii)	任何一項: 熱需要從牆壁、像具等移走/從房間外流入的 熱需要被移走/其他合理因實如空調機通風欠 佳/門窗沒有緊閉妥當/安裝位置向西或直接 曝露在陽光下等/從四間所吸收的熱/不良熱 導體(空氣)延長了傳熱的時間	IA 1
	(b)	(i)	$P_{\text{in}} = \frac{2525}{1200} = 2.1 \text{ (kW) } \cancel{R} 2100 \text{ W}$	IA I
		(ii)	冷郁能力 電功率輸入 並沒有進反能量守恆原理。 空調機/壓縮機每消耗1無耳電能,則有 3.24 J 的熱透過空調機轉移/移走。而並非產生熱。	1M/1A 1A 1A 3
	(c)	(i)	(C→)B→A→D 部件B(或冷凝器)	IA IA
		(ii)	逆轉製冷劑的流動方向 或 複受互換 / 掉換 B (冷凝器) 與 D (蒸發器) 或 A (膨脹間) 與 C (壓缩機) 的位置	IA I

5. DSE 2016,

3.	(a)	(i)	(I) 針風感的風未能克服接觸面之間過大的摩擦 力・	IA CONTRACTOR
			(II) 滿輪機會被自動鎖定和停止、否則強黨會損 毀職禁。	1A
		(ii)	$P = \frac{1}{2} \mu 4v^{3} \times \eta$ $1600 \times 10^{3} \text{ W} \approx \frac{1}{2} \times 1.23 \text{ kg m}^{-3} \times \pi (30 \text{ m})^{2} \times (15 \text{ m s}^{-1})^{3} \times \eta$ $\eta = 27.3 \%$	1A 2
	(b)	(1)	單一鴻輪機需提供的功率 = 40×10 ⁵ 50 = 0.8 MW 彩 800 kW 板接線器・所需基連為 10 m s ⁻¹ ・	正: 基於風向和重力清輪機的擺 放,在實際情況中每一渦輪 機的功率輸出會有所不同。
		(ii)	(I) 1600 kW×50 = 80000 kW 東 80 MW 根據練羅(>80 MW)・15:00 - 21:00 (即 6 小時)	2 1M/IA 1A
			(II) $(80-40) \times 10^8 \text{ W} \times 80 \% = m \times 9.81 \text{ m s}^{-2} \times 120 \text{ m}$ $m = 2.7183 \times 10^6 \text{ (kg s}^{-1)}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$


4 醫學物理學

1. DSE 2012, Q1

- A. 凸透鏡・+2.75 D
- B. 凸透鏡・+5.25 D
- C. 凹透鏡·-2.75 D
- D. 凹透鏡 · -5.25 D

2. DSE 2012, Q2

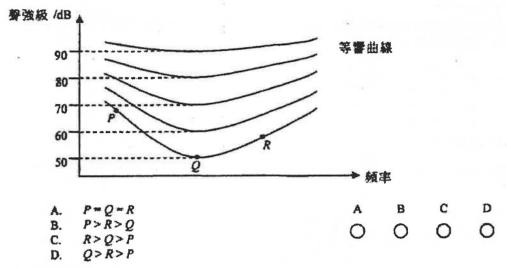
下圖顯示一束有 36 組正方元件的相干光導纖維。現以該束纖維觀看圖示物體(繪圖不依比例)。

下列哪個圖載能表示觀測者看見的圖像?

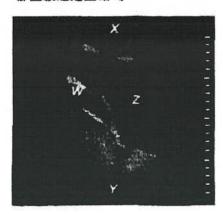
A.

В.

C.



D.


3. DSE 2012, Q3

三位演奏家奏出三個不同樂音 P·Q及 R·一位觀眾聆聽到這些樂音有相同的響度,該些樂音 展示於下面的等譽曲線圖·利用徵音器收錄該演奏,再用揚聲器以比原譽強級高 20 dB 重 播·下列哪項爲重播的聲音的響度排序?

4. DSE 2012, Q4

圖示一超聲波 B-拂描圖像·哪些敍述是正確的?

- (I) X比Y較接近掃描器·
- (2) 部位 Z 的亮度低是由於它吸收較多超聲波·
- (3) 部位 W的亮度高是由於它反射較多超聲波。
 - A. 只有(1)和(2) A B C D B. 只有(1)和(3) O O O C. 只有(2)和(3) D. (1)、(2)和(3)

5. DSE 2012, Q5

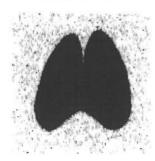
已知脂肪和肌肉之間的反射整強係數為 1% · 脂肪的聲阻抗為 1.38×10^6 kg m $^{-2}$ s $^{-1}$ · 估算肌肉的聲阻抗。

A.	$1.5 \times 10^6 \text{ kg m}^{-2} \text{ s}^{-1}$		Α	В	C	D
B.	$1.6 \times 10^6 \mathrm{kg}\mathrm{m}^{-2}\mathrm{s}^{-1}$	K	0	0	0	0
	$1.7 \times 10^6 \text{ kg m}^{-2} \text{ s}^{-1}$		•		•	
П	1.8 x 10° kg m 2 s 1					

6. DSE 2012, Q6

厚度爲	5 cm	的某身	盤組織能使某	X-4	才暴束的	強度減少	少至原來的	59%	該身體	組織的	線液液
保數是	多少	?									

A.	0.066	m ⁻¹
		-1


B. 0.085 m⁻¹

C. 8.2 m⁻¹

D. 10.6 m⁻¹

7. DSE 2012, Q7

下關是利用了确-131示踪劑的甲狀腺掃描。透過伽瑪攝影儀拍攝,較深黑部分代表其接收到 的強度較高。下列哪一個有關部位 X 的推論正確?

- A. 它是會合了報對產生異常地高衰減的物質。
- B. 它是會令 Y 輻射產生異常地低衰減的物質。
- C. 它吸收了過量的碘。
- D. 它不能正常地吸收碘。

A	В	C	D
0	0	0	0

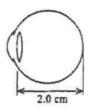
8. DSE 2012, Q8

哪些敍述能解釋爲何與-99四適合用於放射性核素醫學成像?

