89-AL P MATHS PAPER I

HONG KONG EXAMINATIONS AUTHORITY
HONG KONG ADVANCED LEVEL EXAMINATION

Candidate Number	
Centre Number	
Seat Number	

PURE MATHEMATICS PAPER I

9.00 am-12.00 noon (3 hours)
This paper must be answered in English

This paper consists of two sections BOTH of which are to be

INSTRUCTIONS FOR SECTION A

- Answer ALL questions. Write your answers in the spaces provided in this question booklet.
- Write your Candidate Number, Centre Number and Seat Number in the spaces provided on this cover.
- Graph paper and supplementary sheets will be supplied on request. Write your Candidate Number on each sheet and fasten them with string INSIDE this booklet.

INSTRUCTIONS FOR SECTION B

Answer any FOUR questions. Write your answers in the separate answer book provided.

Question Number				arker' Onl			Examiner's Use Only Examiner No.			
			Marks			L	Ma	rks	1	
	1		ı		i !		L		<u> </u>	4
	2				<u> </u>		L		<u> </u> 	4
	3	1							<u> </u>	_
T	4	1			-				<u> </u>	_
1	5						$\ $		<u> </u>	
1	6					_	$\ $		-	_
\f	7								<u> </u>	_
t	Total	_						L		_

Check	er's Use Only
Total Marks	
Checker's Initial	

34

89-ALP MATHS 1-2

SECTION A (40 marks) Answer ALL questions in this section.	L
1. Let $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 2 \\ -2 & 3 & -1 \end{pmatrix}$.	
(a) Find AB^T and B^TA , where B^T denotes the transpose of B .	
(b) For each of the matrices AB^T and B^TA , determine whether it is invertil inverse if it exists.	ble, and find its
	(3 marki
	

	and b be two positive numbers and let n be a positive integrated where	er. Making use of the
equality	$y = \prod_{k=1}^{n} (a^k + b^k) = \prod_{k=1}^{n} (a^{n+1-k} + b^{n+1-k})$, or otherwise, and	that
	$\prod_{i=1}^{n} (a^k + b^k)^2 > (a^{n+1} + b^{n+1})^n.$	(5 marks)
		The second secon
·		

SO-AL-P MATHE 1-3

3. (a) Evaluate $\lim_{x \to \infty} x \left[\sqrt{1 + \frac{1}{x}} - \sqrt{1 - \frac{1}{x}} \right]$.	
(b) Let h be a positive constant.	
Evaluate $\lim_{n\to\infty} \frac{n}{1+nh+\frac{n(n-1)}{2}h^2}$	
Hence, or otherwise, show that $\lim_{n\to\infty}\frac{n}{(1+h)^n}=0$.	(5 marks)

. Find the constants h and k such that the system of equations	
v + v + 3z = k	
$\begin{cases} x+y+3z=k\\ 4x+hy-z=1\\ 6x+7y+5z=2 \end{cases}$	
4x + ny = 1	
has infinitely many solutions.	(6 marius)

SO-ALP MATHS 1-5

5.	From the figures 1, 2, 3, 4, 5, 6 and 7, how many 4-digit numbers can be formed with no figure being used more than once in each number?
	Of these 4-digit numbers formed, how many are divisible by 3?
	(6 m
_	
	3
_	
_	
_	
_	

-

38

89-AL-P MATHS I-6

Let $z = \cos \theta + i \sin \theta$. By expressing $\cos \theta$ in terms of z , or otherwhostive integer n ,	
$\cos^n \theta = \frac{1}{2^n} \sum_{r=0}^n C_r^n \cos(n-2r) \theta.$	(6 merks)

MALP MATHS 1-7

	•	(i)	Show that S is both reflexive and transitive.
		(H)	Indicate the set $A = \{z \in \mathbb{C} : z \in \mathbb{C} $
,			lation \sim is defined on C by $z \sim z'$ iff $z \otimes z'$ and $z' \otimes z$.
		(1)	Show that \sim is an equivalence relation.
		(H)	Indicate the set $B=\left\{z\in\mathbb{C}:\ z\sim(1+2t)\right\}$ on the Argand plane. (7 marks
-			
	-		
	 -		

SECTION B (60 marks)

Answer any FOUR questions from this section.

