- 13. (a) Let G(x) be a function continuously differentiable on R such that $G'(x) \le a + \delta G(x)$ for every x > 0, where a and b are constants and $b \ne 0$.
 - (i) Show that $\frac{d}{dx} [G(x)e^{-bx}] \le ae^{-bx}$ for every x > 0.
 - (ii) Deduce that for x > 0, $G(x) \le G(0)e^{bx} + \frac{e}{b}(e^{bx} 1)$.

(5 marks)

- (b) Let f(x) be a function continuously differentiable on R such that |f'(x)| ≤ M|f(x)| for every x > 0, where M is a positive constant.
 - (i) Show that

$$|f(x)| \leq |f(0)| + M \int_0^x |f(t)| dt$$

for every x > 0.

(ii) By putting $G(x) = \int_0^x |f(t)| dt$ in (a), or otherwise, show that

$$|f(x)| < |f(0)|e^{Mx}$$

for every x > 0.

(6 mar)

(c) Let h(x) be a function continuously differentiable on R such that $h'(x) = \sin(h(x))$ for every x > 0 and h(0) = 0. Using (b), or otherwise, show that h(x) = 0 for every x > 0. (4 marks

END OF PAPER

90-AL P MATHS PAPER I

HONG KONG EXAMINATIONS AUTHORITY
HONG KONG ADVANCED LEVEL EXAMINATION 1990

PURE MATHEMATICS PAPER I

9.00 am-12.00 noon (3 hours)
This paper must be answered in English

This paper consists of two sections BOTH of which are to be answered.

INSTRUCTIONS FOR SECTION A

- 1. Answer ALL questions. Write your answers in the light yellow AL(C1) answer book.
- Write your Candidate Number, Centre Number and Seat Number in the spaces provided on the cover of the answer book.

INSTRUCTIONS FOR SECTION B

- Answer any FOUR questions. Write your answers in the separate orange AL(C2) answer book.
- 2. Write your Candidate Number, Centre Number and Seat Number in the spaces provided on the cover of the answer book.

SECTION A (40 marks)

Answer ALL questions in this section. Write your answers in the light yellow AL(C1) answer book.

Consider the following system of linear equations:

$$(*) \begin{cases} 3x - y + z = 1 \\ 2x - 4y - 5z = 1 \\ 4x + 2y + 7z = c \end{cases}$$

where $c \in \mathbf{R}$.

Suppose (*) is consistent. Find c and solve (*).

(4 marks)

- 2. (a) Resolve $\frac{1}{x(x+1)(x+2)}$ into partial fractions.
 - (b) Evaluate $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}$. (6 marks)
- (a) If α , β and γ are the roots of $x^3 + Ax^2 + Bx + C = 0$, express $\alpha^2 + \beta^2 + \gamma^2$ and $\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2$ in terms of A, B and C.
 - (b) Find a cubic equation whose roots are the squares of the roots of $x^3 - 3x + 1 = 0$. (5 marks)

Let k and n be non-negative integers.

Prove that (a) $C_k^n = \frac{k+1}{n+1} C_{k+1}^{n+1}$, where $0 \le k \le n$;

(b)
$$\sum_{k=0}^{n+1} (-1)^k C_k^{n+1} = 0 ;$$

(c)
$$\sum_{k=0}^{n} \frac{(-1)^k}{k+1} C_k^n = \frac{1}{n+1} .$$
 (6 marks)

- 5. (a) Show that $\cos 5\theta = 16\cos^5\theta 20\cos^3\theta + 5\cos\theta$.
 - (b) Using (a), or otherwise, solve $16\cos^4\theta 20\cos^2\theta + 5 = 0$ for values of θ between 0 and 2π . Hence find the value of

$$\cos^2 \frac{\pi}{10} \cos^2 \frac{3\pi}{10}$$
 (7 marks)

- 6. Solve the inequality |x-1|-|x+2|>2. (5 marks)
- 7. A sequence $\{a_0, a_1, a_2, \ldots\}$ of real numbers is defined by $a_0 = 0$, $a_1 = 1$ and $a_n = -a_{n-1} + a_{n-2}$ for all n = 2, 3, ...

Show that for all non-negative integers n, $a_n = \frac{1}{\sqrt{5}} (\alpha^n - \beta^n)$, where α , β are roots of $x^2 + x - 1 = 0$ with $\alpha > 0$, $\beta < 0$.

Also prove that $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \beta$. (7 marks) SECTION B (60 marks)

Answer any FOUR questions from this section. Write your answers in the separate orange AL(C2) answer book.

