只限教師參閱

FOR TEACHERS' USE ONLY

香港考試及評核局 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

2007 年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 2007

附加數學

ADDITIONAL MATHEMATICS

本評卷參考乃香港考試及評核局專爲今年本科考試而編寫, 供閱卷員參考之用。閱卷員在完成閱卷工作後,若將本評卷 參考提供其任教會考班的本科同事參閱,本局不表反對,但 須切記,在任何情況下均不得容許本評卷參考落入學生手 中。學生若索閱或求取此等文件,閱卷員/教師應嚴詞拒絕, 因學生極可能將評卷參考視爲標準答案,以致但知硬背死 記,活剝生吞。這種落伍的學習態度,既不符現代教育原則, 亦有違考試着重理解能力與運用技巧之旨。因此,本局籲請 各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for markers' reference. The Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Authority is counting on the co-operation of markers/teachers in this regard.

只限教師參閱

FOR TEACHERS' USE ONLY

General Instructions To Markers

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates would use alternative methods not specified in the marking scheme. Markers should be patient in marking these alternative answers. In general, a correct alternative answer merits all the marks allocated to that part, unless a particular method was specified in the question.
- 2. In the marking scheme, marks are classified as follows:
 - 'M' marks awarded for knowing a correct method of solution and attempting to apply it
 - 'A' marks awarded for the accuracy of the answer
 - Marks without 'M' or 'A' awarded for correctly completing a proof or arriving at an answer given in the question.
- 3. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 4. The symbol (pp-1) should be used to denote marks deducted for poor presentation (pp). Note the following points:
 - (a) In Section A, at most deduct 1 mark for pp in each question, up to a maximum of 2 marks. In Section B, at most deduct 1 mark for pp in the whole section.
 - (b) In Section A, deduct only 1 mark for similar pps for the first time that it occurs, i.e. do not penalise candidates twice in Section A for the same pp.
 - (c) In any case, do not deduct any marks for pp in those steps where candidates failed to score any marks.
 - (d) Some cases in which marks should be deducted for pp are specified in the marking scheme. However, the lists are by no means exhaustive. Markers should exercise their professional judgment to give pps whenever applicable.
- 5. In Section A, The symbol (u-1) should be used to denote marks deducted for wrong/no units in the final answers (if applicable). Note the following points:
 - (a) In Section A, at most deduct 1 mark for wrong/no units.
 - (b) Do not deduct any marks for wrong/no units in case candidate's answer was already wrong.
- 6. (a) Unless otherwise specified in the question, numerical answers not given in exact values should not be accepted.
 - (b) In case a certain degree of accuracy had been specified in the question, answers not accurate up to that degree should not be accepted. For answers with an excess degree of accuracy, deduct 1 mark for the first time if happened. In any case, do not deduct any marks for excess degree of accuracy in those steps where candidates failed to score any marks.
- 7. Unless otherwise specified in the question, use of notations different from those in the marking scheme should not be penalised.
- 8. Unless the form of answer was specified in the question, alternative simplified forms of answers different from those in the marking scheme should be accepted if they were correct.

	六队致即参阅 FOR TEACHERS	OSL	ZINLI
	Solution	Marks	Remarks
1.	$\int \frac{x^4 + 1}{x^2} dx = \int \left(x^2 + \frac{1}{x^2}\right) dx$	1A	
	$=\frac{x^3}{3}-\frac{1}{x}+c$	1M+1A	$1M \text{ for } \int x^n dx = \frac{x^{n+1}}{n+1}$
		(3)	(pp-1) if c was omitted
-	lo 2		
2.	The area of $\triangle ABC = \frac{1}{2} \begin{vmatrix} 0 & -2 \\ 1 & -3 \\ 2 & 0 \\ 0 & -2 \end{vmatrix}$	1M	
	$= \frac{1}{2}(-4+2+6)$ = 2	1A	Either one
	The area of $\triangle ACD = \frac{1}{2} \begin{vmatrix} 0 & -2 \\ 2 & 0 \\ k & k \\ 0 & -2 \end{vmatrix}$	IA I	
	$=\frac{1}{2}(2k-2k+4)$		
	= 2 Hence the area of the quadrilateral $ABCD = 2 + 2 = 4$	1A	y
	Alternative Solution		l ∱
	The area of the quadrilateral $ABCD = \frac{1}{2} \begin{vmatrix} 0 & -2 \\ 1 & -3 \\ 2 & 0 \\ k & k \\ 0 & -2 \end{vmatrix}$ $= \frac{1}{2} (2k - 2k + 2 + 6)$	1M	D(k,k) $C(2,0)$ $A(0,-2)$ $B(1,-3)$
	= 4	1A (3)	-
		(3)	
3.	$\cos x - \sqrt{2}\cos 2x + \cos 3x = 0$		
	$2\cos 2x\cos x - \sqrt{2}\cos 2x = 0$ Alternative solution	1M	For sum to product formula
	$\cos x - \sqrt{2}\cos 2x + \cos 3x = 0$		5 , 5
	$\cos x - \sqrt{2}\cos 2x + \cos 2x\cos x - \sin 2x\sin x = 0$	1M	For compound angle formula
	$\cos x - \cos 2x \left(\sqrt{2} - \cos x\right) - 2\sin^2 x \cos x = 0$		n 1 2
	$\cos x \left(1 - 2\sin^2 x\right) + \cos 2x \left(\cos x - \sqrt{2}\right) = 0$		
	$\cos 2x \left(2\cos x - \sqrt{2}\right) = 0$,	
	$\cos 2x = 0$ or $\cos x = \frac{\sqrt{2}}{2}$	1A	
	$2x = 360^{\circ}n \pm 90^{\circ} \text{ (or } 180^{\circ}n + 90^{\circ} \text{) or } x = 360^{\circ}n \pm 45^{\circ}$	1M	For any general solution
	$x = 180^{\circ}n \pm 45^{\circ} \text{ (or } 90^{\circ}n + 45^{\circ}) \text{ or } 360^{\circ}n \pm 45^{\circ}$	1A	Accept radian measure:
	i.e. $x = 180^{\circ} n \pm 45^{\circ} \text{ (or } 90^{\circ} n + 45^{\circ} \text{)}$		$n\pi \pm \frac{\pi}{4}$ or $2n\pi \pm \frac{\pi}{4}$
		(4)	1

