89-AL
P MATHS
PAPER |

Candidate Number

Seat Number

HONG KONG EXAMINATIONS AUTHORITY

HONG KONG ADVANCED LEVEL EXAMINATION
1989

PURE MATHEMATICS PAPER |

9.00 sm-12.00 noon (3 hours)
This paper must be answered in English

mmwdmmmdwﬁmwk
amawered.

INSTRUCTIONS FOR SECTION A

1. Answer ALL q jons. Write your answers in the
spaces provided in this question booklet.

4

and

2. Write your Car didat ber, Centre
Seat Number in the spaces provided on this cover.

3. Graph paper and supplementary sheets will be sup-
plied on request. Write your Candidate Number on

each sheet and fasten them with stnng INSIDE this
booklet.

INSTRUCTIONS FOR SECTION B

Answer any FOUR questions. Write your answers in the
separale answer book provided.

Checker’s Initial

89-ALP MATHS -1

34

)

SECTION A (40 marks)
Asswer ALL questions in this section.

1
1. Ln,q.( o1 5= 1o 2
o1 o’ -23_1)'

a) F T
(8) Find 4BT and BT4 , where BT denotes the transpose of B

Poge total

(b) For each of the ma
trices ABT . BT,
and. B'4 , determine whether it is invertible, and find its

inverse if it exists.

(5 marks)
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Poge toret

Page tetel
integer. Making use of the
2. Let a snd b betwopoﬂtlvenumbeumdlet n be a positive intege - x[ l’i— l-ll.
X e V " x

(b) Let A be a positive constant.
‘kﬁ (.k + bl)], > (.n.l ’bnu)n .
.1

f i kg etk herwise, show that
equality kl]l(aktbk)'kl.ll(a"“ +b ), or ot

lim L]
"*"nnu.uuz—_u,,.

Hence, or otherwise, show that lim n

naom -
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s.
Find the constants A nd k mchdunhelystemofupaumt
4. I

From the figures 1, 2, 3, 4, S, 6 and 7, how many 4-digit numbers can be formed with no ) !
figure being used more than once in each number? :
Of these 4-digit numbers formed, how many are divisible by 3?
\x+y¢3z'k

(6 marks)
ax+hy—-z21
6x+Ty+52>2

has infinitely many solutions.

39




positive integer 1,

Let 2=cosf +isin0 . By expressing cos § in terms

cos" 0 = -11'7 i C," cos(n - e
re0

Pags ot

of x,uotbendae.iuowthnfwny

7.

Poge totnt

Let S be s relation defined on the set C of complex numbers by 2 Sz’ iff Re(z) < Re(z’) ,
where Re(2z) denotes the real part of z.

(#) (D Show that S Iis both reflexive and transitive.

(i) Indicate theset A= {z€C: 25(1+2))] on the Argand plane.
(b) Arelation ~ sdefinedon C by z~z' #f 28z° and 2'Sz.

() Show that ~ is sn equivalence relation.

(i) Indicate the set B= {r €C: 2~ (1+2)} on the Argand plane.




SECTION B (60 warks)
Am-yFqum-ho-ﬁm
Mqulﬂuarhlsm.
Yunyntﬁ&hpndthqut_iolm

10.
®) B:'_tkmmiduthehutvdu of the function fx) = et - .
' >x fordl xER. x, ot otherwise, show that
detaching .n-loa:huumm
" " (b) Let ¢, ,4y,...,0, and b‘ b » (3 marks)
+ o 1ibs,..., :
8. () Let S be a square matrix such that s*+S=0. ' 4 . be positive numbers,
z -
coa§)S? for 6ER. Show that ,{(i..b,) "}> e

Define a matrix A(0) = - (sin0)S + (1 -

For 8, ¢ €ER, show that
Hence, na
@ AOVAW) =AC+9), “mm"“""""“‘,iif“"'““,’"' o< fi 5.
=1 fe1

@ [A9)]* = A(n6) for my positve fawger o,
(4 marks
© Udutbmhln(b),i:wﬂmfornypomlwnmbenn '3 )
1,8 ,...,4,,

() the inverse of A(0) exists (7 marks)

ok | [Be]*<t2o.