Each question carries 15 marks.

8. (a) Let X and Y be two square matrices such that XY = YX.

Prove that

(i)
$$(X + Y)^2 = X^2 + 2XY + Y^2$$
,

(ii)
$$(X + Y)^n = \sum_{r=0}^n C_r^n X^{n-r} Y^r$$
 for $n = 3, 4, 5, \dots$

(Note: For any square matrix A, define $A^0 = I$.)
(3 marks)

(b) By using (a)(ii) and considering $\begin{pmatrix} 0 & 2 & 4 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}$, or otherwise, find

$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}^{100}$$

(4 marks)

- (c) If X and Y are square matrices,
 - (i) prove that $(X + Y)^2 = X^2 + 2XY + Y^2$ implies XY = YX;
 - (ii) prove that $(X + Y)^3 = X^3 + 3X^2Y + 3XY^2 + Y^3$ does NOT imply XY = YX.

(Hint: Consider a particular X and Y,

e.g.
$$X = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
, $Y = \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix}$).

(8 marks)

60

9. Let w₁ and w₂ be two vectors in R³ satisfying

$$w_1 \cdot w_1 = w_2 \cdot w_2 = 1$$
 and $w_1 \cdot w_2 = 0$.

Let
$$S = \left\{ \alpha_1 w_1 + \alpha_2 w_2 \in \mathbb{R}^3 : \alpha_1, \alpha_2 \in \mathbb{R} \right\}$$
.

(a) Show that $u = (u \cdot w_1)w_1 + (u \cdot w_2)w_2$ for all $u \in S$.

(3 marks)

(b) For any $v \in \mathbb{R}^3$, let $w = (v \cdot w_1)w_1 + (v \cdot w_2)w_2$.

Show that

- (i) $(v w) \cdot u = 0$ for all $u \in S$;
- (ii) $\mathbf{w} \cdot \mathbf{w} \leq \mathbf{v} \cdot \mathbf{v}$, where equality holds if and only if $\mathbf{v} \in S$.

Draw a figure to show the geometrical relationship between $\, \, {\bf v} \,$, $\, {\bf w} \,$ and $\, \, {\bf S} \,$.

(12 marks)

10. Let $f: C \setminus \{0\} \rightarrow C$ be defined by $f(z) = z + \frac{1}{z}$.

(a) If $z = r(\cos \theta + i \sin \theta)$ and $f(z) = u + i\nu$ where r > 0 and θ , $u, \nu \in \mathbb{R}$, express u and ν in terms of r and θ .

(2 marks)

(b) Find and sketch the image of each of the following circles under f:

(i)
$$|z|=1$$
;

(ii)
$$|z| = a$$
, $0 < a < 1$.

(4 marks)

(c) Show that f is surjective but not injective.

(4 marks)

(d) Let $E = \{z \in \mathbb{C} \setminus \{0\} : |z| < 1\}$ and $f_E : E \to \mathbb{C}$ be defined by $f_E(z) = f(z)$ for all $z \in E$. Show that f_E is injective but not surjective.

(5 marks)

90-AL-P MATHS I-5

61

11. Let u_0 and v_0 be real numbers such that $0 < v_0 \le u_0$.

For $n = 1, 2, \ldots$, define

$$u_n = \frac{u_{n-1} + v_{n-1}}{2}$$
 , $v_n = \frac{2u_{n-1} v_{n-1}}{u_{n-1} + v_{n-1}}$.

- (a) (i) Show that $u_n > v_n$ for n = 0, 1, 2, ...
 - (ii) Deduce that $\{u_n\}$ is monotonic decreasing and $\{v_n\}$ is monotonic increasing.
 - (iii) Show that both $\lim_{n\to\infty} u_n$ and $\lim_{n\to\infty} v_n$ exist.

(5 marks)

- (b) (i) Prove that $u_n v_n \le \frac{1}{2^n} (u_0 v_0)$ for n = 0, 1, 2, ...
 - (ii) Prove that $\lim_{n\to\infty} u_n = \lim_{n\to\infty} v_n$.
 - (iii) Evaluate $\lim_{n\to\infty} (u_n v_n)$ and $\lim_{n\to\infty} u_n$.

(10 marks)

- 12. (a) Let p > 1 and $f(x) = x^p px$ for all x > 0.
 - (i) Find the absolute minimum of f(x) on the interval $(0, \infty)$.
 - (ii) Deduce that $x^p 1 \ge p(x 1)$ for all x > 0.

