- $\{a_1, a_2, ..., a_n\}$ and $\{b_1, b_2, ..., b_n\}$ are two sequences of real numbers. Define $s_k = a_1 + a_2 + ... + a_k$ for k = 1, 2, ..., n.
 - Prove that $\sum_{k=1}^{n} a_k b_k = s_1(b_1 b_2) + s_2(b_2 b_3) + ... + s_{n-1}(b_{n-1} b_n) + s_n b_n$.
 - If $b_1 \ge b_2 \ge ... \ge b_n \ge 0$ and there are constants m and M such that $m \le s_k \le M$ for k = 1, 2, ..., n, prove that $mb_1 \leq \sum_{k=1}^{n} a_k b_k \leq Mb_1$.

(5 marks)

Let $\{a_n\}$ be a sequence of positive numbers such that 5.

$$a_1 + a_2 + \dots + a_n = \left(\frac{1 + a_n}{2}\right)^2$$

for n = 1, 2, 3, ...

Prove by induction that $a_n = 2n - 1$ for n = 1, 2, 3, ...

(5 marks)

- Let Arg z denote the principal value of the argument of the complex 6. number $z (-\pi < \text{Arg } z \leq \pi)$.
 - If $z \neq 0$ and $z + \overline{z} = 0$, show that $\operatorname{Arg} z = \pm \frac{\pi}{2}$.
 - If z_1 , $z_2 \neq 0$ and $|z_1 + z_2| = |z_1 z_2|$, show that $\frac{z_1}{z_2} + \frac{z_1}{z_2} = 0$ and hence find all possible values of Arg $\frac{z_1}{z_2}$.

(5 marks)

7. Let m and n be positive integers. Using the identity

$$(1+x)^n + (1+x)^{n+1} + ... + (1+x)^{n+m} = \frac{(1+x)^{n+m+1} - (1+x)^n}{x}$$

where $x \neq 0$, show that

$$C_n^n + C_n^{n+1} + ... + C_n^{n+m} = C_{n+1}^{n+m+1}$$

(b) Using (a), or otherwise, show that

$$\sum_{r=5}^{m+4} r(r-1)(r-2)(r-3) = 24(C_5^{m+5}-1).$$

Hence evaluate $\sum_{r=0}^{k} r(r-1)(r-2)(r-3)$ for $k \ge 4$.

(7 marks)

SECTION B (60 marks)

Answer any FOUR questions from this section. Each question carries 15 marks. Write your answers in the AL(C2) answer book.

- 8. Let $M = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$, where a, b and c are non-negative real
 - (a) Show that $\det(M) = \frac{1}{2}(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]$ and $0 \le \det(M) \le (a+b+c)^3$. (4 marks)
 - (b) Let $M^n = \begin{pmatrix} a_n & b_n & c_n \\ c_n & a_n & b_n \\ b_n & c_n & a_n \end{pmatrix}$ for any positive integer n, show that a_n , b_n and c_n are non-negative real numbers satisfying $a_n + b_n + c_n = (a + b + c)^n$. (4 marks)
 - (c) If a+b+c=1 and at least two of a, b and c are non-zero, show that
 - (i) $\lim_{n\to\infty} \det(M^n) = 0 ,$
 - (ii) $\lim_{n\to\infty} (a_n b_n) = 0 \text{ and } \lim_{n\to\infty} (a_n c_n) = 0 ,$
 - (iii) $\lim_{n\to\infty} a_n = \frac{1}{3} .$

(7 marks)

78

9. (a) Consider

(I)
$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = 0 \\ a_{21}x + a_{22}y + a_{23}z = 0 \\ a_{31}x + a_{32}y + a_{33}z = 0 \end{cases}$$

and

(II)
$$\begin{cases} a_{11}x + a_{12}y + a_{13} = 0 \\ a_{21}x + a_{22}y + a_{23} = 0 \\ a_{31}x + a_{32}y + a_{33} = 0 \end{cases}.$$

- (i) Show that if (I) has a unique solution, then (II) has no solution.
- (ii) Show that (u, v) is a solution of (II) if and only if (ut, vt, t) are solutions of (I) for all $t \in \mathbb{R}$.
- (iii) If (II) has no solution and (I) has nontrivial solutions, what can you say about the solutions of (I)?

