- 9. (a) Let n be a positive integer. It is known that for any functions f(x) and g(x) with nth derivatives, if h(x) = f(x)g(x), then $h^{(n)}(x) = \sum_{k=0}^{n} a_k f^{(k)}(x) g^{(n-k)}(x)$, where a_0, a_1, \ldots, a_n are constants independent of f(x) and g(x), $f^{(0)}(x) = f(x)$ and $f^{(k)}(x) = \frac{d^k f(x)}{dx^k}$. Taking $f(x) = e^{\lambda x}$ and $g(x) = e^x$, where λ is a number independent of x,
 - (i) find $h^{(n)}(x)$ and $f^{(k)}(x)g^{(n-k)}(x)$ and hence
 - (ii) show that $a_k = C_k^n$ for k = 0, 1, 2, ..., n.
 - (b) Let $u(x) = x^m e^{-x}$, $y(x) = e^x u^{(m)}(x)$.

where m is a positive integer.

- (i) Show that y(x) is a polynomial of degree m and find its coefficients.
- (ii) Show that x u'(x) + (x m) u(x) = 0. Deduce that $x u^{(m+2)}(x) + (x+1) u^{(m+1)}(x) + (m+1) u^{(m)}(x) = 0$.
- (iii) Using (ii), or otherwise, show that x y''(x) + (1-x)y'(x) + m y(x) = 0.

END OF PAPER

88-AL P MATHS PAPER I

HONG KONG EXAMINATIONS AUTHORITY
HONG KONG ADVANCED LEVEL EXAMINATION 1988

純數學 試卷一 PURE MATHEMATICS PAPER |

9.00 am-12.00 noon (3 hours)
This paper must be answered in English

This paper consists of nine questions all carrying equal marks.

Answer any SEVEN questions.

- 1. (a) Given a real polynomial P(x), show that if α is a root of P(x) x = 0, then α is also a root of P(P(x)) x = 0.
 - (b) Let $P(x) = x^2 + ax + b$, where a and b are real.
 - (i) Using (a), or otherwise, resolve P(P(x)) x into two quadratic factors.
 - (ii) Find a relation between a and b which is a necessary and sufficient condition for all roots of P(P(x)) x = 0 to be real.
 - (c) Using (b)(i), or otherwise, solve the equation

$$(x^2-3x+1)^2-3(x^2-3x+1)+1-x=0.$$

- 2. A real number λ is said to be an eigenvalue of a 3 × 3 matrix M if there exists a non-zero column vector \mathbf{x} such that $M\mathbf{x} = \lambda \mathbf{x}$.
 - (a) Show that any 3×3 matrix M has at most 3 eigenvalues.
 - (b) Show that if λ is an eigenvalue of M, then $a_0 + a_1 \lambda + \ldots + a_n \lambda^n \quad \text{is an eigenvalue of}$ $a_0 I + a_1 M + \ldots + a_n M^n ,$

where a_0 , a_1 , ..., a_n are real constants.

- (c) (i) Find all eigenvalues of $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.
 - (ii) Using the above results, or otherwise, find ALL eigenvalues of

$$B = \begin{pmatrix} a_2 + a_0 & a_1 & a_2 \\ a_1 & 2a_2 + a_0 & a_1 \\ a_2 & a_1 & a_2 + a_0 \end{pmatrix} ,$$

where a_0 , a_1 and a_2 are non-zero integers.

3. Given an infinite sequence $\{a_n\}$ of positive integers, two sequences $\{p_n\}$ and $\{a_n\}$ are defined by

$$p_1 = a_1, p_2 = a_2 a_1 + 1, p_k = a_k p_{k-1} + p_{k-2} \text{ for } k \ge 3;$$
 $q_1 = 1, q_2 = a_2, q_k = a_k q_{k-1} + q_{k-2} \text{ for } k \ge 3.$

(a) For all positive integers n, prove that

$$p_{n+1}q_n - p_nq_{n+1} = (-1)^{n+1}$$
.