プログラスログラ 150 TEAGHERS		- Indiana
Solution	Marks	Remarks
4. $\frac{d}{dx}(x^2+1) = \lim_{\Delta x \to 0} \frac{[(x+\Delta x)^2+1] - [x^2+1]}{\Delta x}$	1M	For $\frac{f(x + \Delta x) - f(x)}{\Delta x}$
$= \lim_{\Delta x \to 0} \frac{x^2 + 2x\Delta x + (\Delta x)^2 - x^2}{\Delta x}$	1M	For expanding $(x + \Delta x)^2$
$= \lim_{\Delta x \to 0} \frac{(x + \Delta x - x)(x + \Delta x + x)}{\Delta x}$	1M	For factorizing $(x + \Delta x)^2 - x^2$
$= \lim_{\Delta x \to 0} (2x + \Delta x)$	1A	(pp-1) if $\lim_{\Delta x \to 0}$ was omitted
=2x	1A	Δx→0 or written improperly
	(4)	1 . ,
5. For $n=1$, $1 1 a-(a-1) 1$		
L.H.S. $=\frac{1}{a-1} - \frac{1}{a} = \frac{a - (a-1)}{a(a-1)} = \frac{1}{a(a-1)}$	8	1
R.H.S. = $\frac{1}{a(a-1)}$ \therefore L.H.S. = R.H.S. and so the statement is true for $n=1$.	1	
Assume $\frac{1}{a-1} - \frac{1}{a} - \frac{1}{a^2} - \dots - \frac{1}{a^k} = \frac{1}{a^k(a-1)}$, where k is a positive integer.	1	
$\therefore \frac{1}{a-1} - \frac{1}{a} - \frac{1}{a^2} - \dots - \frac{1}{a^{k+1}} = \frac{1}{a^k(a-1)} - \frac{1}{a^{k+1}}$ by the assumption	1	
$a^{-1} a^{-1} a^{-1} a^{-1} = \frac{a - (a - 1)}{a^{k+1}(a - 1)}$		
$=\frac{1}{a^{k+1}(a-1)}$	1	Follow through
Hence the statement is also true for $n = k + 1$. By the principle of mathematical induction, the statement is true for all positive integers n .	1 (5)	
$6. \sin 2x = \cos x$	1M	For finding intersection
$2\sin x \cos x = \cos x$ $(2\sin x - 1)\cos x = 0$		
$\sin x = \frac{1}{2} \text{or} \cos x = 0$		
Alternative solution $\sin 2x = \cos x$		
$\cos\left(\frac{\pi}{2} - 2x\right) = \cos x (\text{or } \sin 2x = \cos\left(\frac{\pi}{2} - x\right))$	1M	
$\left\{ \frac{\pi}{2} - 2x = x \text{ (or } 2x = \frac{\pi}{2} - x \text{)} \right\} $ (for $0 < x < \frac{\pi}{2}$)	<u> </u>	
$x = \frac{\pi}{6} \text{ (for } 0 < x < \frac{\pi}{2} \text{) or } x = \frac{\pi}{2}$	- 1A	Accept $x = 30^{\circ}$
Hence the shaded area = $\int_0^{\frac{\pi}{6}} (\cos x - \sin 2x) dx$	1M	For $A = \int_a^b (y_2 - y_1) dx$
$= \left[\sin x + \frac{\cos 2x}{2}\right]_0^{\frac{\pi}{6}}$	1A	For $A = \int_{a}^{b} (y_2 - y_1) dx$ For $\pm \left(\sin x + \frac{\cos x}{2}\right)$
$=\frac{1}{4}$	1A (5)	