 (4 marks)
 - (b) (i) Let α , β , γ and δ be positive numbers such that $\frac{1}{\alpha} + \frac{1}{\beta} = 1 \text{ and } \gamma + \delta = 1.$

By taking $x=\alpha\gamma$ and $\beta\delta$ respectively, prove that, for p>1, $\alpha^{p-1} \ \gamma^p + \beta^{p-1} \ \delta^p \geqslant 1 \ ,$

where the equality holds if and only if $\alpha \gamma = \beta \delta = 1$.

- (ii) Deduce that, if a, b, c and d are positive and p > 1, then $\left(\frac{a+b}{a}\right)^{p-1}c^p + \left(\frac{a+b}{b}\right)^{p-1}d^p \ge (c+d)^p$.

 (4 marks)
- (c) Suppose $\{a_i\}_{i=1,2,...}$ and $\{b_i\}_{i=1,2,...}$ are two sequences of positive numbers and p>1.

By considering $a = \left(\sum_{j=1}^{n} a_j^p\right)^{\frac{1}{p}}$ and $b = \left(\sum_{j=1}^{n} b_j^p\right)^{\frac{1}{p}}$,

prove that $\left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} b_i^p\right)^{\frac{1}{p}} \ge \left(\sum_{i=1}^{n} \left(a_i + b_i\right)^p\right)^{\frac{1}{p}}$,

where the equality holds if and only if $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \ldots = \frac{a_n}{b_n} = \frac{a}{b}$.

(7 marks)

13. Let $M_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$, $\theta \in \mathbb{R}$.

- (a) Show that
 - (i) $M_{\theta}M_{\phi} = M_{\theta+\phi}$ for all θ , $\phi \in \mathbb{R}$;

(ii) $(M_{\theta})^{-1} = M_{(-\theta)}$ for all $\theta \in \mathbb{R}$ (2 marks)

(b) A relation \sim is defined in \mathbb{R}^2 as follows:

For all (x_1, y_1) , $(x_2, y_2) \in \mathbb{R}^2$,

 $(x_1, y_1) \sim (x_2, y_2)$ iff $M_{\theta} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ for some $\theta \in \mathbb{R}$.

- (i) Show that \sim is an equivalence relation.
- (ii) Sketch the set $S = \{(x, y) \in \mathbb{R}^2 : (x, y) \sim (1, 0)\}$ in \mathbb{R}^2 .

 (4 marks)
- (c) Let \mathbb{R}^2/\sim be the quotient set defined by \sim , and let [x, y] denote the equivalence class containing $(x, y) \in \mathbb{R}^2$.

Let $\mathbf{R} = \{x \in \mathbf{R} : x > 0\}$.

A function $f: \mathbb{R}^2 / \sim \to \mathbb{R}_+$ is defined by $f([x, y]) = \sqrt{x^2 + y^2}$ for all $[x, y] \in \mathbb{R}^2 / \sim$.

- (i) Show that f is well-defined.
- (ii) Show that f is bijective.
- (iii) Sketch the set $T = \{(x, y) \in \mathbb{R}^2 : (x, y) \in f^{-1}(2)\}$.

(9 marks)

END OF PAPER

90-AL P MATHS PAPER II

HONG KONG EXAMINATIONS AUTHORITY
HONG KONG ADVANCED LEVEL EXAMINATION 1990

PURE MATHEMATICS PAPER II

2.00 pm-5.00 pm (3 hours)
This paper must be answered in English

This paper consists of two sections BOTH of which are to be answered.

INSTRUCTIONS FOR SECTION A

- 1. Answer ALL questions. Write your answers in the light yellow AL(C1) answer book.
- 2. Write your Candidate Number, Centre Number and Seat Number in the spaces provided on the cover of the answer book.

INSTRUCTIONS FOR SECTION B

- 1. Answer any FOUR questions. Write your answers in the separate orange AL(C2) answer book.
- 2. Write your Candidate Number, Centre Number and Seat Number in the spaces provided on the cover of the answer book.

64

SECTION A (40 marks)

Answer ALL questions in this section. Write your answers in the light yellow AL(C1) answer book.

- 1. By differentiating the function $\frac{\ln x}{x}$, or otherwise, prove that if $e \le a < b$, then $a^b > b^a$. (5 marks)
- 2. Let *n* be a positive integer and $x \in (0, \frac{\pi}{n+1})$. Show that

$$\cot kx - \cot (k+1)x = \frac{\sin x}{\sin kx \sin (k+1)x}$$

for all k = 1, 2, 3, ..., n.