- (b) Let $b_k = \frac{p_k}{q_k}$, k = 1, 2, 3, ...
 - (i) Show that $\{b_1, b_3, b_5, \ldots\}$ is a strictly increasing sequence and that $\{b_2, b_4, b_6, \ldots\}$ is a strictly decreasing sequence.
 - (ii) For all positive integers n, show that

$$b_{2n-1} < b_2$$

$$b_{2n} > b_1 .$$

(iii) Show that the two sequences $\{b_1, b_3, b_5, \ldots\}$ and $\{b_2, b_4, b_6, \ldots\}$ converge to the same limit.

- 4. (a) Let $N = \{0, 1, 2, ...\}$. A mapping $f: N^2 \to N^2$ is defined by f((x, y)) = (x, y + 1) for any $(x, y) \in N^2$.

 Given $k \in N$, let $S_k = \{(x, y) \in N^2 : x + 2y = k\}$.
 - (i) Show that f is injective but not surjective.
 - (ii) Show that $S_{k+2} = f[S_k] \cup \{(k+2,0)\}$. Hence deduce that $n(S_{k+2}) = n(S_k) + 1$, where $n(S_k)$ denotes the number of elements in S_k .
 - (iii) Show, by mathematical induction, that for any $k \in \mathbb{N}$,

$$n(S_k) = \begin{cases} \frac{k+2}{2} & \text{if } k \text{ is even,} \\ \\ \frac{k+1}{2} & \text{if } k \text{ is odd.} \end{cases}$$

(b) Let p be a non-negative integer. Consider the inequality $x + 2y \le p$. Show that the number of non-negative integral solutions (x, y) of $\begin{cases} \frac{(p+2)^2}{4} & \text{if } p \text{ is even,} \\ \frac{(p+1)(p+3)}{4} & \text{if } p \text{ is odd.} \end{cases}$

 Let a be a positive real number not equal to 1 and let p, q, r and s be four real numbers such that

$$p + q = r + s$$
 and $0 .$

- (a) (i) Show that the function $f(x) = a^x + a^{-x}$ is strictly increasing for x > 0.
 - (ii) By considering the values of f at $\frac{1}{2}(p-q)$ and $\frac{1}{2}(r-s)$, deduce that

$$a^p + a^q < a^r + a^s .$$

- (b) Let u and v be two distinct positive real numbers.
 - (i) Show that $u^p v^q + u^q v^p < u^r v^s + u^s v^r$. Hence deduce that $(u^p + v^p)(u^q + v^q) < (u^r + v^r)(u^s + v^s)$.
 - (ii) Show that $(u^8 + v^8)(u^{80} + v^{80})(u^{900} + v^{900})(u^{1000} + v^{1000}) < 2^3(u^{1988} + v^{1988}).$

6. A mapping $f: \mathbb{R}^3 \to \mathbb{R}$ is said to be *linear* if

$$f(ax + by) = af(x) + bf(y)$$

for any $a, b \in \mathbb{R}$ and $x, y \in \mathbb{R}^3$.

- (a) Given a vector $\mathbf{u} \in \mathbf{R}^3$, the mapping $\phi_{\mathbf{u}} : \mathbf{R}^3 \to \mathbf{R}$ is defined by $\phi_{\mathbf{u}}(\mathbf{x}) = \mathbf{u} \cdot \mathbf{x}$ for any $\mathbf{x} \in \mathbf{R}^3$.
 - (i) Show that $\phi_{\mathbf{u}}$ is linear.
 - (ii) Show that if $\phi_{\mathbf{u}}(\mathbf{x}) = 0$ for any $\mathbf{x} \in \mathbb{R}^3$, then $\mathbf{u} = \mathbf{0}$.
 - (iii) For any two vectors \mathbf{u} and $\mathbf{v} \in \mathbb{R}^3$, show that if $\phi_{\mathbf{u}} = \phi_{\mathbf{v}}$, then $\mathbf{u} = \mathbf{v}$.
- (b) Given a linear mapping $f: \mathbb{R}^3 \to \mathbb{R}$, show that there exists one and only one vector $\mathbf{w} \in \mathbb{R}^3$ such that $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x}$ for any $\mathbf{x} \in \mathbb{R}^3$.

