A i real-valued function f is said to be coavex in an interval (a, b) if for any x, y
in (a,d) and forany A, z in [0, 1] with A + u =1,

fQAx + py) < M) + pf0) .

(a) Show that, for any ¢ in the interval (x, y), thereexist A, u in (0, 1) with
A+ =1 such that .
t = Ax +ouy.

Draw a diagram to illustrate the inequality in the definition of a convex function.

() [ is convex. Show that, forany x, ¢, y in (e, ) with x < ¢t <y,
t]t! -t!x[ < []z! —ﬂt[ i
t—-x y -t
() Let g be a function with a second derivative g''(x) > 0 on (a, b) .
Forany x, y in (e, b) with x < y, consider the function
k() = Ag() + pg() - g(At + py)
for ¢t € [x, y], where A and g are fixed numbers in [0, 1] such that

A+ pu = 1. Show that k is monotonic decreasing and hence show that g is a convex
function.

d For x,,x3 >0, p>1 and Ay, A3 € [0, 1] -with XA, + A; =1,
show that (A, % + Ax3)P < Ayxy? + Apx)? .

Let L, and L, be two rays from the origin O inclining at angles % and -X
respectively, to the positive x-axis. P and Q are pointson L, and L, , respectively,
such that 0P=pand0Q-%.

@) P’ and Q' arepointson L, and L,, respectively, such that OP' = p’ and
oQ' = ;17 . If M(u, ») denotes the point at which PQ and P'Q’ meet, express

u and v intermsof p and p' .

Find lim # and lim ».
pp p'p

®) Lt §(p) = lmu and n(p) = lim ».
p'p p'p

As p varies, show that the locus of (£(p), n(p)) consists of a branch (#) of a hyperbola.

{c) A~and B are points on L, and L,, respectively. Show that AB meets H at no
point, one point, or two points according as OA - OB is less than, equal to, or greater
than 1.

END OF PAPER
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In this paper, you may use without proof the fact that a ic i ing (d ing) seqt which
is bounded above (below) converges.

1. (a) Prove that the following system of linear equations in the unknowns x, y and z hasa
unique solution if @, b and ¢ are all non-zero and distinct:

K2
K.

In such a case, find the solution (x.,y‘., Zo) interms of a4, b, ¢ and k, and show
that it is impossible for exactly one of xo, yo and zo to be zero.

a’x + by + ¢z

ax + by + cz = k
ax + by + &2

(b) Find al! values of d for which the following system is solvable :
l—x+2y—z=d

xtay + 1 = d*
-x + 8y -z = d*.

Give the solutions for each of the values of d.

83-AL-PM |-1 17




p q r
2. Lt M = (r P q) , where p, q and r are non-negative real numbers satisfying
qQ r p

pragqtr=1,

()

®)

©)

@

()

Show that det(M) = 1 = 3(q + ar + ) = (6~ @F + (@ =+ ¢ - PF).
Hence deduce that 0 < det(M) < 1.

Using mathematical induction, or otherwise, show that for any positive integer n, M" is of

the form
pl ql ’l
( ’l pﬂ ql ) »
qQ T, Py

where p,, q, and 7, are non-negative real numbers satisfying p, + q, + 1, = i.

Suppose at least two of p, ¢ and r are nonzero. Using (a) and (b), or otherwise,
show that

@  lim det(M*) = O,
n oo
@@ lUm [3p, - (P * g, * r,)] = 0 and hence

limp"=%.

n->oo

Let w be a complex number. Show that
lw =il = |w+ {] ifandonly if w is real.

The complex number u satisfies the equation
120 =8l = 1. it e (*)
Sketch the locus of u in the Argand plane.

Show that the comélex number u (# i) satisfies equation (+) if and only if

v o= —d4 s real,
i —u

In this case, show that the points representing u, v and i in the Argand plane are collinear.

83-AL-PM -2

Given 2 sequence {an} such that
(1) a>a>0,
@ ay,, = ey, tg) frm =12 ...

(a) Show that for n> 1,

a4,,, ~ 4 = -(—_-21,,):@. - @),

mdhenoeshwthatﬂlssequme{al. e, as, } is strictly decreasing and that the
sequence {a,,a., a, } is strictly increasing.