- (1) 它能與大部分化學物品及蛋白質組成放射性示踪劑。
- (2) 由於് -99m 的半衰期較短,病者的輻射暴露可減低。
- (3) 它能發射出適當的 y 輻射,於不同組織中衰減因而得到放射性核素關係。

A	只有	(1)	m	(2)
A.	77.71	127	434	(4)

B. 只有(1)和(3)


C. 只有(2)和(3)

D. (1)·(2)和(3)

A B C D

9. DSE 2013, Q1

4.1 圖示一個有視覺缺陷人士的跟球。親繼膜與折射部分的光心相能 2.0 cm、而折射部分的最少 焦強器 +55 D。矯正該就覺缺陷器配戴無強為多少的散變 ?

A. -5 D

B. -10 D

C. 15 D

D. +10 D

A	В	C	D
	_	-	_

0 0 0 0

10.	DSE 2013, Q2				
4.2	<u> </u>				
	A. 42.4 m B. 24.2 m C. 22.4 m D 20.4 m	0	0	0	O
11. [OSE 2013, Q3				
4.3	下删駁示用於內窥鏡的開東相干光導機維 X 和 Y 機維較多並較幼。以下哪些較越是正確的?	聊來職能的複数	五大小	相同(星者的光導
	X	V			
	(1) 從者得到的關係死度遠高於了· (2) X比了可阻曲得較多。 (3) 從者得到的關係分辨率比了的高。				
	A. 只有 (1) 和 (2) B. 只有 (1) 和 (3) C. 只有 (2) 和 (3) D. (1) · (2) 和 (3)	Ô	В	0	D o
12. D	SE 2013, Q4				
4.4	人耳的翼散度高差基於鬱波到遠內耳前,其體強改 巨大的放大率?	雙被大幅放大了・	以下號	生事業	eria
	(1) 當耳骨把振動從耳護傳遞至內耳的卵體實防會(2) 耳膜的面積比內耳的卵膿實大极多。(3) 內耳中的液體的密度比外面的空氣高很多。	憲生槓桿作用 。			á
	A. 只有 (1) 和 (2) B. 只有 (1) 和 (3) C. 只有 (2) 和 (3) D. (1)、(2) 和 (3)	Ô	В	0	0
13. D	SE 2013, Q5				

4.5	一個攜豐體接速一擴音模來產生學音。當供給護聲號的功率為 50 W·於某處所造成的聲強
	級 100 dB。假設並無其他譽源,而攜養福將電記轉換爲聲音的效率固定,於同一處產生
	110 dB 的譽強級所需的功率幾何?

A.	52 W		В	-	D
P	55 W	A	2.5	· Der	
					^
C.	100 W	O	0	\circ	O
n	KOO NI				

14. DSE 2013, Q6

4.6 得-99m是一種放射性同位素,它會進行 / 賽獎而半賽網路 6 小時,將獨-99m 級一種容易被肝 職吸收的物質結合,並給一病人服用,然後於不同時間以伽瑪照相機拍攝一系列影像。下列 哪些鲜纸器正確的?

脳用 3 小時捷

服用 6 小時後

- (1) 影像較深色部分對應於肝臟令 y 射線有較高衰減的部分。
- (2) 該系列影像提供了病人肝臟功能的資料。
- (3) 影像之間的差異完全是瀬於轉-99m的衰變。

A.	只有	(1)
172	C1 267	173

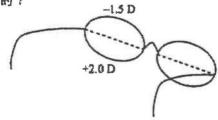
C. 只有(1)和(3)

只有(2)和(3)

D B C 0 0 0

15. DSE 2013, Q7

- 4.7 以下哪些有關避營波醫學成像的鼓迹是正確的?
 - (1) 超發波有潛在危險、因爲它是一種致電腦輻射。
 - (2) 超鬱波不適用於肺掃描、因為它對進肺部的組織-空氣界面時幾乎全被反射。
 - (3) 高頻超響故的實穿能力較強、但所得攝像分辨率較低、
 - 只有(1)
 - R 只有(2)
 - 只有(1)和(3)
 - 只有(2)和(3)


R C D 0 0 0 0

- 16. DSE 2013, Q8
- 4.8 一名交通意外的傷者懷疑臟部有內出血。蔣確定可能有出血的位置。哪一個醫學依據方法 数通用?
 - 級豐遊措描 A.
 - 內職職
 - X-制線放射攝影 C.
 - 電腦斯層遊影(CT)

- D
- 0

17. DSE 2014, Q1

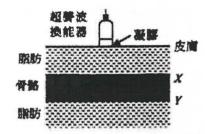
4.1 李先生記載一副圖示的雙焦距戰鏡。每一鏡片上半和下半的焦強分別幾 -1.5 D及 +2.0 D。下 列哪些敍述是正確的?

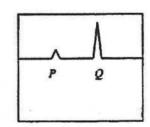
- (1) 跟鏡上半是用來觀特遙遠景物而下半則是用來觀看近距離物件。
- (2) 奎先生只见有老花。
- (3) 當沒有配戴眼鏡時·無驗物件放在何處臺先生都無法看清楚·
- 只有(I) A.
- B. 只有(3)
- C. 只有(1)和(2)
- D. 只有 (2) 和(3)

- - C

 - 0

D


18. DSE 2014, Q2


- 4.2 下列哪些有關應覺閱的鼓速是正確的?
 - (1) 聯覺間的聲音強度為 0 W m⁻²。
 - (2) 整個個對寫的整強級選作 0 dB。
 - (3) 難覺關取決於警竒的頻率。
 - A. 只有(I)
 - B. 只有(2)
 - C. 只有(1)和(3)
 - D. 只有(2)和(3)

A B C D O O O

19. DSE 2014, Q3

4.3

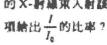
把题聲波換能器放在人體某處的皮膚上進行A-掃描,如屬所示,接收到的訊號有兩個尖峰 P和Q,下列哪些截这是正確的?