Deduce that

$$\frac{1}{\sin x \sin 2x} + \frac{1}{\sin 2x \sin 3x} + \dots + \frac{1}{\sin nx \sin (n+1)x} = \frac{\sin nx}{\sin^2 x \sin (n+1)x}.$$
(5 marks)

3. Suppose f(x) and g(x) are real-valued continuous functions on [0, a] satisfying the conditions that f(x) = f(a - x) and g(x) + g(a - x) = K where K is a constant.

Show that
$$\int_{0}^{a} f(x) g(x) dx = \frac{1}{2} K \int_{0}^{a} f(x) dx$$
.

Hence, or otherwise, evaluate $\int_0^{\pi} x \sin x \cos^4 x \, dx$.

(5 marks)

4. (a) Evaluate
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\tan x}\right)$$
.

(b) Evaluate
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 + 4x + 2}} .$$

(6 marks)

5. (a) Evaluate
$$\frac{d}{dx} \int_0^{x^n} f(t) dt$$
, where f is continuous and n is a positive integer.

(b) If
$$F(x) = \int_{x^3}^{x^2} e^{-t^2} dt$$
, find $F'(1)$.

(6 marks)

- 6. Find the equation of the plane containing the line (L): $\frac{x-1}{3} = \frac{y+1}{2} = \frac{z-2}{2}$ and the point A(1, 1, 3). (5 marks)
- 7. (a) Evaluate $\int \ln(1+x^2) dx$.

(b) Let
$$u_n = \frac{1}{n^4} \prod_{k=1}^{2n} (n^2 + k^2)^{\frac{1}{n}}$$
. Prove that $\ln u_n = \sum_{k=1}^{2n} \frac{1}{n} \ln \left(1 + \frac{k^2}{n^2} \right)$.

Hence, or otherwise, find the value of $\lim_{n\to\infty} u_n$.

(8 marks)

SECTION B (60 marks)

Answer any FOUR questions from this section. Write your answers in the separate orange AL(C2) answer book. Each question carries 15 marks.

- 8. (a) Let $I_n = \int_0^1 \frac{x^{n+1}}{(1+x)^2} dx$ for n = 0, 1, 2, ...
 - (i) Find I_0 .
 - (ii) Prove that $\lim_{n\to\infty} I_n = 0$. (5 marks)
 - (b) (i) Prove that

$$\int_0^1 x \left(\frac{1 - (-x)^m}{1 + x} \right) \left(\frac{1 - (-x)^n}{1 + x} \right) dx = \sum_{i=1}^m \sum_{j=1}^n \frac{(-1)^{i+j}}{i+j}$$

for any positive integers m and n.

(ii) Hence evaluate

$$\lim_{n\to\infty} \sum_{i=1}^n \sum_{j=1}^n \frac{(-1)^{i+j}}{i+j} .$$

(10 marks)

9. Consider the hyperbola $(H): xy = c^2$, c > 0.

Let $P(ct_1, \frac{c}{t_1})$ and $Q(ct_2, \frac{c}{t_2})$ be points on (H) where $t_1^2 \neq t_2^2$, $t_1 \neq 0$ and $t_2 \neq 0$.

(a) Find the equation of the straight line joining the points P and Q, and hence, or otherwise, obtain the equations of the tangents to (H) at P and Q respectively.

(3 marks)

- (b) Suppose R is the point of intersection of the tangents at P and Q
 - (i) Find the coordinates of R
 - (ii) Show that if P and Q are moving in such a way that t_1t_2 is constant, then R lies on a straight line passing through the mid-point of PQ.
 - (iii) If P and Q are moving in such a way that PQ always touches the ellipse $4x^2 + y^2 = c^2$, show that R lies on an ellipse with centre at the origin. Also find equation of this ellipse.

(12 marks)

10.

In a polar coordinate system in which the origin is the pole and the positive x-axis is the initial line, a curve Γ is given by the polar equation $r=e^{\theta}$, $0 < \theta < \pi$.

- (a) If a point $P(r, \theta)$ on the curve Γ has rectangular coordinates (x, y), find $\frac{dy}{dx}$ in terms of θ . (3 marks)
- (b) Let $P(r, \theta)$ be any point on Γ with $0 < \theta < \pi$. Prove that the tangent at P always makes an angle $\frac{\pi}{4}$ with the line OP.

(3 marks)

70

- (c) Find the rectangular coordinates and polar coordinates of the point Q on Γ at which the tangent is perpendicular to the x-axis.