(b) For any positive integers m and n, show that

a,, < e,

m 1

(c) Show that the two sequences {a., ay, das, } and {a,, a4, Qs , } converge to
the same limit.

On a rainy day, each man arriving at a dinner party leaves his umbrella and takes one when he
departs. Suppose that each man’s choice of an umbreila st the end of the dinner is compietely
random.

Let P, , be the probability that, in a party of n men, exactly k men take back their own

umbrellas.

(a) Show that £, , = (k+ P, yey -

() Let Fy(x) = By, + B x+...+ l’,,_,‘x" +...4 P x". Show that
O F@=LF, @,

G F®Q) =1 for 0< k< n.

(F, %) denotes the k-th derivative of (F,(x) for k>0. F, V) = F,@)1]

(¢) Use the expansion
() = Fa)+ E2OED@ + 4 i"—;“-')irn(")(a) tot ("—;,:'JZF,,‘"’(.:)

of F(x) at a for a =0 and 2 = | to show that

a (Y-t

= L WS gy o<k<n.
e T ARG "

P
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Let A and B betwononempty setsandlet f: 4 = B and g : B - A betwo
mappings. The power set of A is denoted by G?(A4) and the direct image of a subset X of
A under f is denoted by f[X].

(@) A function ® : P(A) - GP(A) is defined by
(X)) = 2[B\ f[X]] forall X € FP(4).
Show that if X, C X, C A, then ®(X;) D ¥(X,).

(®) A function ¥ : GP(A) + GP(A) is defined by
Y = A\SX) foral X € GP(A).

Let & ={X €52(4) : ¥(X) C X}. Denoteby § the i jon of all memb
of .
Show that if X; C X; C 4, then ¥(X,) C ¥(X,). Hence verify that § € 4.

(c) Prove that ¥(S) € & and A \S = &(5).

(a) Prove that for any positive integer »,

Ly . 2lifa-k
(x+") 1\t’§.'| ’!['](1 ").
k=0
Hence, or otherwise, show that for n > 2,
2<a+LH <3,
”

and that {(l + %)"} is a convergent sequence.
(b) Prove the identity
n N=1
Ecu_lk-l k-1 _ Ta- l_
-8 k( ) x l-o( x)
Using integration, or otherwise, show that

-1 Cyt-t Lon o "yl 1
a 2d+"'+(l) nc" 1?,1+l'

Let {a,,a;,... an} and {b.,b,.... ,b"} be two sets of real numbers,

n i
s = Eab awa 8= I

(3) Show that
n-1
§ = aqB, + *lEl (4 - a,,)B .
® If {a, &, ....,0q,) i ic (& g o increasing) and |B;| < K for
all i, show that

IS| < K(la)l + 2ia,]).

(c) Using (b), or otherwise, show that if n > 3,
ok

k=n ﬁ )

for any positive integer p .

END OF PAPER
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! In this paper, you may wse without proof the fact that a ic increasing (d ing) seq which . .
! it bounded sbove (below) comverges. 3. (1) Given a line in space i
M ’ x =t + xq !
: L: Yy =mt+ oy {
| 1. Ewvaluate zZ =t +ze. i
- , ,
| dx _ . Show that the plane Ax + By + Cz + D = 0 contains L if and only if 1
i
| 0 —_tt
‘ ® ]\/ixfaii_\ﬂlb) s A2 + Bm + Cn = 0
gl . and Axo + Byy + Czo + D = 0. ¢
W" () l‘ In (1 + tanx)dx,
NI o
f-
i [Hint: Put u = -:- - xl (b) Given two distinct lines
l x = £t + x
I © lim Llcos® + cosd® + + coplr = L yome o
} n-boo n n : n * zZ = mt + 2z,
i, L]
x = ¢ + X,
| Ly y = mt ty;
il ¢ Z = mt otz
il
l 2. Let f(x) = x*(x — 2)e*. () Suppose L, and L, intersect at a point. Show that the equation of the plane passing
| through L, and L, is
I
‘ ‘ (a) Sketch the graph of the function f(x) by first finding its stationary point(s), intercept(s) X - x Yy =n -
| and asymptote(s). 2 my LY =0 .
i 2, m; n
: l“ (b) Evaluate lim A, , where A, is the area bounded by the curve, the positive x-axis and . .
j k —»oo (i) Suppose L, and L, areg Find the equation of the plane passing through
"J the line x =k (k > 0). Ly and L,.
il
|
35]
.I '
|H
|
{ ‘,
|
l It
s |
{
i
i
,
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4. Let f(x) snd g(x) be two differentisble functions defined on the interval - I = (-3 )
and with the following properties :

1) gx) >0,

R T

@ 51 et
4 = -

@ ;8 f(x)g(x).