 (5 marks)
- (b) Consider

(III)
$$\begin{cases} -(3+k)x + y - z = 0 \\ -7x + (5-k)y - z = 0 \\ -6x + 6y + (k-2)z = 0 \end{cases}$$

and

(IV)
$$\begin{cases} -(3+k)x + y - 1 = 0 \\ -7x + (5-k)y - 1 = 0 \\ -6x + 6y + (k-2) = 0 \end{cases}$$

- (i) Find the values of k for which (III) has non-trivial solutions.
- (ii) Find the values of k for which (IV) is consistent. Solve (IV) for each of these values of k.
- (iii) Solve (III) for each k such that (III) has non-trivial solutions.

(10 marks)

- 10. Let \mathbf{a} , \mathbf{b} and \mathbf{c} be vectors in \mathbb{R}^3 .
 - (a) Show that a, b and c are linearly dependent if and only if

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0 ,$$

where $\mathbf{a} = (a_1, a_2, a_3)$, $\mathbf{b} = (b_1, b_2, b_3)$ and $\mathbf{c} = (c_1, c_2, c_3)$. (5 marks)

- (b) Suppose a, b and c are linearly independent. Show that for any vector x in R³, there are unique x₁, x₂, x₃ ∈ R such that
 x = x₁a + x₂b + x₃c.
 (4 marks)

Let $S = \{\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} : \alpha, \beta, \gamma \in \mathbb{R}\}$.

Under what conditions on a, b and c will S represent

- (i) a point?
- (ii) a line?

(c)

- (iii) a plane?
- (iv) the whole space?

[Note: You are not required to give reasons.]

(6 marks)

11. A function $f: C \rightarrow C$ is said to be real linear if

$$f(\alpha z_1 + \beta z_2) = \alpha f(z_1) + \beta f(z_2)$$

for all α , $\beta \in \mathbb{R}$ and $z_1, z_2 \in \mathbb{C}$.

- (a) Suppose f is a real linear function. Show that
 - (i) if z = 0 whenever f(z) = 0, then f is injective;
 - (ii) if f(i) = i f(1) and $f(i) \neq 0$, then f is bijective. (4 marks)
- (b) Suppose λ , $\mu \in \mathbb{C}$ and

$$g(z) = \lambda z + \mu \overline{z}$$
 for all $z \in \mathbb{C}$.

Show that

- (i) g is real linear;
- (ii) g is injective if and only if $|\lambda| \neq |\mu|$. (8 marks)
- (c) If f is a real linear function, find $a, b \in \mathbb{C}$ such that

$$f(z) = az + b\overline{z}$$
 for all $z \in \mathbb{C}$. (3 marks)

11

11

- 12. Let $p(x) = x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4$, where $a_1, a_2, a_3, a_4 \in \mathbb{R}$. Suppose $z_1 = \cos \theta_1 + i \sin \theta_1$ and $z_2 = \cos \theta_2 + i \sin \theta_2$ are two roots of p(x) = 0, where $0 < \theta_1 < \theta_2 < \pi$.
 - (a) Show that

(i)
$$p(x) = (x^2 - 2x\cos\theta_1 + 1)(x^2 - 2x\cos\theta_2 + 1)$$

(ii)
$$p'(x) = 2p(x) \left(\frac{x - \cos \theta_1}{x^2 - 2x \cos \theta_1 + 1} + \frac{x - \cos \theta_2}{x^2 - 2x \cos \theta_2 + 1} \right)$$
 (5 marks)

(b) Suppose p(w) = 0, by considering p(x) - p(w), show that

$$\frac{p(x)}{x-w} = x^3 + (w+a_1)x^2 + (w^2+a_1w+a_2)x + (w^3+a_1w^2+a_2w+a_3).$$
(3 marks)

(c) Let $s_n = z_1^n + \overline{z_1}^n + z_2^n + \overline{z_2}^n$, using (a)(ii) and (b), show that

$$p'(x) = 4x^{3} + (s_{1} + 4a_{1})x^{2} + (s_{2} + a_{1}s_{1} + 4a_{2})x + (s_{3} + s_{2}a_{1} + s_{1}a_{2} + 4a_{3}).$$

[Hint:
$$\frac{2(x-\cos\theta_r)}{x^2-2x\cos\theta_r+1}=\frac{1}{x-z_r}+\frac{1}{x-\overline{z}_r}, \quad r=1, 2.$$
]

Hence show that

$$s_n + a_1 s_{n-1} + \dots + a_{n-1} s_1 + n a_n = 0$$
 for $n = 1, 2, 3, 4$.

(7 marks)

13. Let \mathbb{Z}_{+} be the set of all positive integers and $m, n \in \mathbb{Z}_{+}$.

Let
$$A(m,n) = (1-x^m)(1-x^{m+1})...(1-x^{m+n-1})$$
,
 $B(n) = (1-x)(1-x^2)...(1-x^n)$.