 (2 marks)
- (d) (i) Find the area of the shaded region QRS bounded by the tangent at Q, the curve Γ and the positive x-axis.
 - (ii) Find the length of the arc RQ. (7 marks)

11: Let $\{a_n\}$ be a sequence of real numbers such that $0 < a_1 < 1$ and $a_{n+1} = \sin(a_n)$ for all $n = 1, 2, \dots$.

(a) Making use of the fact that $\sin x < x$ for 0 < x < 1, show that $\lim_{n \to \infty} a_n$ exists and find its value.

(7 marks)

(b) (i) Evaluate $\lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^2 \sin^2 x}$.

(ii) Hence find $\lim_{n\to\infty} \left(\frac{1}{a_{n+1}^2} - \frac{1}{a_n^2}\right)$. (5 marks)

(c) It is known that if $\lim_{n\to\infty} x_n$ exists and equals L, then $\lim_{n\to\infty} \frac{\sum_{i=1}^{n} x_i}{n}$ also exists and equals L. Use this fact, or otherwise, to show that $\lim_{n\to\infty} (na_n^2)$ exists and find its value. (3 marks)

12. Let $f(x) = (2x - 1)x^{\frac{2}{3}}$ for $x \in \mathbb{R}$.

- (a) Find f'(x) and f''(x) for $x \neq 0$. (2 marks)
- (b) Show that f'(0) does not exist. (1 mark)
- (c) Determine those values of x such that
 - (i) f'(x) = 0, (ii) f'(x) > 0, (iii) f'(x) < 0,
 - (iv) f''(x) = 0, (v) f''(x) > 0, (vi) f''(x) < 0. (3 marks)
- (d) Find the relative extrema and the points of inflexion of the function.

 (4 marks)
- (e) Show that the graph of the function has no asymptotes. (2 marks)
- (f) Using the results of (a), (b), (c), (d) and (e), sketch the graph of the function. (3 marks)

90-AL-P MATHS II-7

71

13. Let $f(x) = \frac{1}{\sqrt{1+x^2}}$ for all $x \in \mathbb{R}$.

Let $f^{(n)}$ denote the n^{th} derivative of f for n = 1, 2, ...and $f^{(0)} = f$.

(a) Prove that

$$(1 + x^2) f'(x) + x f(x) = 0.$$

$$(1+x^2)f^{(n+1)}(x) + (2n+1)xf^{(n)}(x) + n^2f^{(n-1)}(x) = 0$$

for n = 1, 2, ...

(2 marks)

- (b) Define $P_n(x) = (1 + x^2)^{n + \frac{1}{2}} f^{(n)}(x)$ for n = 0, 1, 2, ...
 - (i) For n = 0, 1, 2, ..., prove that

$$P_{n+1}(x) = (1+x^2)P_n'(x) - (2n+1)xP_n(x)$$
.

Deduce that $P_n(x)$ is a polynomial of degree n with leading coefficient $(-1)^n n!$.

(ii) For n = 1, 2, ..., show that

$$P_{n+1}(x) + (2n+1)x P_n(x) + n^2(1+x^2) P_{n-1}(x) = 0$$
 and find $P_n(0)$.

(iii) For n = 1, 2, ..., prove that

$$P_{n}'(x) = -n^{2} P_{n-1}(x)$$

and deduce that, for r = 1, 2, ..., n,

$$P_n^{(r)}(x) = (-1)^r (n(n-1) \dots (n-r+1))^2 P_{n-r}(x)$$
.

(iv) Hence show that $P_n(x)$ is either an odd function or an even function for n = 1, 2, ...

(Note:
$$\frac{P_n^{(r)}(0)}{r!}$$
 is the coefficient of x^r in $P_n(x)$.)

(13 marks)

END OF PAPER

91-AL **PMATHS** PAPER I

HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION 1991

PURE MATHEMATICS PAPER I

9.00 am-12.00 noon (3 hours) This paper must be answered in English

This paper consists of two sections BOTH of which are to be answered.

INSTRUCTIONS FOR SECTION A

- 1. Answer ALL questions. Write your answers in the light yellow AL(C1) answer
- Write your Candidate Number, Centre Number and Seat Number in the spaces provided on the cover of the answer book.

INSTRUCTIONS FOR SECTION B

- 1. Answer any FOUR questions. Write your answers in the separate orange AL(C2) answer book.
- Write your Candidate Number, Centre Number and Seat Number in the spaces provided on the cover of the answer book.