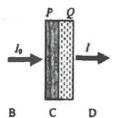
- (1) 界面 Y幾乎沒有反射,因為骨骼差不多吸收了所有超聲波。
- (2) 界面 Y 幾乎沒有反射, 因為界面 X 差不多把所有超響波反射。
- (3) 阿伽尖峰 P和 Q 分別對應在界面 X和 Y 的反射。
- A. 只有(I)
- B. 只有(2)
- C. 只有(1)和(3)
- D. 只有(2)和(3)

A B C D

20. DSE 2014, Q4

- 4.4 下列哪一項有關光纖內寬鏡的敘述是正確的?
 - A. 相干光纖管東主要是用於把光從光纖傳送至作 檢查之處,並把光途認另一端。
 - B. 非相干光纖管束比相干光纖管束有較多的光 損失。
 - C. 相干光纖管來和非相干光纖管來在精爲彎曲下 複能正常運作。
 - D. 光線內窥鏡只能顯示累和白蘭色的影像。


A B C D


21. DSE 2014, Q5

- 4.5 一位病人進行針抽切片檢查,將一支幼針穿過皮膚插入他的肝臟,抽取少許活組纖進行化 驗,爲減低內出血的風險,最重要是确測出插針位置附近較大的肝嚴血管,而肝臟在人體內 亦可微微移動,因此插針時罄有實時成像,最適當的成像方法是
 - A. X-射線平面成像。
 - B. 電腦斷層造影(CT) ·
 - C. 超聲波成像。
 - D. 放射性核素成像。

22. DSE 2014, Q6

4.6 圖示物體以際度間傳 1 cm 的層體不同物料 P 和 Q 合成 · P 和 Q 對 X-射線的線賽紙係數分別% 0.05 cm 1 和 0.68 cm 1 · 強度將 A 的 X-射線 來入射談物體,當從物體出射時的強度器 /,下列哪一

0

0

- 0.05 A. 0.68
- $(0.68 0.05)^2$ B. (0.68 + 0.05)
- C.
- (0.05 0.46) D.

23. DSE 2014, Q7

- 4.7 人工飘影劑於放射攝影的功能是什麼?
 - 它把 X-射線減侵以使 X-射線在器官內停留較久。 A.
 - B. 它使糊官增加了對部分 X-射線的吸收。
 - C. 在 X-對線難開發客前,它使 X-對線的能量增加。
 - 注射入人體的人工顯影劑水溶液、實減低槽受放射攝影的器官的密度。

A	В	C	D
0	0	0	0

24. DSE 2014, Q8

4.8 一颗放射性模集 F 的生物学凝阳和物理学资用分别透解日和三日·一病人服用了菜膏量的 F 作馬放射性模案成像的示踪物。留在網人體內的放射性核素 主需時多久其則量才減少至原來 87 1/8 7

3.6 E A

4.8 日 B.

C. 7.5 E

D. 15日

D 0 0 0

0

0

25. DSE 2015, Q1

4.1 <u>這型</u>態資本獲得力問題並補配數取錄,還示可與正該視力問題的眼鏡遊鏡。下列書項敍述是 正確的 7

- (1) 建黑泉有近视。
- (2) 點次學當他沒有配無疑疑時的近點。
- (3) 如果 X距離戰機機線 (AIm·過額的無強度為 -1.25 D·

只有(1)和(2)

只有(1)和(3)

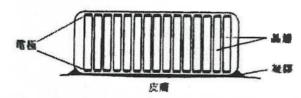
C.

只有(1)和(1)

(1) - (2) 和(3)

- B C D
- 0 0 0 0

26. DSE 2015, Q2


42 下列標項為光纖內質鏡的缺點?

- (1) 對人或有需要進行關係。
- (2) 巨只能用以檢視有空腔的適官的內體。
- (3) 它或者导致内出血。
- A. 只有(1)和(2)
- B. 只有(1)和(2)
- C. 只有(2)((3) D. (1)·(2)((3)

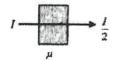
A B C D
O O O

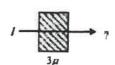
27. DSE 2015, Q3

43 漏示的超聲波揚揚器有一列高豐,跨峰一基業都接有一對電腦。下列鄉項最這是正確的?

- (1) 凝朦的作用是凝低超豐波在穿過機擬器和皮膚的阻除時的變滅。
- (2) 當一基體接收到超豐波、聚電效應會使電極之間產生電訊號。
- (3) 极糟描雪的设计是用作 B-糟糕故像。
- A. 只有(1)
- B. 只有(2)
- C. 只有(I)和(3)
- D. 只有(2)和(3)

y B C D


28. DSE 2015, Q4


4.4 超聲波揚指對點部並不識層是由於聯部內的空標

- A. 養減係數推高·因此能吸收差不多所有超差速。
- D. 教演像數很低,因此能吸收是不多所有組變效。
- d. 相對於軟絕機有很高的壓箍抗,因此能反射是不 多所有週豐波。
- D. 相對於軟組職有機能的變阻抗,因此能反射差不 多所有組整波。
- A B C D

29. DSE 2015, Q5

4.5

顯示一束 X-射線穿過線衰減係數為 μ 的金麗方概、其強度從 I 減至 $\frac{I}{2}$ 。如果以另一度度相 例但線衰減係數為 3μ 的金顯方機取代,出射的 X-影線束的強度會是多少 ?