@) f(0) = 0 and g(0) = 1.

(@) Find, in terms of f(x) and g(x),

(®) Show that 1 + f2(x) = g,l(x).

(c) Show that
f(a)g(a) = f(x)g(x)g(e ~ x) + f(a ~ x)g(a ~ x)g(x)
forany a, x € I suchthat (¢ - x) €.

(d) Deduce from (c) that

@) f(-x) = -f(x) forany x € J.

5. Let f be a non-constant real-valued function defined on the set R of real numbers such that
(1) f(x +y) = f(x)f(y) forall x,y €R,

(2) there exists x, € R at which f is differentiable.

(a) Show that f(0) = | and that f(x) # 0 forall x € R.

(b) Show that f is differentiable at x = 0 and find f'(0) in terms of f'(xo) and f(x,).
; Hence show that f is differentiable at every x € R and that
I iy = L&) gy
i ) )

(c) Use the derivative of the function e “* f(x) to show that f(x)} = ¢%* for some
non-zero constant a .

l]‘ B83-AL-PM 114

@) f(x+y)ex+y) = g(x)g) [f(x) + f(¥)] forany x, y €/ schthat x + y €.

(a) For any non-negative integers p and q, the function Fp q(x) is defined by
x

= Py si
Fp'q(x) Lcos tsingtdet.

By differentiation, prove that for p and ¢ > 1,

(? +dF, (x) - pF, (x) = -cosPxcosqx + C,

-1, q-~1
where C is 2 constant.

Determine the value of C.

(b) When p and g4 are both even or both odd, show that

l cos”xsingxdx = 0.

o

(c) Evaluate the integral rsin’x sin3x dx.
o

y
Let k be any positive integer. The k-th
harmonic number A, is defined by
1 1 1 y=%
H = 1l++=+ ..+,
k 2 3 k

The graph of the function y = % is
shown in Figure 1.
(a) By considering an integral of y,

show that

nk<H<I1+hk
o r r+1

Hk
Hence show that lim —~&-= 1],
k—+oln k .
Figure 1
(b) Let T = Hk = In k. Prove that klin:“yk exists by showing that { 7,‘} is a monotonic
sequence.

(c) The area of the shaded region in Figure | is denoted by A,. Show that, for 1 <r<k,

1/1 1 1 1
/1 _ < 1 _
2,(r r+1) A'<' r+t

Hence show that L < lim (#, - Ink] < 1.
2 k ~oo

83-ALPM N5
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Let L;: ax+ by te =0 (i = 1,2,3) be three distinct straight lines which meet
pairwise as shown in Figure 2. Suppose the three points of intersection Py, P, and P; are
non-collinear.
For any non-zero real constants A,, A; and \;, consider the equations

QA,A2,29) s Aal@x +byy e Xaax ey t¢3) + M@ax + bay + ey Nasx + by +¢3) +

A@x by toyMax+byyte) = 0

ad T, : X,(a,x thyte) t )\,(nl.x + bl.y + t,) =0,
where (i, j, k) is any permutation of the indices 1, 2 and 3.

y
Ll
\ £
e 5
L

Figure 2

)

/ N

L

3

(s) Show that C(\;, X;, \3) represents a conic passing through the points P,, P, and P,
and that T, is a tangent to C(X;, 13, A3) at B (k =1,2,3).

(b) Let the three lines L; now be given by

L, : x+y-2=0

Ly : x-y+2=0

Ly : 2x-y=0.
Consider all the conics which are of the form C(XA,, A;, A3) and whose axes are paraliel
to the coordinate axes. Find the equation of the locus of the point of intersection of the
tangents T, and T,. -

END OF PAPER
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