. 1
® T ﬂs © Al Hence, or otherwise, show that
R U Y
F Ll ]
- -'x;_ #]>°"'h“‘ ""%’-‘Jl-,.
(@ Vedfy that T +T=0. (6 ko)

(i Um(o.aw,ewmmfdmlhmfum I+aT+ 8T (where a,BER):

m g7y, 11. (@) Prove that for any positive Int
@ U+ T+ T (8 marks) teger . there exist unique positive integers a,, and b, such that
’ (\ﬁ*l)"'u,,\/i+b"_
9. Given an integer 2> 2, consider the equation [ IS Y ——— o Show also that
(0] mnm(o)h-mdyu-mlmtunuoumdnomlmnfnkm. @ b, isodd forall n,
(5 marks)
@) o, s oddif n isodd,
(®) Lot &y, @2, .-.2 8 be the roots of (*) .
— (5 marks)
root of (¢
(© Showthatif o isarootof (), tee o s aho 4 1% . (®) For a, and b, s determined in (a), show that
Duduce tat {as 1o} ® (3.8 a) O VI=1) =1 (,Vi-3,),
() Prove that "f:l.'t is.real for any integer k . @ b, >e,>2™ .
Braluate Heace, or otherwise, show _2
@ “lt'\ﬁﬁ<6;}mmdwdmte um%,
i-L, n>o0d,
) e, (10 marks)

[0)] $ o
rel
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. H1-2)
12. The mapping r:enl-1} 2 C\}-1] b defined by 22 .1__-—1‘ ~
4 marks)
(a) Show that f is bijective. )
¢ the following:
(b) Find and sketch the image, under f , of each o
(1) the upper half of the imaginary axis (including the origin),
(11 marks)

() the positive teal axis.

€R’ nd
= aT(x) + BT(y) forany X,
13. Let T:R' > R? be a mapping satisfying T(ax * fy)

«a,BER.

() Show that

@ TO=0, ew
(ax + By + 1) 7 oT(x) + OT(Y
d 2 are tincarly dependent, then

jii) i€ x .y an
) linearly dependent.

)+ yT(z) for any a,p,yER and x,Y
Gy T T, T(y) T(z) are also

(5 marks)

(b) Prove that the following three statements aré eq\livalenf:

(1) T isam injective mapping.

and z are any three linearly inde:
ty independent.

pendent vectors in R? , then T(x), TO)

" x,y
@ and T(z) sre linexs

o T(er) s T(e,) and T(ey) wre linear
and e = (0,00
prove (l) - (‘2) - (3) - (l)‘

ty independent, where €3 = (1,0, 0}, €2 % .19

(10 marks)
{Hint: You may

END OF PAPER
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= 112}
12. The mapping feni-) »C\ -t} b defined by f2) _.(_-—l‘ =
4 ks
(@) Show that f is Dijective. ¢ marie)
11 llo .
l (b) Find and sketch the image, under f , of each of the following
(1) the upper half of the imaginary axis (including the origin),
(11 marks)

(1) the positive real axis.

€ R® and
T(y) forsny X, y
Tax + By) = aT() + F
. R® - R® be s mapping satisfying
13. let T:R" >

a,PER.
@) Show that

@ TO=0.
Tax + By + 12) 7 oT(x) + #TUY

L1ER®
)+ yT(2) for any a.B.7ER and x,¥
. nd T(z) are also
@@y if x.y and z are tinearly dependent, then T(x), T(y) (

S marks)
linearly dependent. (

t:
(b) Prove that the following three statements are equlwlen'

() T isen injective mapping.

9) M x,y and z M€ any three linesrly independe
@ and i‘(:) are Bnessly independent.

nt vectors in R* , then (x) , T(y)

=(1,0,0),¢ =0, 1,0
Gy T(e)). T(er) and T(es) are linearly independent, where e, = ( 1

1)
and ¢3 = (0,0, 1) .

(Hint: You may prove (1) = () = @) = (] (10 marks)
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SECTION A (40 marks)

M'Al.l.thtﬂlluﬁo-. ; 2. Enhm/+
x4

dx .

L et ()= G for x>0 Find the least value of oF
x (5 marks)

Honce show that > J
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Poge toty

4. (@ meomordnmmdbydnm,y’-xmdx‘-y
0] Camuhthlckwholﬂum Y ncosx, whew 0gxg2
i

x
3. Let l(x)-/ sinVFidr for x>0,
1

x

’i
(2) Show thet qx)-§/ sin Vu du .
1

™) Fsd (1), (S mark)

—— e —

48 B0-ALP MATHS 11_g
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|

Page toral
Page totat

my(l*”)'l' 6. the origin
Consider Plnbohl‘:y’-l+2x. Le
xmummwm«-mmmu:yxﬁ. 70 the pos, sad the st

) e
Show thet for #3 2, (1 +x*)y® + 200 ™V 4 n(n - 1)y *D = 0, where y© -
(@) Fmdtbepolueqnaﬁonofthecuminmefm r=R9).

k
®ed} for k>1.
md y rr i
| S0 fo 0. ® ) (0] PQ ﬁachordofleumg,mthrwgb O md with p Iyln‘hthﬁmquadnnt.
duate Fmdthpqlucoordintuoi P ad g,

s.
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Page torel

7. Evaluate

1
*
@ Jm ate + WIT

® W &l

noees kot A2 &

e T T T T R

— e
e I
——————— .
——— e

[ ——e e -
—_— — S
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SECTION B (60 warks)

Arswer any FOUR questions from this section.
Esch question carries 1S marks,

Yw—ymthbymdthqmﬂupnbyduuﬁnn.&—llnlllleendol&eex.uhuﬁon.