- A. $\frac{I}{6}$
- B. $\frac{I}{8}$
- C. $\frac{1}{9}$
- D. $\frac{1}{16}$

- ٨
- В
 - c p

30. DSE 2015, Q6					
4.6 電腦斷層遊影 (CT) 的成像大小為 32 cm×32 cm·而成像。 傷傷矩阵大小對應返電腦斷層遊影成像的解線度?	上任一後)	官的 大/	1×24 0.3	91 mm³ •	下列
A. 128 x 128 B. 256 x 256	A .			D	
C. 512 × 512 D. 1024 × 1024	O	O			
31. DSE 2015, Q7					
4.7 一位醫生決定營一名病人的腎臟進行放射性核素成績 採用其他成像方法的主要原因?	ト・下列				成量而不
A. 達方法可診斷腎臟的功能。 B. 遠方法可看到腎臟的組織結構。				c O	D
C. 這方法成像的解像度相比其他方法是最高的	•	U	U	O	O
D. 這方法可診斷例所患腎病機關的特定資訊。					
32. DSE 2015, Q8					
4.8 下列放射源皆無着性並容易被某器官吸收。哪一個最適合 物?	FARES				
A. 半衰期為 16 小時的 产源 B. 半衰期為 8 個月的 产源	^		0		
C. 半衰期為 20秒的 升源 D. 半衰期為 12小時的 升源					
D. 千板樹跡 はつつでのかった					
33. DSE 2016, Q1				t TRACE	a a
4.1 视频要是由菁單版光级數·被押和视算-所辨此。下列整项	有類視符	和共黨			4
4.1 視鏡要是由兩環驗光電影-夜神和很美-所得成。下母繁極(1) 視៉ 是負責能光度時的視費。(2) 視៉ 提的數目較視能少。(3) 視៉ 用從能開答皆可遠或顏色視覺。	有關視率				4
(1) 视样是負責係光度時的視覺、 (2) 視桿的數目較視能少。 (3) 視桿和視能開省皆可遠或顏色視覺。 A. 只有(1)	A	В	c	D	1
 (1) 视样是負責係光度時的視覺。 (2) 视样的數目較視能少。 (3) 视样和视能所答答可遊或颜色視覺。 A. 只有(1) B. 只有(1)和(2) C. 只有(2)和(3) 		В		D	1
(1) 视样是負責低光度時的視覺。 (2) 视样的數目較視能少。 (3) 视样和视能兩省皆可遊或顏色視覺。 A. 只有(1) B. 只有(1)和(2)	A	В	c	D	ı
 (1) 视样是負責係光度時的視覺。 (2) 视样的數目較視能少。 (3) 视样和视能所答答可遊或颜色視覺。 A. 只有(1) B. 只有(1)和(2) C. 只有(2)和(3) 	A	В	c	D	ı
(1) 视样是負責転光度時的視覺。 (2) 視样的數目較視能少。 (3) 视样和视能開省皆可遊成颜色視覺。 A. 只有(1) B. 只有(1)和(2) C. 只有(2)和(3) D. (1)。(2)和(3)	Å O	В	0	D O	
(1) 视样是負责任光度時的視覺。 (2) 视样的散目軟視能少。 (3) 视样和视能開催旨可造成颜色視覺。 A. 只有(1) B. 只有(1)和(2) C. 只有(2)和(3) D. (1)・(2)和(3) 34. DSE 2016, Q2 42 茲凱都有深鑑視力問題。以歌他的視覺調節近點距離其即方可辨其近點纠正至 0.25 m? A. +3.5 D	A O O O	B 〇	C 〇	DO	
(1) 视样是負責転光度時的視覺。 (2) 視样的數目較視能少。 (3) 視样和视能開省皆可強或颜色視覺。 A. 只有(1) B. 只有(1)和(2) C. 只有(2)和(3) D. (1)・(2)和(3) 34. DSE 2016, Q2 42 这整数有深雕視力問題、以致他的視覺調節近點距離其間方可將其近點纠正並 0.25 m? A. +3.5 D B3.5 D C. +4.5 D	A O O O	B 〇	C 〇	DO	
(1) 视样是負責転光度時的視覺。 (2) 視样的數目較視能少。 (3) 視样和視能開省皆可強或颜色視覺。 A. 只有(1) B. 只有(1)和(2) C. 只有(2)和(3) D. (1)・(2)和(3) 34. DSE 2016, Q2 42 这整款有深程视力問題、以致他的視覺調節近點距離其即方可將其近點纠正至 0.25 m? A. +3.5 D B3.5 D	A O O O	B 〇	C 〇	DO	
(1) 视样是負責年光度時的視覺。 (2) 視样的數目軟視能少。 (3) 視样和視能開催者可強或颜色視覺。 A. 只有(1) B. 只有(1)和(2) C. 只有(2)和(3) D. (1)・(2)和(3) 34. DSE 2016, Q2 42	A O	B O	c 〇	DO	
(1) 视样是负责标光度略的视觉。 (2) 视样的数目数视能少。 (3) 视样和视能解卷皆可造成颜色视觉。 A. 只有(1) B. 只有(1)和(2) C. 只有(2)和(3) D. (1)·(2)和(3) 34. DSE 2016, Q2 4.2 这些形有不能视力問題。以致他的视觉测值近距距离并取力可將实近贴纠正至 0.25 m 7 A. +3.5 D B3.5 D C. +4.5 D D4.5 D 35. DSE 2016, Q3 4.3 飛德起飛時,有些乘客會職到耳痛或如暫失難。下列提	A O 数 2 m · A O	B 〇 他看記 B 〇 能的原源	c 〇	DO	
(1) 视样是負責転光度時的視覺。 (2) 視样的數目較視能少。 (3) 視样和視能開省皆可強或調色視覺。 A. 只有(1) B. 只有(1)和(2) C. 只有(2)和(3) D. (1)・(2)和(3) 34. DSE 2016, Q2 4.2 这類都有某機視力問題,以致他的視覺調節近點超離其間方可將其近點糾正至 0.25 m 7 A. +3.5 D B3.5 D C. +4.5 D D4.5 D 35. DSE 2016, Q3 4.3 飛機起飛時,有盐聚客會顧到耳痛或如暫失職,下列組入。 耳膜所受壓強突增,因而中中耳內的三维耳骨	A O 数 2 m · A O	B 〇 他看記 B 〇 能的原源	c 〇	DO	
(1) 视样是負責転光度時的視覺。 (2) 視样的數目較視能少。 (3) 視样和视能開省皆可強或颜色視覺。 A. 只有(1) B. 只有(1)和(2) C. 只有(2)和(3) D. (1)。(2)和(3) 34. DSE 2016, Q2 4.2 这些形有不能视力問題。以致他的視覺調節近點認施其即方可將其近點纠正至 0.25 m ? A. +3.5 D B3.5 D C. +4.5 D D4.5 D 35. DSE 2016, Q3 4.3 飛機起飛時。有垫乘客會應到耳痛或短暂失難。下列發点,其順所更壓強突增。因而中耳內的三條其骨。 B. 耳順所更壓強突增。因而中耳內的三條其骨。 B. 耳順所更壓強突增。因而中耳內的三條其骨。 C. 外耳和中耳之間的緩強突然不平衡。因而中耳	A 〇 阿里 A 〇 阿里 M M M M M M M M M M M M M M M M M M	BO 能響 BO 能の ・ 能	c 〇	DO	
(1) 视样是負責転光度時的視覺。 (2) 視样的數目較視能少。 (3) 視样和视能開省皆可強或颜色視覺。 A. 只有(1) B. 只有(1)和(2) C. 只有(2)和(3) D. (1)・(2)和(3) 34. DSE 2016, Q2 4.2 这概形有不服视力問題。以致他的視覺調節近點膨胀其限方可將其近點纠正至 0.25 m ? A. +3.5 D B3.5 D C. +4.5 D D4.5 D 35. DSE 2016, Q3 4.3 飛機起飛時,有垫乘客會職到耳痛或短暂失難,下列提及。 4.3 無機起飛時,有垫乘客會職到耳痛或短暂失難,下列提及。 4.3 無機起飛時,有垫乘客會職到耳痛或短暂失難,下列提及。 4.3 無機起飛時,有整乘客會職到耳痛或短暂失難,下列提及。 4.3 無機起飛時,可能乘客等。因而令中耳内的三機其骨足够可能更強突增,因而令中耳内的三機其骨足够可能更强致突增,因而令中耳内的三機其骨足够可能更强致疾者。因而令中耳内的三機其骨足够可能更强致疾者,因而令中耳内的三线其骨足够可能更强致疾者,因而令中耳内的三线其骨足够可能更强致疾者,因而令者可能是是一种耳内的三线其骨足够可能是是一种耳内的三线其骨足够可能是是一种耳内的三线其骨足够可能是一种耳内的三线其骨足够可能是一种耳内的三线其骨足够可能是一种耳内的三线其骨足够可能是一种耳内的三线其骨足够可能是一种耳内的三线其骨足够可能是一种耳内的三线其骨足够可能是一种耳内的三线其骨上,可能是一种耳内的三线或可能是一种耳内的三线或可能是一种耳内的三线或可能是一种耳内的三线或可能是一种耳内的三线或可能是一种耳内的三线或可能是一种耳内的三线或可能是一种耳内的三线或可能是一种耳内的三线或可能是一种耳内的三线或可能是一种耳内的三线或可能是一种耳内的三线或可能是一种耳内的三线或使用的重要的更能是一种耳内的三线或使用的重要的更能是一种耳内的三线或使用的重要的更能是一种耳内的三线或使用的正线或用的正线或使用的正	A 〇 項 組 外面 不	B 〇 他番 B 〇 的原に	C 〇 版什麼想		
(1) 视样是負責転光度時的視覺。 (2) 視样的數目較視能少。 (3) 視样和视能開省皆可強或颜色視覺。 A. 只有(1) B. 只有(1)和(2) C. 只有(2)和(3) D. (1)。(2)和(3) 34. DSE 2016, Q2 4.2 这些形有不能视力問題。以致他的視覺調節近點認施其即方可將其近點纠正至 0.25 m ? A. +3.5 D B3.5 D C. +4.5 D D4.5 D 35. DSE 2016, Q3 4.3 飛機起飛時。有垫乘客會應到耳痛或短暂失難。下列發点,其順所更壓強突增。因而中耳內的三條其骨。 B. 耳順所更壓強突增。因而中耳內的三條其骨。 B. 耳順所更壓強突增。因而中耳內的三條其骨。 C. 外耳和中耳之間的緩強突然不平衡。因而中耳	A 〇 項 組 外面	B 〇 能 B 〇 的	C 〇	D O	