- 7. A fair die is thrown repeatedly. Denote by a_k $(k \ge 1)$ the sum of the scores in the first k throws. For any positive integer n, let p(n) be the probability that $a_k = n$ for some $k \ge 1$.
 - (a) (i) Find p(1), p(2) and p(3).
 - (ii) Express p(4) in terms of p(1), p(2) and p(3).
 - (iii) For n > 6, express p(n) in terms of p(n-1), p(n-2), ... and p(n-6).
 - (b) Define p(k) = 0 for k < 0 and p(0) = 1.
 - (i) Prove that for any positive integer n, $p(n) + \frac{5}{6}p(n-1) + \frac{4}{6}p(n-2) + \frac{3}{6}p(n-3) + \frac{2}{6}p(n-4) + \frac{1}{6}p(n-5) = 1.$
 - (ii) Given that $\lim_{n\to\infty} p(n)$ exists, find its value.

- 8. For j = 1, 2, 3, 4 or 5, let α_j be a complex number such that $|\alpha_j| = 1$.
 - (a) (i) Suppose $(z-\alpha_1)(z-\alpha_2)(z-\alpha_3)(z-\alpha_4)(z-\alpha_5) = \sum_{k=0}^{5} b_k z^k$ for all complex numbers z, where the b_k 's are constants.

$$\alpha_1\alpha_2\alpha_3\alpha_4\alpha_5\,\overline{b}_4=-b_1\ ,$$
 and
$$\alpha_1\alpha_2\alpha_3\alpha_4\alpha_5\,\overline{b}_2=-b_3\ .$$

(ii) If
$$\sum_{j=1}^{5} \alpha_{j} = \sum_{j=1}^{5} \alpha_{j}^{2} = 0$$
, show that
$$(z - \alpha_{1})(z - \alpha_{2})(z - \alpha_{3})(z - \alpha_{4})(z - \alpha_{5}) = z^{5} - \alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}\alpha_{5}.$$

(b) Using (a), or otherwise, show that the five points which represent the α_j 's in the complex plane form a regular pentagon if and only if $\sum_{j=1}^{5} \alpha_j = \sum_{j=1}^{5} \alpha_j^2 = 0$.

- 9. Let v_1 , v_2 , ..., v_5 be 5 vectors in \mathbb{R}^3 .
 - (a) It is known that any 4 vectors in R³ are linearly dependent.
 - (i) By considering the vectors $\mathbf{v}_i \mathbf{v}_5$, i = 1, 2, 3, 4, show that there exist real numbers t_1 , t_2 , ..., t_5 , not all zero, such that

$$\sum_{i=1}^{5} t_{i} = 0 \quad \text{and} \quad \sum_{i=1}^{5} t_{i} v_{i} = 0 .$$

(ii) Let λ_1 , λ_2 , ..., λ_5 be five real numbers with $\lambda_i > 0$ and $\sum_{i=1}^{5} \lambda_i = 1$. For the t_i 's in (i), define

$$\mu_i = \lambda_i - \frac{\lambda_r}{t_r} t_i, i = 1, 2, ..., 5$$
,

where
$$\left| \frac{t_r}{\lambda_r} \right| > \left| \frac{t_i}{\lambda_i} \right|$$
 for all i .

- (1) Check that the μ_i 's are well-defined, i.e. $t_r \neq 0$.
- (2) Show that $\sum_{i=1}^{5} \mu_i = 1$, $\mu_i \ge 0$ and $\mu_r = 0$.
- (3) Show that $\sum_{i=1}^{5} \mu_i \mathbf{v}_i = \sum_{i=1}^{5} \lambda_i \mathbf{v}_i$.
- (b) Let $\mathbf{v} = \sum_{i=1}^{5} \alpha_i \mathbf{v}_i$, where $\alpha_i \ge 0$ and $\sum_{i=1}^{5} \alpha_i = 1$. Using (a), or otherwise, show that there exist real numbers k_1 , k_2 , ..., k_5 with $k_i \ge 0$, $\sum_{i=1}^{5} k_i = 1$ such that $\mathbf{v} = \sum_{i=1}^{5} k_i \mathbf{v}_i$ and at least one k_i equals zero.