(a) Show that A(m+1, n+1) - A(m, n+1) is divisible by $(1-x^{n+1}) A(m+1, n)$.

(2 marks)

- (b) Suppose P(m, n) denote the statement

 " A(m, n) is divisible by B(n)."
 - (i) Show that P(1, n) and P(m, 1) are true.
 - (ii) Using (a), or otherwise, show that if P(m, n+1) and P(m+1, n) are true, then P(m+1, n+1) is also true.
 - (iii) Let k be a fixed positive integer such that P(m, k) is true for all $m \in \mathbb{Z}_{+}$. Show by induction that P(m, k+1) is true for all $m \in \mathbb{Z}_{+}$.

(10 marks)

(c) Using (b), or otherwise, show that P(m, n) is true for all $m, n \in \mathbb{Z}_+$.

(3 marks)

END OF PAPER

PAPER II

HONG KONG EXAMINATIONS AUTHORITY
HONG KONG ADVANCED LEVEL EXAMINATION 1994

PURE MATHEMATICS A-LEVEL PAPER II

2.00 pm-5.00 pm (3 hours)
This paper must be answered in English

- 1. This paper consists of Section A and Section B.
- 2. Answer ALL questions in Section A, using the AL(C1) answer book.
- 3. Answer any FOUR questions in Section B, using the AL(C2) answer book.

SECTION A (40 marks)

Answer ALL questions in this section.

Write your answers in the AL(C1) answer book.

1. Evaluate

(a)
$$\lim_{x\to 1} \frac{1-\sqrt{x}}{1-\sqrt[5]{x}}$$

(b) $\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$.

(4 marks)

2. Evaluate

(a)
$$\int \tan^3 x \, \mathrm{d}x ,$$

(b)
$$\int \frac{x^2 - x + 2}{x(x - 2)^2} \, \mathrm{d}x \ .$$

(6 marks)

- 3. Find the equations of the straight line which satisfies the following two conditions:
 - (i) passing through the point (4, 2, -3),
 - (ii) parallel to the planes x+y+z-10=0 and x+2y=0. (4 marks)
- 4. The equation of a curve C in polar coordinates is

$$r = 1 + \sin \theta$$
, $0 \le \theta \le 2\pi$.

- (a) Sketch curve C.
- (b) Find the area bounded by curve C.

(5 marks)

5. For n = 1, 2, 3, ... and $\theta \in \mathbb{R}$, let $s_n = \sum_{k=1}^n 3^{k-1} \sin^3 \left(\frac{\theta}{3^k} \right)$.

Using the identity $\sin^3 \phi = \frac{3}{4} \sin \phi - \frac{1}{4} \sin 3\phi$, show that

$$s_n = \frac{3^n}{4} \sin\left(\frac{\theta}{3^n}\right) - \frac{1}{4} \sin\theta .$$

Hence, or otherwise, evaluate $\lim_{n\to\infty} s_n$.

(4 marks)

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function.

Show that $\int_0^1 x f(xt) dt = \int_0^x f(t) dt$ for all $x \in \mathbb{R}$.

If $\int_0^1 f(xt) dt = 0$ for all $x \in \mathbb{R}$, show that f(x) = 0 for all $x \in \mathbb{R}$

(5 marks)

- Let $f(x) = \int_1^x \sin(\cos t) dt$, where $x \in [0, \frac{\pi}{2})$.
 - (a) Show that f is injective.
 - If g is the inverse function of f, find g'(0). (b)

(6 marks)

- 8. Show that for any $a, y \in \mathbb{R}$, $e^{y} - e^{a} \ge e^{a}(y-a)$.
 - By taking $y = x^2$ in the inequality in (a), prove that

$$\int_0^1 e^{x^2} \mathrm{d}x \ge e^{\frac{1}{3}}.$$

(6 marks)

SECTION B (60 marks)

Answer any FOUR questions from this section. Each question carries 15 marks. Write your answers in the AL(C2) answer book.

9. Given an ellipse

(E):
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

and a point P(h, k) outside (E).

If y = mx + c is a tangent from P to (E), show that $(h^2 - a^2)m^2 - 2hkm + k^2 - b^2 = 0$

(4 marks)

- Suppose the two tangents from P to (E) touch (E) at A and **B** .
 - Find the equation of the line passing through A and B. (i)
 - Find the coordinates of the mid-point of AB. (ii)

(6 marks)

Show that the two tangents from P to (E) are perpendicular if (c) and only if P lies on the circle $x^2 + y^2 = a^2 + b^2$.