36. DSE 2016, Q4

4.4 餘新大腸病養廣泛採用內窺鏡而非其他醫學故像方法,這是因為

- (1) 它能提供解像相當良好而清晰的直接關係。
- (2) 透過內藏鋼的導管可放人工具來擴取組織作進一步化驗。
- (3) 它的風險較其他成像方法低。
- A. 只有(2)
- B. 只有(3)
- C. 只有(1)和(2)
- D. 只有(1)和(3)

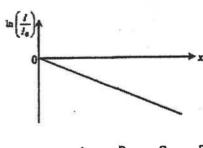
37. DSE 2016, Q5

- 4.5 一學生在距離一細小豐源 x 處量度墊強級 (單位 dB)。估算他需能離棄源多適才會使量得的 養強級減少 20 dB。
 - A. 5x
 - B. 10 x
 - C. 20x
 - D. 40 x

A B C D

38. DSE 2016, Q6

- 4.6 就排描位於體內的肝囊而言,以下哪一超豐波遭擇是正確的?並附環據。
 - A. 3 MHz 超豐波·因所成的像解像度較高。
- A B C
- B. 3 MHz超聲波·因它能較深人行論體內。
- 0 0 0 0


D

- C. 12 Miliz 超聲波·因所成的像解像度較高。
- D. 12 MHz 超聲波 · 因它能較深入行進量内 ·

39. DSE 2016, Q7

4.7 一束強度為 I_0 的 X 射線入射一介質 I_0 介質的線表減係數為 μ_0 知識所示,射線束在進入介質距離 I_0 分類 I_0 一個 I_0 分 I_0 I_0 I