You may retain this part of the question paper by detaching pp.8-10 at the end of the examin

8. (a) Let S be a square matrix such that $S^3 + S = 0$.

Define a matrix $A(\theta) = I - (\sin \theta)S + (1 - \cos \theta)S^2$ for $\theta \in \mathbb{R}$.

For θ , $\phi \in \mathbb{R}$, show that

- (i) $A(\theta)A(\phi) = A(\theta + \phi)$
- (ii) $[A(\theta)]^n = A(n\theta)$ for any positive integer n
- (iii) the inverse of $A(\theta)$ exists.

(7 marks)

(b) Lat
$$T = \begin{pmatrix} 0 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & 0 \end{pmatrix}$$
.

- (i) Verify that $T^3 + T = 0$.
- (ii) Using (a), or otherwise, express the following in the form $I+\alpha T+\beta T^2$ (where α , $\beta\in\mathbb{R}$):
 - (1) $(I+T+T^2)^{-1}$.
 - (2) $(I+T+T^2)^{1989}$

(8 marks)

- 9. Given an integer $n \ge 2$, consider the equation $x^n + x + 1 = 0$
 - (a) Show that (e) has exactly one real root if n is odd and no real root if n is even. (5 marks)
 - (b) Let α_1 , α_2 , ..., α_n be the roots of (*).
 - (i) Show that if α is a root of (*), then $\overline{\alpha}$ is also a root of (*).

Deduce that $\{\alpha_1, \alpha_2, \ldots, \alpha_n\} = \{\overline{\alpha}_1, \overline{\alpha}_2, \ldots, \overline{\alpha}_n\}$.

- (ii) Prove that $\sum_{r=1}^{R} \alpha_r^k$ is real for any integer k.
- (iii) Braluate
 - (1) $\frac{\pi}{\Sigma} \frac{1}{\alpha_s}$,
 - (2) $\Sigma \alpha_r^{n-1}$

(10 marks)

42

10. (a) By determining the least value of the function $f(x) = e^{x-1} - x$, or otherwise, show that $e^{x-1} \ge x$ for all $x \in \mathbb{R}$

(3 marks)

(b) Let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n be positive numbers.

Show that
$$e^{\left\{\left(\sum\limits_{i=1}^{n}\frac{a_i}{b_i}\right)-n\right\}} > \prod\limits_{i=1}^{n}\frac{a_i}{b_i}$$
.

Hence, or otherwise, show that if $\sum_{l=1}^n \frac{a_l}{b_l} \le n$, then $\prod_{l=1}^n a_l \le \prod_{l=1}^n b_l$.

(4 marks)

(c) Using the result in (b), show that for any positive numbers a_1 , a_2 , ..., a_n ,

$$\left[\prod_{i=1}^n a_i\right]^{\frac{1}{n}} < \prod_{i=1}^n \sum_{i=1}^n a_i.$$

Hence, or otherwise, show that

$$\sum_{i=1}^{n} \left[\frac{1}{a_i} - \frac{1}{m} \right] \ge 0 \text{ , where } m = \frac{1}{n} \sum_{i=1}^{n} a_i \text{ .}$$

(8 marks)

11. (a) Prove that for any positive integer n, there exist unique positive integers a_n and b_n such that

$$(\sqrt{2}+1)^n=a_n\sqrt{2}+b_n.$$

- (i) b, is odd for all n.
- (ii) a is odd if n is odd.

(5 marks)

(b) For a_n and b_n as determined in (a), show that

(i)
$$(\sqrt{2}-1)^n = (-1)^{n+1} (a_n \sqrt{2}-b_n)$$
,

(ii) $b_n > a_n > 2^{n-1}$.