(5 marks)

10. Let $f(x) = \frac{\sqrt[3]{x^2}}{x^2 + 1}$, $x \in \mathbb{R}$.

- Evaluate f'(x) for $x \neq 0$. (a) (i) Prove that f'(0) does not exist.
 - Determine those values of x for which f'(x) > 0 and those values of x for which f'(x) < 0.
 - Find the relative extreme points of f(x). (8 marks)
- Evaluate f''(x) for $x \neq 0$. Hence determine the points of (b) (i) inflexion of f(x).
 - (ii) Find the asymptote of the graph of f(x). (4 marks)
- Using the above results, sketch the graph of f(x). (c) (3 marks)

For any non-negative integer n, let

$$I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, \mathrm{d}x \ .$$

Show that $\frac{1}{n+1} \left(\frac{\pi}{4}\right)^{n+1} \le I_n \le \frac{1}{n+1} \left(\frac{\pi}{4}\right)$. (a)

> Note: You may assume without proof that $x \le \tan x \le \frac{4x}{\pi}$ for $x \in [0, \frac{\pi}{4}]$.

- Using (i), or otherwise, evaluate $\lim_{n\to\infty} I_n$.
- (iii) Show that $I_n + I_{n-2} = \frac{1}{n-1}$ for n = 2, 3, 4, ...(8 marks)

(b) For
$$n = 1, 2, 3, ...$$
, let $a_n = \sum_{k=1}^{n} \frac{(-1)^{k+1}}{2k-1}$.

- (i) Using (a)(iii), or otherwise, express a_n in terms of I_{2n} .
- Evaluate $\lim_{n\to\infty} a_n$. (ii)

(7 marks)

- 12. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function satisfying the following conditions for all $x \in \mathbb{R}$:
 - $A. \qquad f(x) > 0 \ ;$
 - B. f(x+1) = f(x);
 - C. $f(\frac{x}{4})f(\frac{x+1}{4}) = f(x) .$

Define $g(x) = \frac{d}{dx} \ln f(x)$ for $x \in \mathbb{R}$.

- (a) Show that for all $x \in \mathbb{R}$,
 - (i) f'(x+1) = f'(x);
 - (ii) g(x+1) = g(x) ;
 - (iii) $\frac{1}{4}[g(\frac{x}{4}) + g(\frac{x+1}{4})] = g(x)$.

(8 marks)

- (b) Let M be a constant such that $|g(x)| \le M$ for all $x \in [0, 1]$.
 - (i) Using (a), or otherwise, show that $|g(x)| \le \frac{M}{2}$ for all $x \in \mathbb{R}$.

Hence deduce that

$$g(x) = 0$$
 for all $x \in \mathbb{R}$.

(ii) Show that f(x) = 1 for all $x \in \mathbb{R}$.

(7 marks)

- 13. Let $L_n = \left\{ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^n x \, dx \right\}^{\frac{1}{n}}$ for any positive integer n.
 - (a) Show that $L_n \le \pi^{\frac{1}{n}}$.

(3 marks)

(b) For n = 1, 2, 3, ..., let $r_n = \cos \frac{1}{2n}$. Find the values of x in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ such that $\cos x \ge r_n$. Hence show that $L_n \ge r_n \left(\frac{1}{n}\right)^{\frac{1}{n}}$.

(5 marks)

- (c) Show that
 - (i) $\lim_{n\to\infty} n^{\frac{1}{n}} = 1 ,$
 - (ii) $\lim_{n\to\infty} L_n = 1.$

(7 marks)

14. (a) f(x) is a continuously differentiable and strictly increasing function on [0, c] such that f(0) = 0.

Let
$$b \in [0, f(c)]$$
.
Define $g(t) = tb - \int_0^t f(x) dx$, $t \in [0, c]$.

(i) Determine the interval on which g(t) is strictly increasing and the interval on which g(t) is strictly decreasing. Hence show that

$$g(t) \leq g(f^{-1}(b))$$
 for all $t \in [0, c]$.

(ii) Using the substitution y = f(x) and integration by parts, show that

$$\int_0^b f^{-1}(y) dy = g(f^{-1}(b)) .$$

(iii) If $a \in [0, c]$, prove the inequality

$$\int_0^a f(x) dx + \int_0^b f^{-1}(x) dx \ge ab .$$

(10 marks)

(b) If a, b, p, q are positive numbers and $\frac{1}{p} + \frac{1}{q} = 1$, prove that

$$\frac{1}{p}a^p + \frac{1}{q}b^q \ge ab.$$

(5 marks)

END OF PAPER