- A. #
- B. $\frac{\ln 2}{\mu}$
- C. $\frac{1}{\mu}$
- D. #

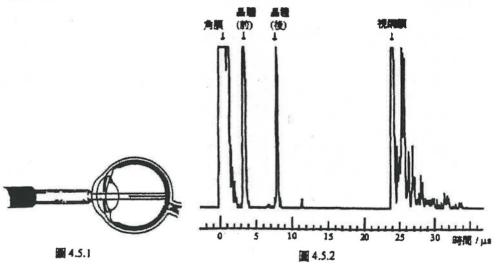
4.	8 下	列爾項有		層途影 ((T)的數)	建是正理的 1	•				-
	(2)	CTR	的重建》	及將政制	平版上	體組織的道 從不開角度/ 所置進高於	所得的 X M	線束強		反投制	前皮・
	A. B. C. D.	只有 只有	(I) (1) 和 (2) (2) 和 (3) (2) 和 (3)					0	В	с О	0
41.	DSE	2017, Q	1								
4.	1	示 一隻眼	n z vo	方的一件 — —	物體。	<u> </u>)			
	下	Algorite					di sala Mar				
	A. B. C. D.	1	大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大			發散透鏡 會聚透鏡 發散透鏡 發散透鏡 會聚透鏡	IF A	A O	В	c O	D O
42.	DSE	2017, Q	2								
4.2	下列	哪些有	胡人類館	是的指述	, all i	¥J ?					
	(2)	中耳内(因耳膜) 在内耳	的卵圆面	的面積有	7差異・	使壓強放大	*				
	B. C.	只有(1 只有(1 只有(2 (1)·(2))和(3))和(3)					0) C) O
43.	DSE :	2017, Q	3								
4.3	建到	廠內的聲 的聲音強 : 聽覺閩	度為多少	7	秦内的工	人都戴上保	重耳度· E	能把聲	強級降	Æ 30 dB	・工人
	B. C.	1.00 × 10" 3.16 × 10" 3.16 × 10" 3.16 W m	W m ⁻²))

40. DSE 2016, Q8

44. DSE 2017, Q4

4.4 下表顯示不同組織和空氣的整阻抗。

mana and a second process to compare the second	豐阳抗 (×10 ⁶ kg m ⁻² s ⁻¹)
脂肪	1.34
肝臓	1.65
肌肉	1.71
骨骼	7.8
空氣	0.0004


在超聲波掃描中,以下哪一個界面會有最大的反射整強係數?

- A. 肝臓-肌肉
- B. 脂肪-肌肉
- C. 肌肉-骨骼
- D. 肌肉-空氣

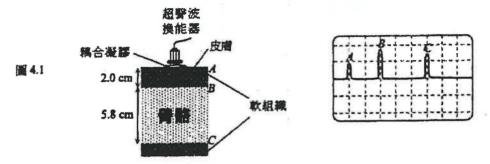
A B C D

45. DSE 2017, Q5

4.5 利用超聲波換能器掃描眼睛 (圖 4.5.1),所接收到的回聲如圖 4.5.2 所示,超聲波在眼睛內的速度為 1550 m s⁻¹。

基體的厚度的為

- A. 1.6 mm •
- B. 3.5 mm ·
- C. 7.0 mm ·
- D. 18.6 mm -


- A B C D
- 0 0 0 0

46. D	SE 2	017, Q6				
4.6	下列	哪項有關內窺鏡的描述是正確的?				
	B. C.	相干光纖管束是用來傳送影像的。 光只能從物鏡傳播至目鏡,但不能向相反方向傳播。 光纖包層的折射率較玻璃的為高。 內窺鏡只能觀示黑白影像。	A O			
				_		
47. D	SE 2	017, Q7				
4.7	来元	示蹤物 Y 的生物半衰期為 3 日,而其物理半衰期為 4 小時	· Y的	有效半	夜期為:	多少?
	В. С.	0.24 小時 1.71 小時 3.79 小時 4.23 小時	A O	В	_	0
48. D	SE 2	017, Q8				
4.8	下列	哪項有關放射性核素成像的描述是正確的?				
	B. C.	因示戰物的衰變,應在注射示蹤物後立刻拍攝影像。 伽瑪照相機發射伽瑪輻射以輻照示蹤物。 放射性核素成像能夠清楚顯示一個衰竭器官的結構。 注射示蹤物後一段時間內,病人的排泄物可能有放射性。	A O	В	c O	D O

4 醫學物理學

1. DSE 2012

(a) 圖 4.1 顯示位於 2.0 cm 厚的一層軟組織下的骨骼截面,其厚度為 5.8 cm、一起聲波換能器跟據 有耦合複譯的皮膚接觸。從不同的界面 A、B和 C 反射的超聲被脈衝顯示於示波器上。

(1) 求超警波在骨骼的速率跟其在軟組織的速率之比。

(2分)

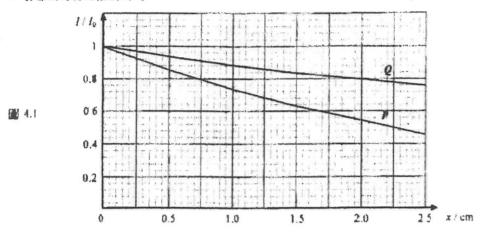
不同身體組織對所用超聲波的聲阻抗值表列如下。

	2 2 2 3 4 4 7
軟組織 (平均値)	1.63 × 10 ⁶
骨骼	7.78 × 10 ⁶

(ii) 如果超警波在軟組織的速率爲 1580 m s ⁻¹,估算骨骼的密度。

(3分)

(b) (i) 描述超聲波 B-掃描成像的操作原理。


(3分)

(ii) 就醫學成像而君·指出使用超聲波揚描的一體優點及一體限制·

(2分)

Q.4: 結構式器目

(a) 腦 41 顯示當一束 X-射線分別穿透兩介質 P 和 Q 一段距離 x 後, X-射線束的強度忽擊改變。 X-射線束的初始強度稱 I₆。

(i) 介質 P 的半链摩度路多少?