Hence, or otherwise, show that $\left|\sqrt{2} - \frac{b_n}{a_n}\right| < \frac{1}{(2^{2n-1})}$ and evaluate $\lim_{n \to \infty} \frac{b_n}{a_n}$.

(10 marks)

- 12. The mapping $f: \mathbb{C}\setminus \{-1\} \to \mathbb{C}\setminus \{-\ell\}$ is defined by $f(z)=\frac{i(1-z)}{1+z}$.
 - (a) Show that f is bijective.

(4 marks)

- (b) Find and sketch the image, under f, of each of the following:
 - (i) the upper half of the imaginary axis (including the origin),
 - (ii) the positive real axis.

(11 marks)

- 13. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a mapping satisfying $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for any $x, y \in \mathbb{R}^3$ and $\alpha, \beta \in \mathbb{R}$.
 - (a) Show that

 - (ii) $T(\alpha x + \beta y + \gamma z) = \alpha T(x) + \beta T(y) + \gamma T(z)$ for any α , β , $\gamma \in \mathbb{R}$ and x, y, $z \in \mathbb{R}^3$.
 - (iii) if x, y and z are linearly dependent, then T(x), T(y) and T(z) are also linearly dependent.

(5 marks)

- (b) Prove that the following three statements are equivalent:
 - (1) T is an injective mapping.
 - (2) If x, y and z are any three linearly independent vectors in \mathbb{R}^3 , then T(x), T(y)and T(z) are linearly independent.
 - (3) $T(e_1)$, $T(e_2)$ and $T(e_3)$ are linearly independent, where $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$ and e3 = (0, 0, 1) .

[Hint: You may prove (1) → (2) → (3) → (1).]

(10 marks)

END OF PAPER

89-AL PMATHS PAPER II HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION 1989

Candidate Number Centre Number Seat Number

Marker's Use

Only

Marker No.

Marks

Question

Number

2

3

5

Total

Examiner's Use

Only

Examiner No.

Marks

PURE MATHEMATICS PAPER II

2.00 pm-5.00 pm (3 hours) This paper must be answered in English

This paper consists of two sections BOTH of which are to be

INSTRUCTIONS FOR SECTION A

- 1. Answer ALL questions. Write your answers in the spaces provided in this question booklet.
- 2. Write your Candidate Number, Centre Number and Seat Number in the spaces provided on this cover.
- 3. Graph paper and supplementary sheets will be supplied on request. Write your Candidate Number on each sheet and fasten them with string INSIDE this booklet.

INSTRUCTIONS FOR SECTION B

Answer any FOUR questions. Write your answers in the separate answer book provided.

Checker's Use Only				
Total Marks				
Checker's Initial				

89-ALP MATHS II-1

- 12. The mapping $f: \mathbb{C}\setminus \{-1\} \to \mathbb{C}\setminus \{-i\}$ is defined by $f(z)=\frac{i(1-z)}{1+z}$.
 - (a) Show that f is bijective.

(4 marks)

- (b) Find and sketch the image, under f, of each of the following:
 - (i) the upper half of the imaginary axis (including the origin),
 - (ii) the positive real axis.

(11 marks)

- 13. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a mapping satisfying $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for any $x, y \in \mathbb{R}^3$ and $\alpha, \beta \in \mathbb{R}$.
 - (a) Show that

 - (ii) $T(\alpha x + \beta y + \gamma z) = \alpha T(x) + \beta T(y) + \gamma T(z)$ for any α , β , $\gamma \in \mathbb{R}$ and x , y , $z \in \mathbb{R}^3$,
 - (iii) if x, y and z are linearly dependent, then T(x), T(y) and T(z) are also (5 marks) linearly dependent.
 - (b) Prove that the following three statements are equivalent:
 - (1) T is an injective mapping.
 - (2) If x, y and z are any three linearly independent vectors in \mathbb{R}^3 , then T(x), T(y)and T(z) are linearly independent.
 - (3) $T(e_1)$, $T(e_2)$ and $T(e_3)$ are linearly independent, where $e_1=(1,0,0)$, $e_2=(0,1,0)$ and e3 = (0, 0, 1) .

