

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 2007

ADDITIONAL MATHEMATICS

Question-Answer Book

8.30 am - 11.00 am (2% hours)This paper must be answered in English

- 1. Write your Candidate Number in the space provided on Page 1.
- 2. Stick barcode labels in the spaces provided on Pages 1, 3, 5, 7 and 9.
- 3. This paper consists of **TWO** sections, Section A and Section B. Section A carries 62 marks and Section B carries 48 marks.
- 4. Answer ALL questions in Section A. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Graph paper and supplementary answer sheets will be supplied on request. Write your Candidate Number and stick a barcode label on each sheet, and fasten them with string INSIDE this book.
- 5. Answer any **FOUR** questions in Section B. Write your answers in the CE(B) answer book.
- 6. The Question-Answer Book and the CE(B) answer book must be handed in separately at the end of the examination.
- 7. All working must be clearly shown.
- 8. Unless otherwise specified, numerical answers must be **exact**.
- 9. In this paper, vectors may be represented by bold-type letters such as \mathbf{u} , but candidates are expected to use appropriate symbols such as $\vec{\mathbf{u}}$ in their working.
- 10. The diagrams in the paper are not necessarily drawn to scale.

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2007

Please stick the barcode la	bel here.

Candidate Number							
------------------	--	--	--	--	--	--	--

	Marker's Use Only	Examiner's Use Only
	Marker No.	Examiner No.
Section A Question No.	Marks	Marks
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13	`	
Section A Total		

Checker's Use Only	Section A Total	
		_
Checker No.		

FORMULAS FOR REFERENCE

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2\sin A\cos B = \sin (A+B) + \sin (A-B)$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\sin B = \cos(A-B) - \cos(A+B)$$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

Section A (62 marks)

Answer ALL questions in this section and write your answers in the spaces provided in this Question-Answer Book.

1. Find $\int \frac{x^4+1}{x^2} dx$.

(3 marks)

2. It is given that the four points A(0,-2), B(1,-3), C(2,0) and D(k,k) form a quadrilateral ABCD. Find the area of this quadrilateral.

(3 marks)

3. Find the general solution of the equation $\cos x - \sqrt{2} \cos 2x + \cos 3x = 0$.

(4 marks)

Page total

	L		
34,000,000,000,000,000,000,000,000,000,0	·		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

,p.,			

, , , , , , , , , , , , , , , , , , ,			

Please do not write in the margin.

margin.
the
.⊑
write
not
ဓ
Please

4.	Find $\frac{d}{dx}(x^2+1)$ from first principles.	(4 marks)
5.	Let $a \neq 0$ and $a \neq 1$. Prove by mathematical induction that $\frac{1}{a-1} - \frac{1}{a} - \frac{1}{a^2} - \dots - \frac{1}{a^n} = \frac{1}{a^n(a-1)}$ for all positive integers n .	(5 marks)

Page	total

<u> </u>
1
1
<u>.</u>
😭
1 8
9
\$
].⊆
<u> </u>
`
1.5
Please do not write in the margin.
ō
8
8
١č
1
1
-
l
1
1
1
ı

Figure 1 shows the graphs of $y = \sin 2x$ and $y = \cos x$. Find the area of the shaded region. (5 marks)

- 7. It is given the points A(2,1) and B(-2,4). C is a point on AB such that AC:CB=1:2.
 - (a) Find the coordinates of C.
 - (b) Show that OC bisects $\angle AOB$, where O is the origin.

(5 marks)

441111111111111111111111111111111111111

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
giri
<u> </u>
E
الله الله
.⊆
۸
15
Please do not write in the margin.
9
Se
e a
<u> _</u>
1

8.

In Figure 2, OCA is a straight line and $BC \perp OA$. It is given that $\overrightarrow{OA} = 6\mathbf{i} + 3\mathbf{j}$ and $\overrightarrow{OB} = 2\mathbf{i} + 6\mathbf{j}$. Let $\overrightarrow{OC} = k\overrightarrow{OA}$.

- (a) Express \overrightarrow{BC} in terms of k, \mathbf{i} and \mathbf{j} .
- (b) Find the value of k.

(5 marks)

9.

Two rods HA and HB, each of length 5 m, are hinged at H. The rods slide such that A, B, H are on the same vertical plane and A, B move in opposite directions on the horizontal floor, as shown in Figure 3. Let AB be x m and the distance of H from the floor be y m.

- (a) Write down an equation connecting x and y.
- (b) When H is 3 m from the ground, its falling speed is 2 m s^{-1} . Find the rate of change of the distance between A and B with respect to time at that moment.

(5 marks)

		1
		į
		1
		İ
4-14-0-7-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	 	
		1
		ļ
		1

		1
		I
		1
		l
		Please do not write in the margin.
	 	 2º
		18
		10
	 	Iš
		1=
		1#
		to
		-
		응
		o o
		as l
		 <u>ö</u>
		10-
		1
		l
		l
		1
		1
		l
		1
		İ
		l

10.

Figure 4

Let f(x) be a function of x. Figure 4 shows the graph of y = f'(x) which is a straight line with x- and y-intercepts 4 and 2 respectively.

- Find the slope of the tangent to the curve y = f(x) at x = 1. (a)
- Find the x-coordinate(s) of all the turning point(s) of the curve y = f(x). For each turning point, (b) determine whether it is a minimum point or a maximum point.