(1分)

(ii) 求介質 P 的線實遞係數。

(2分)

(iii) 介質 Q的密度是高於·等於灌是低於介質 #?

 $(1\frac{2}{2})$

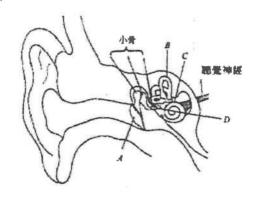
(b) 圖 4.2 是一報胸部的 X-射線放射攝影關係。

E 4.2

- (i) 模據不開介質包括軟組織和骨骼對所譜譜 X-射線的影響。解釋該翼像如何影成, (2分)
- (ii) 簡單解釋集件麼相比 X-射線放射攝影,電腦新層遊影 (CT) 能提供更詳細的身體結構資料。
- (iii) 雖然 CT 關係具有上述優點,寫出層關原因 (除了 CT 掃插價較昂貴之外) 說明爲何不以 電腦斷滑遊影完全取代傳統的 X-對腺放射攝影。 (2分)

Q.4: 結構式題目

- (a) (i) 用超聲波作聲暴成像時會以影電換能器掃描網入。描述整電換能器如何塞生超聲波。 (2分)
 - (ii) 指出在醫學液像中使用較高額率超層波的優點和缺點各一個。 (2分)
- (b) (i) <u>表達養</u>有正常親力,於觀看遙遠景物時他眼睛的焦強為 +59 D,估算他眼睛的攝體與親 網膜的開節、假設他眼睛的折射能力主要來自晶體。 (2分)
 - (ii) 智能電話 X的顯示解以類多細小的方形像素組成,如關所示。


撒示似一部分的幾個方形像素

查查正看看智能電話 X 的顯示屏上的圖形、他眼睛瞳孔的直徑 4.0 mm, 给算他眼睛對 里綠色的圖形的解像能力 θ (以弧度 radians 表達)、已知: 綠色光的液長 = 5.35 × 10⁻⁷ m ~ (2分)

(ii) 由於智能電話 X 的像素極無細小,在典型銀距 L=0.30 m下,人限不能分辨出兩個毗適的像常。利用 (b)(ii) 都的結果,估算智能電話 X 顯示罪上一個方形像素的最大達長 r= 你可假設以弧度表示的角 0 很細小時, $\tan \theta = \theta$ (2分)

Q.4: 結構式贈目

置 41 顯示人耳的結構。

30 4.1

- (a) (i) 試把版 4.1 中字母 A·B·C和 D 配對下建耳朵的各部分,包括耳膜·磨鹽畫、草葉醬和 耳鏡・指出 C 的功能。 (2分)
 - (i) A對 D 的面積比為 20。如果當豐音訊號經過 D 之後被耳朵將其驅強總共放大了 25 倍,求小贵的槓桿作用所構成的觀強增益。 (1分)
- (b) 图42图示题是正常人士的一条穿著由缝。

養養経/68

- (i) 新出流曲維所代表的響度,以方為單位、扣出曲維票端相對較高有何物理意義。(2分)
- (ii) 一名工人長期受環境帳等影響而導致難力受損,实施力損失對於 kHz 顯率磁器的整管 尤為農養。如果為装名工人進行聯營聯灣試,在損 43 所示的等響曲能 A、8 和 C中·原 一條最能代表他的抵繳?解釋你的實際。 (2分)

34.3

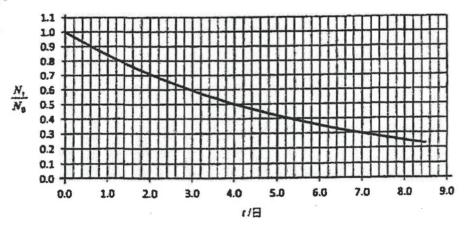
(c) 在原作中的機器房工作的一名工程部所受到精音的覺強度為 10 W m²。當業上耳罩後,能所 聽到検查的變換度減至 2.5 × 10³ W m²。估算數上耳罩後他所聽到練香的變強級減少了多 少 m。

500 1k 2k

Q.4: 結構式題目

(a) 下面的像 A·B和 C來自不同的醫學成像方法。

A (NE)


月(丹里)

C(同語)

- 哪一個是放射性在景成像所產生?解釋該像如何形成。不須描述所用泵測值器的結構和 (4分)
- (ii) 指出放射性核素成像較其餘兩個成像方法優勝的<u>一個</u>地方、

(1 53)

(b) 一初始數量為 N_0 的放射性同位素經時間 1衰變至 N_0 。下面的線圖顯示 $\frac{N_1}{N_0}$ 比值體時間 1的要 化:

(i) 利用練頭求放射性同位素的半衰期·

(1分)

- 一個合該放射性同位素的化合物用作「示除物」,並注射進病人體內以探究一生理過程。進 「示除物」的生物半衰期為2日。
- 「示踪物」的生物半套獨是什麼意思?

(1分)

(iii) 如果初始時注射了 50 mg 的「示踪物」, 估算需转多久該放射性化合物預留在量內的數 (3分) 量才是至 10 mg·

Q.4:結構式器目

X-射線放射攝影成像和電腦斷層遊影 (CT) 掃描均應用於醫療用途。

(a) 簡單描述 X-射線如何產生。

(1分)

(b) 指出一項 CT 掃描較 X-射線放射攝影成像優勝之處。

(1分)

(c) 所吸收輻射的有效劑量可以用毫希沃特 (mSv) 量度、浆以從本贮輻射接收到等效的劑量需時 多久來表達。胸間 X-射線放射攝影成像和胸部 CT 掃描的有效劑量分列如下。

	有效测量 (mSv)	等效本應應射測量(日)
胸部 X-射線放射攝影成像	0.02	1.85
胸部 CT 拘鎖	6.6	610.5

(i) 簡單解釋為什麼 CT 掃描的有效劑量相對甚高。

(1分)