[Hint: You may prove $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$.]

(10 marks)

END OF PAPER

89-AL **PMATHS** PAPER II HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION 1989

PURE MATHEMATICS PAPER II

2.00 pm-5.00 pm (3 hours) This paper must be answered in English

This paper consists of two sections BOTH of which are to be answered.

INSTRUCTIONS FOR SECTION A

- 1. Answer ALL questions. Write your answers in the spaces provided in this question booklet.
- 2. Write your Candidate Number, Centre Number and Seat Number in the spaces provided on this cover.
- 3. Graph paper and supplementary sheets will be supplied on request. Write your Candidate Number on each sheet and fasten them with string INSIDE this booklet.

INSTRUCTIONS FOR SECTION B

Answer any FOUR questions. Write your answers in the separate answer book provided.

Checker's Use Only		
Total Marks		
Checker's Initial		

Candidate Number

Centre Number

Seat Number

Question

Number

3

5

7

Total

Marker's Use

Only

Marker No.

Marks

Examiner's Use

Only

Examiner No.

Marks

89-ALP MATHS II-1

SECTION A (40 marks) Answer ALL questions in this section.	
1. Let $f(x) = \frac{e^x}{x^x}$ for $x > 0$. Find the least value of $f(x)$.	
Hence show that $e^{\pi}>\pi^{e}$.	(5 mirls)
	<u> </u>

Evaluate $\int \frac{1}{x^3 + 1} \mathrm{d}x$.			(5 mar)
			-
· · · · · · · · · · · · · · · · · · ·			
	···.		
	·		

		- 	

47

3,			sin √xî d≀						
	(a)	Show that	$f(x) = \frac{1}{x} \int_{1}^{x}$	x² sin √u đu					
	(b)	Find f'(1)	•						(5 marks)
									
		·							
					* .			· · · · · · · · · · · · · · · · · · · 	
							· · ·		
		<u> </u>							
		 -						·	
									 '
_									

BOALP MATHE 11-4

4. (a) Find the area of the region bounded by the parabolas $y^2 = x$ and $x^2 = y$.
(b) Compute the arc length of the curve $y = \ln \cos x$, where $0 \le x \le \frac{\pi}{4}$.
4 ' (6 m

5.	Let $y(1+x^2)=1$. Show that for $n \ge 2$, $(1+x^2)y^{(n)} + 2nxy^{(n-1)} + n(n-1)y^{(n-2)} = 0$, where $y^{(0)} = y$,	for $n \ge 2$, $(1 + x^2)y^{(n)} + 2nxy^{(n-1)} + n(n-1)y^{(n-2)} = 0$, where $y^{(0)} = y$.								
	and $y^{(k)} = \frac{d^k y}{dx^k}$ for $k > 1$.	_								
	Hence evaluate $y^{(n)}(0)$ for $n > 0$. (6 marks))								
		•								
		•								

-										
_										

SOALP MATHE H-6

(a)	nsider ti tis be t Find	the pol	ar equi	ttion /	of the	coordin	in the	tem.				,	me bos	itive
(b)	BO .		•		OI 1336	critie	in the	form	r = f(6	7) .				
(4)	Find :	a cho	rd of l	ength	8 3 , pe	esing t	through	0 .	nd with	. P	lvine i	n sha .	œ	
	· mid (he pola	r coor	dinates	of .	P and	١ġ.				., .	n une :	mat do:	idrant.
 														(6
 													·	_
 				_		-								
 		_												
										_				
 	-													

Evaluate	
(a) $\lim_{h\to 0} \left[\ln\left(e+h\right)\right]^{\frac{1}{h}}$.	
	(7 marks)
	man ellergenesis par 148

SECTION B (60 marks)

Answer any FOUR questions from this section.