END OF PAPER

88-AL P MATHS PAPER II

HONG KONG EXAMINATIONS AUTHORITY
HONG KONG ADVANCED LEVEL EXAMINATION 1988

純數學 試卷二 PURE MATHEMATICS PAPER II

2.00 pm-5.00 pm (3 hours)
This paper must be answered in English

This paper consists of nine questions all carrying equal marks.

Answer any SEVEN questions.

1. (a) Find the following integrals:

(i)
$$\int \frac{\mathrm{d}x}{x-\sqrt{x^2-1}} ,$$

(ii)
$$\int_0^{\frac{\pi}{2}} \frac{\mathrm{d}x}{2 + \cos x} .$$

(b) For n = 0, 1, 2, ..., it is known that $\lim_{k \to \infty} \int_0^k \frac{\mathrm{d}x}{(x^2 + 1)^{n+1}}$ exists. Denote this limit by I_n . For $n \ge 1$, express I_n in terms of I_{n-1} , and hence show that

$$I_n = \frac{(2n-1)(2n-3)...1}{(2n)(2n-2)...2} \cdot \frac{\pi}{2}$$

2. Given a positive integer n and a real number a, let

$$I_n(a) = \int_{\frac{1}{n}}^n \frac{\mathrm{d}x}{(1+x^a)(1+x^2)}$$
.

- (a) (i) Find $I_n(0)$.
 - (ii) Using partial fractions, find $I_n(1)$ and $I_n(-1)$.
- (b) (i) Using the substitution $x = \frac{1}{u}$, or otherwise, show that

$$I_n(a) = \int_{\frac{1}{n}}^n \frac{x^a}{(1+x^a)(1+x^2)} dx$$
.

- (ii) Deduce that $I_n(a)$ is independent of a.
- (iii) Compute $\lim_{n\to\infty} I_n(a)$.

- 3. Consider the parabola $\Gamma: y^2 = 4ax \quad (a > 0)$.
 - (a) Find the equation of the tangent to Γ at the point $(at^2, 2at)$.
 - (b) Let $P(at_1^2, 2at_1)$ and $Q(at_2^2, 2at_2)$ be two distinct points on Γ .

Find the coordinates of the point of intersection of the tangents at P and Q.

- (c) Suppose P and Q are two variable points on Γ such that $\angle POQ = 90^{\circ}$, where O is the origin.
 - (i) Find the locus of the point of intersection of the tangents at P and Q.
 - (ii) Find the locus of the mid-point of PQ.
- (d) Consider the parabola $\Gamma': (x+y)^2 = 8(x-y)$. Let P' and Q' be two variable points on Γ' such that $\angle P'QQ' = 90^\circ$. Find the locus of the point of intersection of the tangents at P' and Q'.

A long piece of thread is wound round the circumference of a circle, centred at O and with radius OA = a. A particle P is tied to the free end of the thread. Starting at A, the particle moves in a direction so that the thread unwinds and remains taut. Choose the line containing OA as the x-axis and the line through O and perpendicular to OA as the y-axis, as shown in the figure. Denote $\triangle BOA$ by θ , where B is the point, on the circumference, at which the thread leaves the circle.

(a) Show that the locus of P is given by

$$x = a(\cos\theta + \theta\sin\theta)$$

 $y = a(\sin \theta - \theta \cos \theta)$, where $\theta > 0$.

(b) Show that $\frac{dy}{dx} = \tan \theta$.

Hence show that the thread is normal to the locus at any moment.

(c) Find the area bounded by the locus, the positive x and y axes and the thread when $\theta = \frac{\pi}{2}$.

 (a) Show that if f is a polynomial of degree ≤ 2, then it satisfies the condition

$$f(x) - f(t) = (x - t) f'\left(\frac{x + t}{2}\right)$$
 for any x , $t \in \mathbb{R}$.