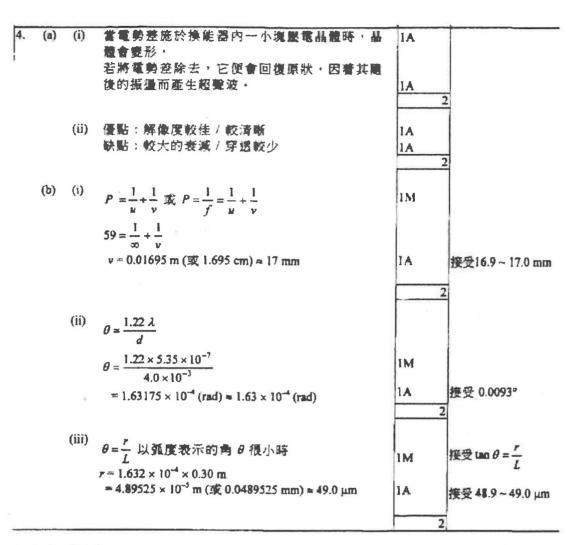
- (ii) 頭部 CT 掃描的有效劑量為 1.5 mSv·以表列的資料, 估算其等效本底輻射劑量。 (1分)
- (d) 在 CT 掃描中,一束初始強度為 L 的狹窄 X-射線沿途穿越肺腔, 軟組織和骨骼,下表顯示各組織的線液減係數,和 X-射線在各組織中的速程長度。

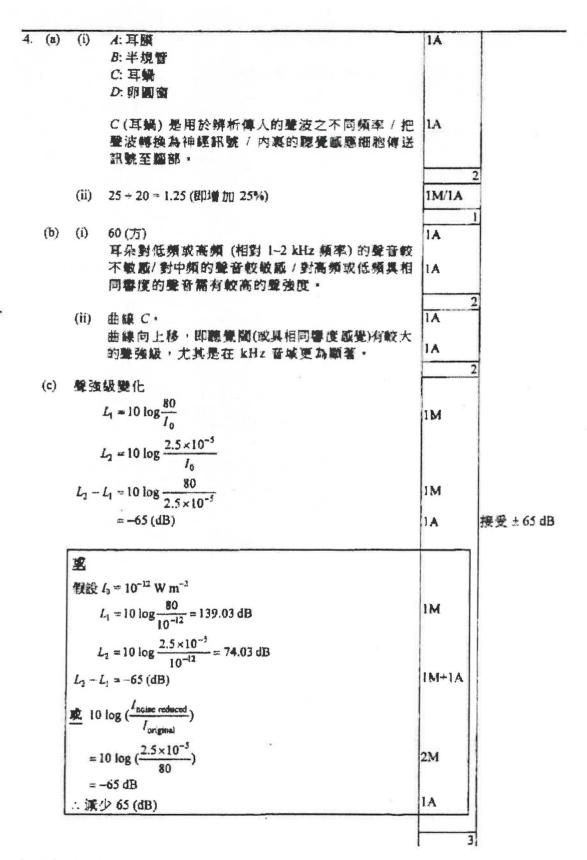
	總表提係数 (cm ⁻¹)	建程長度 (cm)
神政	0.1	19.8
歌組織	0.18	8.8
P. N	0.48	4.4

(i) 簡單解釋為什麼肺腔和骨骼的線瓷減係數相差甚大。

(1分)

(3分)


(e) 有學生建議 CT 掃描可用於檢查胎兒·簡單解釋你是否問意·若不問意·請建議一種緩用於 檢查胎兒的醫學成像方法· (2分)


4 醫學物理學

1. DSE 2012

4. (a) (i) 設 v 和 v₂分別爲超聲波在軟組織和在骨骼內的速率 r 和 4分別爲超聲波在軟組織和在骨骼內所經過的時間

			2	E
(2)	(i)	2.25 cm	1A	1
	(ii)	$x_{N_1} = \frac{\ln 2}{\mu}$ (92 0.5 $I_0 = I_0 e^{-\mu N_1}$)	IM	
		$0.0225 = \frac{\ln 2}{u}$		
		μ=30.8 m ⁻¹ (接受 30.8 m ⁻¹ 和 31.0 m ⁻¹)	IA	2
	(iii)	介質 Q: 密度較低	IA	l
(b)	(i)	當 X-射線穿通 (穿越) 介質時,強度會衰減 / 被吸收。	IA	
		於骨骼的衰減/吸收較軟組織的大、所以骨骼在底片上呈现白色(較淺色)/ 軟組織呈現黑色(較深色)。	IA	2
	(ii)	X-射線管及探測器關鍵病人轉動,以拍攝多幅 X-射線 投影 / 圖像。	IA	
		這些投影會被靠達/計算/製作反投影/合成 以得到斯羅遊影圖·提供更 多身體狀況的資料。	1A	2
	(iii)	- CT 掃描的輻射照射量或劑量較高 (進 8.0 mSv 相對於 X-射線放射攝影的	IA	
		0.01 mSv) - 不及 X-射線放射攝影散集可描性或便於操作	. IA	2

2.67 × 10 ⁵ M

(a)	快選	的電子撞擊重金屬靶會產生 X-射線。	IA.
(b)		带描在軟組織圖形成像/區分體內互相覆蓋的組織結 製造 3D 影像較為優勝。	IA_
(c)	(i)	由於一次 CT 掃描涉及多次 X-射線放射攝影成像,因此 CT 掃描的有效劑量較高。	IA
	(ii)	等效本底輻射劑量 = 1.85 × 1.5 0.02 = 138.75 天	IA
(d)	(i)	肺腔內充滿空氣/肺腔和骨骼的密度相差甚大	1A
	(ii)	$I = I_0 e^{-(\mu_1 x_1 + \mu_2 x_2 + \mu_3 x_3)}$	
		$\frac{I}{I_0} = e^{-(0.1x19.8 + 0.18x6.8 + 0.48x4.4)}$ $= e^{-5.676} = 3.43 \times 10^{-3}$	IM+IM
(e)	變)/	意,因為 CT 掃描可引致細胞内產生電離作用(改 員害胎兒的DNA。 利用超聲波拂描檢查胎兒。	IA IA