Each question carries 15 marks.

You may retain this part of the question paper by detacking pp.8-11 at the end of the examination,

- 8. For any non-negative integer n, let $I_n = \int_a^1 x^n e^{ax} dx$, where a is a non-zero constant.
 - (a) Evaluate I_0 and express I_n in terms of I_{n-1} for n > 1.

(4 marks)

(b) For n > 1, show that

$$I_n = \frac{(-1)^{n+1} n!}{a^{n+1}} + e^a \left[\frac{1}{a} + \sum_{r=1}^n \frac{(-1)^r n(n-1) \dots (n-r+1)}{a^{r+1}} \right] .$$

(6 marks)

- (c) Using the above results, or otherwise, evaluate $\int_1^{e^2} \left(\frac{\ln u}{u}\right)^3 du$. (5 marks)
- 9. Consider the curve defined by the parametric equations

$$\begin{cases} x = \frac{t}{1+t^2} \\ y = \frac{t^2}{1+t^2}, \ t \neq -1 \end{cases}$$

Let P(t) be the point on the curve corresponding to the parameter t.

(a) Show that the equation of the chord joining the points $P(t_1)$ and $P(t_2)$ is

$$(t_1^2 t_2^2 - t_1 - t_2)x + [1 - t_1 t_2(t_1 + t_2)]y + t_1 t_2 = 0$$

Deduce the equation of the tangent at the point P(t).

(4 marks)

(b) Let $P(t_1)$, $P(t_2)$ and $P(t_3)$ be three distinct points on the curve. Show that a necessary and sufficient condition for these three points to be collinear is $t_1 t_2 t_3 = -1$.

(4 marks)

(c) Show that when $t \neq 0$ or ± 1 , the tangent at the point P(t) intersects the curve again at another point P(T), where $T = -\frac{1}{4^2}$.

Hence, or otherwise, deduce that if the tangents at three collinear points on the curve intersect the curve again, then these points of intersection are also collinear.

(7 marks)

53

- 10. Consider the function $f(x) = \frac{x(x^2 + 9)}{x^2 + 1}$, $x \in \mathbb{R}$.
 - (a) (i) Show that y = x is the only asymptote of the graph of f(x).
 - (ii) Show that f(x) does not have any extreme value.
 Find all the points of inflexion of the graph of f(x). (10 marks)
 - (b) Use the above results to aketch the graphs of
 - (i) f(x)
 - (ii) f(|x|) for $x \in \mathbb{R}$.

(5 marks)

11. Let f(x) be a function continuously differentiable on the interval [0, 1].

For any integer n > 1, let $E_n = \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n}) - \int_0^1 f(x) dx$.

- (a) If $0 \le a \le b \le 1$, show that $\int_a^b (x-a) f'(x) dx = \int_a^b [f(b) f(x)] dx$. (2 marks)
- (b) Verify that $E_n = \sum_{k=1}^n \int_{\frac{k}{n-1}}^{\frac{k}{n}} [f(\frac{k}{n}) f(x)] dx$.

Hence use (a) to show that if there exists a positive constant M such that $|f'(x)| \le M$ for every $x \in [0, 1]$, then $|E_n| \le \frac{M}{2n}$. (5 marks)

(c) Let k be any integer with $1 \le k \le n$. Show that

$$\int_{\frac{k-1}{n}}^{\frac{k}{n}} [f(\frac{k}{n}) - f(x)] dx = \frac{f'(\xi_k)}{2n^2} \qquad(*)$$

for some $\xi_k \in \left[\frac{k-1}{n}, \frac{k}{n}\right]$.

Deduce that $\lim_{n\to\infty} nE_n = \frac{1}{2} [f(1) - f(0)]$.