- (b) Let $g: \mathbb{R} \to \mathbb{R}$ be a function with a continuous third derivative. Suppose $g(x) - g(t) = (x - t) g'(\frac{x + t}{2})$ for any x, $t \in \mathbb{R}$.
 - (i) Show that

$$g'''\left(\frac{x+t}{2}\right) = \frac{4\left(g''(x) - g''\left(\frac{x+t}{2}\right)\right)}{x-t} \quad \text{for } x \neq t.$$

(ii) Find g'''(t) for any $t \in \mathbb{R}$.

Hence, or otherwise, show that g is a polynomial of degree ≤ 2.

- 6. Consider the function $f(x) = \begin{cases} x^2(x+1)^{\frac{2}{3}} & \text{for } x > 0, \\ -x^2(x+1)^{\frac{2}{3}} & \text{for } x \leq 0. \end{cases}$
 - (a) Find f'(x) and f''(x) for $x \neq 0, -1$. Discuss the existence of f'(x) and f''(x) when x = 0, -1.
 - (b) Determine the values of x at which the graph of f has an extreme point or a point of inflexion.[Note. Your working may be given in table form.]
 - (c) Use the above results to sketch the graph of f.

- 7. Let n be a positive integer and $i = \sqrt{-1}$.
 - (a) For any integers p and q, find

$$\int_0^{2\pi} (\cos px \cos qx + \sin px \sin qx) dx.$$

(b) If $f(x) = \sum_{p=0}^{n} a_p (\cos x + i \sin x)^p$, where the a_p 's are real constants, show that

$$\int_0^{2\pi} |f(x)|^2 dx = 2\pi \sum_{p=0}^n a_p^2.$$

- (c) Let $g(x) = (1 + \cos x + i \sin x)^n$, $h(x) = (1 \cos x i \sin x)^n$.
 - (i) Show that $\int_0^{2\pi} |g(x)|^2 dx = \int_0^{2\pi} |h(x)|^2 dx$.
 - (ii) By considering the coefficient of x^n in the expansion of $(1+x)^{2n}$, or otherwise, show that the common value of the integrals in (i) is $2\pi C_n^{2n}$.
- 8. Consider two lines

$$L_1: \begin{cases} x+y=0 \\ y+z=0 \end{cases} \text{ and } L_2: \begin{cases} x=1+2t \\ y=1 \\ z=1+t \end{cases}.$$

- (a) Show that L_1 and L_2 are not coplanar.
- (b) Find the equation of the plane π_1 containing L_1 and parallel to L_2 .
- (c) Find the equation of the plane π_2 which contains L_2 and is perpendicular to π_1 .
- (d) Find the coordinates of the foot Q of the perpendicular from the point P(1, 1, 1) to the plane π_1 .

 Hence determine the shortest distance between L_1 and L_2 .

9. A real-valued function f defined on an interval I is said to be Lipschitz-continuous if there is a constant k > 0 such that

$$|f(x_1) - f(x_2)| \le k|x_1 - x_2|$$
 for any $x_1, x_2 \in I$.

- (a) Show that a function which is Lipschitz-continuous is also continuous. Verify that the continuous function $g(x) = \sqrt{x}$ defined on the interval [0, 1] is NOT Lipschitz-continuous.
- (b) If f is continuously differentiable with $|f'(x)| \le M$ for all $x \in I$, where M is a positive constant, show that f is Lipschitz-continuous.
- (c) Let $f: [a, b] \rightarrow [a, b]$ be a continuous function.
 - (i) Show that the equation x f(x) = 0 has a solution in [a, b]. [Hint: You may use the fact that if h is a continuous function on [a, b] such that h(a) < 0 and h(b) > 0, then there exists $x_0 \in (a, b)$ such that $h(x_0) = 0$.]
 - (ii) Assume further that f is Lipschitz-continuous with 0 < k < 1. Show that the solution in (c)(i) is unique.

END OF PAPER