(5 marks)

- Solve |x-1| = |x|-1, where $0 \le x \le 1$. 11. (a)
 - Solve |x-1| = |x| 1. (b)

					(5 marks)

······································				 	
***************************************				 ·	
***************************************		***************************************			
		0.174441941941444444444444444444444444444			

4004				 	

Page	total

		nnan, protessana senjana aktoro kana kana kana kana kana kana kana kan
	Политичниция принципальной принципальной принципальной принципальной принципальной принципальной принципальной	
H-1111-1991-91-111-111-111-111-111-111-1		

Please do not write in the margin.

12.	If the coefficient of	x^2	in the expansion of	$\left(1-2x+x^2\right)^n$	is	66, find the value of	n	and the
	coefficient of x^3 .							
							"	

(6 marks)

(7 marks)

- The curve $C: y = x^2$ and the straight line L: y = mx 2m intersect at two distinct points A and B. 13.
 - (a) Find the range of values of m.
 - Show that the coordinates of the mid-point of AB are $\left(\frac{m}{2}, \frac{m^2 4m}{2}\right)$. (b) (i)
 - It is given that the straight line x + y = 5 bisects the line segment AB. Using (b)(i), or (ii) otherwise, find the value(s) of m.

Page	total
1 agc	totai

	,
411100000000000000000000000000000000000	

SECTION B (48 marks)

Answer any **FOUR** questions in this section. Each question carries 12 marks. Write your answers in the CE(B) answer book.

14. (a)

Figure 5 shows a tetrahedron with CB perpendicular to the plane ABX. Suppose $AX \perp XB$, prove that $AX \perp XC$.

(3 marks)

Figure 6

Figure 6 shows two rectangular display boards ABCD and ADEF, both perpendicular to the ground. FXB is a straight line and $AX \perp FB$. ACX and AEX are two wooden boards supporting the display boards. It is given that $CD = 3\sqrt{2}$ m, DE = 1 m and $\angle CDE = 135^{\circ}$.

- (i) Show that $XB = \frac{21}{5}$ m.
- (ii) Let θ be the angle between the boards ACX and AEX. If $EF = \frac{7}{5}$ m, find $\tan \theta$. (9 marks)

15.

A straight line $L_1: y=2x$ intersects a circle C at two points to form a chord of length $8\sqrt{5}$. Let P(a,b) and r be the centre and radius of C respectively (see Figure 7).

(a) By considering the distance from P to L_1 , or otherwise, show that

$$r^2 = \frac{4a^2 - 4ab + b^2 + 400}{5} \ .$$

(3 marks)

(b)

•

 $L_2: y = -2x$ is another straight line. Suppose P and r vary such that L_2 is always a tangent to C (see Figure 8).

- (i) Find the equation of the locus of P.
- (ii) If the area of C attains its least value, find the equation(s) of C.

(9 marks)

Figure 9

 C_1 is a circle with centre O and radius 1. PR is a variable chord which subtends an angle 2θ at O, where $0 < \theta < \frac{\pi}{2}$. C_2 is a circle with centre O and touches PR. Let the area of the shaded region bounded by C_1 , C_2 and PR be A (see Figure 9).

(a) Show that

(i)
$$A = \pi \sin^2 \theta - \theta + \frac{1}{2} \sin 2\theta ,$$

(ii)
$$\frac{\mathrm{d}A}{\mathrm{d}\theta} = (\pi - \tan\theta)\sin 2\theta .$$

(5 marks)

(b) When A attains its greatest value, find the value of $\tan \theta$.

(3 marks)

(c) A student guesses that when A attains its greatest value, the perimeter of the shaded region will also attain its greatest value. Explain whether the student's guess is correct or not.

[Note: the perimeter of the shaded region =
$$\widehat{PQR} + PR + \text{circumference of } C_2$$
.]

(4 marks)

In Figure 10, OAB is an equilateral triangle with OA = 1. M is the mid-point of AB and P divides the line segment OA in the ratio 2:1. Q is a point on OB such that PQ intersects OM at G and PG: GQ = 4:3. Let \overrightarrow{OA} and \overrightarrow{OB} be **a** and **b** respectively.

(a) Find \overrightarrow{OM} in terms of **a** and **b**.

(1 mark)

- (b) Let OQ : QB = k : (1 k).
 - (i) Find \overrightarrow{OG} in terms of k, **a** and **b**.
 - (ii) Show that $\overrightarrow{PQ} = \frac{1}{2}\mathbf{b} \frac{2}{3}\mathbf{a}$.

(4 marks)

- (c) (i) Find $\mathbf{a} \cdot \mathbf{b}$ and hence find $|\overrightarrow{PQ}|$.
 - (ii) Find $\angle QGM$ correct to the nearest degree.

(7 marks)

It is given that the curve $y = 2\sqrt{x} - x$ has a horizontal tangent at x = r. 18. (a) Show that r = 1.

(2 marks)

(b)

Let O be the origin and P be the point (3,0). Figure 11 shows a region bounded by:

- the curve $C_1: y = 2\sqrt{x} x$ (for $0 \le x \le 1$), the line segment y = 1 (for $1 \le x \le 2$),
- [2]
- the curve $C_2: y = 2\sqrt{3-x} \left(3-x\right)$ (for $2 \le x \le 3$), and [3]
- [4]

Figure 12 shows a solid formed by revolving the region about the x-axis by 180° .

- (i) The base of the solid is denoted by S in Figure 12. Find the area of S.
- Show that the volume of the solid is $\frac{37}{30}\pi$. (ii)

(iii)

Figure 13

Mrs. Chan has baked a cake which is in the shape of the solid in Figure 12. She cuts the cake into three parts of equal volumes for her three children. The cross-sections formed, S_1 and S_2 , are perpendicular to OP (see Figure 13).

Let the intersection of OP and S_1 be Q .

Find OQ:OP.

(10 marks)

END OF PAPER