[Hint: In proving (e), you may assume that if g(x) and h(x) are continuous functions on the interval [c, d], and if $h(x) \ge 0 \ \forall \ x \in [c, d]$, then $\int_c^d g(x) h(x) dx = g(x_0) \int_c^d h(x) dx$ for some $x_0 \in [c, d]$.] (8 marks)

12. (a) The position vector of a point R(x, y, z) is given by r = xi + yj + zk

In the figure, $R_0(x_0, y_0, z_0)$ is a point on the plane $\pi : r \cdot n = \rho$

The line $\,\ell: r \simeq r_0 + ta$, $\,t \in R$, where $\,r_0 = x_0 i + y_0 j + z_0 k$, passes through $\,R_0\,$ and does not lie on $\,\pi$.

Show that the projection of ℓ on π is given by $\ell': r = r_0 + t \left(a - \frac{a \cdot n}{n \cdot n} n \right)$, $t \in \mathbb{R}$.

(6 marks)

(b) Consider the lines ℓ_1 : $\begin{cases} x = -1 - 2t \\ y = 3 + 3t \\ z = 1 + t \end{cases}$, $t \in \mathbb{R}$

and
$$\mathfrak{L}_2$$
:
$$\begin{cases} x = 2 - 8t \\ y = 19t \\ z = 2 + 4t \end{cases}$$
, $t \in \mathbb{R}$

and the plane π_1 : 4x + y - 2z - 4 = 0

- (i) Let P_1 and P_2 be the points at which π_1 intersects ℓ_1 and ℓ_2 respectively. Find P_1 and P_2 and show that the line segment P_1P_2 is perpendicular to both ℓ_1 and ℓ_2 .
- (ii) Show that the projections of $\,\ell_1\,$ and $\,\ell_2\,$ on $\,\pi_1\,$ are parallel.

(9 marks)

- 13. (a) Let G(x) be a function continuously differentiable on $\mathbb R$ such that $G'(x) \le a + bG(x)$ for every x > 0, where a and b are constants and $b \neq 0$.
 - (i) Show that $\frac{d}{dx} [G(x)e^{-bx}] \le ae^{-bx}$ for every x > 0.
 - (ii) Deduce that for x > 0, $G(x) \le G(0)e^{bx} + \frac{a}{b}(e^{bx} 1)$.

(5 marks)

- (b) Let f(x) be a function continuously differentiable on R such that |f'(x)| < M |f(x)| for every x > 0, where M is a positive constant.
 - (i) Show that

$$|f(x)| \le |f(0)| + M \int_0^x |f(t)| dt$$

for every x > 0.

(ii) By putting $G(x) = \int_0^x |f(t)| dt$ in (a), or otherwise, show that

$$|f(x)| < |f(0)|e^{Mx}$$

for every x > 0.

(6 marks)

(c) Let h(x) be a function continuously differentiable on R such that $h'(x) = \sin(h(x))$ for every x > 0 and h(0) = 0. Using (b), or otherwise, show that h(x) = 0 for every x > 0. (4 marks

END OF PAPER

90-AL P MATHS PAPER I

HONG KONG EXAMINATIONS AUTHORITY
HONG KONG ADVANCED LEVEL EXAMINATION 1990

PURE MATHEMATICS PAPER I

9.00 am-12.00 noon (3 hours)
This paper must be answered in English

This paper consists of two sections BOTH of which are to be answered.

INSTRUCTIONS FOR SECTION A

- 1. Answer ALL questions. Write your answers in the light yellow AL(C1) answer book.
- Write your Candidate Number, Centre Number and Seat Number in the spaces provided on the cover of the answer book.

INSTRUCTIONS FOR SECTION B

- Answer any FOUR questions. Write your answers in the separate orange AL(C2) answer book.
- 2. Write your Candidate Number, Centre Number and Seat Number in the spaces provided on the cover of the answer book.