'

8. For any non-negative integer n , lot l"-/ x"e** dx , where ¢ i3 a non-zero constant.
*

(2) Evaluate 7, end express 1, i terms of Iy, for a3 1,

(4 marks)
(b) For m > 1, show that

ne 1
o n!

" - 4 - -
Ul eet[l s ’3:|Lﬂ_n(~__'l.’)ﬁ‘.45_ru_)| .

l,, =
(6 marks)
2
(c) Using the above resuits, or otherwise, evaluate /‘ (1%)’ du .
]

(5 marks)

Consider the curve defined by the parametric equations

x=—t _
140

2
y-—L-“,, T

Let P(r) be the point on the curve

sponding to the p 1.
Show that the equation of the chord jolning the points Kr,) and LK
Gl — =G s (=10 +4))y + 10, =0,

Deduce the equation of the tangent at the point P(7) .

(4 marks)
() Let K1y), Aty) and Pry) be three distinet points on the curve, Show that s necessary
and sufficient condition for these three points to

be collinear is 1,151y = ~1 .

(4 marks)

Show that when %0 or *1, the tangent at the point K1) intemsects the curve again st
another point K(7) , where T = -71,- .

©

Hence, or otherwise, deduce that if the tangents at three collinear points on the curve intersect
the curve again, then these points of intersection are also collinear.

(7 matks)

8D-ALP MATHS JI-9
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10.

1l

x? + .
Consider the function (x)-!‘-(xT-;-%l,xER

@ O Show that y = X htheonlyuynwtoudthcgnphof f(x) .
(i) Show that f(x) does not have any extreme value.

Find all the points of inflexion of the graph of fix) . (10 rarka)

() Uutheabovenﬂluto:huhthep:phsof
» fx).

(i) f(|x)) for x € R. (5 mark)

i iy diffe iable on the interval {0, 1} .

Lot fx) bes
1

=1 %k —/ f(x) dx .
For sy integer a>1,lt E, "kZ:‘f(n) A

b b
- a)f’ = b) - Kx)] dx .
0] lf0<a<b<l,|hwthn/‘(x a) £'(x) dx /' (&) 2

LA .
(%) Verify that E,'é‘ I L;_L[”i’ #(x)] dx

l-knuns(u)toshow!htlfmexim:puiﬂvecmmm M such that |f'(x)| <M
for every x € {0, 1] , then |En|<-2i". (5 mark)

(©) Llet k be any integer with 1 <k<n. Show that

.1
i k = f__—
[ Loy - aolex = =

for some E,‘E[-"—";—l.—:-].
Deduce that lim_nE, = 1 (1) - A0 .
n=»>e0

f the interval
[Hint: In proving (¢), you may sssume that if g(x) and h(x) are continuous functions on

d
d
= ) dx foe
e d] . md if h(x)>0Vx€lc,dl,then lc gx) h(x) dx = 8xo) L x

some xo € [c, d1 ] (8 mark)

80-AL-P MATHS HI—t0

IR

The position vector of a point R(x, y, z) is given by r=xi+yj+zk.
In the figure, Ro(Xo,Yo0,20) isapointontheplane #:r.n=p .

The line 2:r=ro+ta, t &R, where ro = xoi+yoj+zok , passes through R, and
does not lie on 7 .

Show that the projection of £ on  is given by !':r=r°+t(a—~:'—:l) , LER.

(6 marks)
x=-~1-2t
(b) Consider the lines £, : y=3+3: ,1ER
z=1+¢
x=2-8¢
and £, : y=19¢ ,tER
z2=2+4:

and the plane #, : dx+y—-2z-4=0.

()) Let P; and P, be the points at which x, intersects 2, and 2, respectively.

Find P, and P, and show that the line segment PP, is perpendicular to both £,
and £, .

(i) Show that the projections of 2, and 2; on x, are parallel
(9 marks)

8%-ALP MATHS I1-11
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L ly diff jable on R such that G'(x) < a ¢+ bG(x)
o :‘Muoe(r;) xb;.o where ¢ and b are constants and b%0.
or f

-bx -bx for every x 2 0.
() Show that %lG(x)e } < ae* for

bx 1),
() Deduce that for x>0, c(x)<o(o)¢" 31 )

(5 marks)
1y differentisble on R such that THEIIRS Mif(x)| for
be # functh
® 2ry‘(:)> 0, where M isa positive constant.
(i) Show that
x
170 < 190 +MI. LOILY
forevery x> 0.
; how that
= A njdr in (a), or otherwise, s
(1) By putting G(x) L |
o) < 1o
(6 marks)
forevery x> 0.
. P
s sy a2 1P S
© l"(X)>t(’; Iand wWo)y=0. Using (b), or otherwise, show tha . )
every X

END OF PAPER
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