2007-CE-A MATH-4

2007-CE-A MATH-5

Solution	Marks	Remarks
Alternative solution (2)		
The equations of <i>OA</i> and <i>OB</i> are $y = \frac{1}{2}x$ and $y = -2x$ respectively.	1M	For finding both equations
The distance from C to OA is $\left \frac{\left(\frac{2}{3}\right) - 2(2)}{\sqrt{1^2 + 2^2}} \right = \frac{2\sqrt{5}}{3}$	1M+	1M for distance formula
The distance from C to OB is $\frac{2\left(\frac{2}{3}\right) + (2)}{\sqrt{2^2 + 1^2}} = \frac{2\sqrt{5}}{3}$] IA	1A for either value correct
Since C is equidistant from OA and OB , so $\angle COA = \angle BOC$.		
Hence OC is the angle bisector of $\angle AOB$.	1	Follow through
Alternative solution (3)		
The equations of <i>OA</i> , <i>OB</i> and <i>OC</i> are $y = \frac{1}{2}x$, $y = -2x$ and $y = 3x$ respectively.	1M	For finding 2 of the equation
The equation(s) of the angle bisector(s) of lines OA and OB is / are		
$\left \frac{2x+y}{\sqrt{2^2+1^2}} = -\frac{x-2y}{\sqrt{2^2+1^2}} \right \text{ or } \frac{2x+y}{\sqrt{2^2+1^2}} = \frac{x-2y}{\sqrt{2^2+1^2}}$	1M	
i.e. $y = 3x$ [or $x = -3y$]	1A	
Hence OC is the angle bisector of $\angle AOB$.	1	Follow through
Alternative solution (4)		For finding 2 of the
$\overrightarrow{OA} = 2\mathbf{i} + \mathbf{j}, \overrightarrow{OC} = \frac{2}{3}\mathbf{i} + 2\mathbf{j}, \overrightarrow{OB} = -2\mathbf{i} + 4\mathbf{j}$	1M	For finding 2 of the position vectors
$\overrightarrow{OA} \cdot \overrightarrow{OC} = \overrightarrow{OA} \cdot \overrightarrow{OC} \cos \angle COA$		
$\frac{4}{3} + 2 = \sqrt{5}\sqrt{\frac{40}{9}}\cos\angle COA$	1M	
$\cos \angle COA = \frac{1}{\sqrt{2}}$	1A	
V2		
$\overrightarrow{OB} \cdot \overrightarrow{OC} = \overrightarrow{OB} \cdot \overrightarrow{OC} \cos \angle BOC$		For either one
$\frac{-4}{3} + 8 = \sqrt{20}\sqrt{\frac{40}{9}}\cos\angle BOC$		
$\cos \angle BOC = \frac{1}{\sqrt{2}}$		
$\therefore \cos \angle COA = \cos \angle BOC$		
Hence $\angle COA = \angle BOC$ and so OC is the angle bisector of $\angle AOB$.	1	Follow through
Alternative solution (5) The areas of $\triangle COA : \triangle BOC = AC : CB$	1M	
$\therefore \frac{1}{2} (OC)(OA) \sin \angle COA : \frac{1}{2} (OC)(OB) \sin \angle BOC = AC : CB$	1M	For area formula
$\frac{1}{2}(OC)\sqrt{2^2 + 1^2} \sin \angle COA : \frac{1}{2}(OC)\sqrt{(-2)^2 + 4^2} \sin \angle BOC = AC : CB$		
$\sqrt{5} \sin \angle COA : 2\sqrt{5} \sin \angle BOC = 1 : 2$		
$\sin \angle COA = \sin \angle BOC$ Hence, $\angle COA = \angle BOC$ and so CC is the angle bisector of $\angle AOB$.	IA 1	Follow through
Hence $\angle COA = \angle BOC$ and so OC is the angle bisector of $\angle AOB$.	(5)	Follow through

		六队教训参阅 FOR TEACHERS	OSLC	/INL I
		Solution	Marks	Remarks
3.	(a)	$\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB}$	1A	$\overrightarrow{OR} \overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC}$
		$= k(6\mathbf{i} + 3\mathbf{j}) - (2\mathbf{i} + 6\mathbf{j})$		
		$= (6k-2)\mathbf{i} + (3k-6)\mathbf{j}$	1A	
	(b)	$\therefore BC \perp OA, \therefore \overrightarrow{BC} \cdot \overrightarrow{OA} = 0$	1M	Accept $\overrightarrow{BC} \cdot \overrightarrow{OC} = 0$
		$[(6k-2)\mathbf{i} + (3k-6)\mathbf{j}] \cdot (6\mathbf{i} + 3\mathbf{j}) = 0$		A^{y} B
		(6k-2)(6)+(3k-6)(3)=0	1M	
		$k=\frac{2}{3}$	1A	/ \ -A
		3	""	C
		Alternative solution	 	o
		$OA^2 = 45$, $OB^2 = 40$, $OC^2 = 45k^2$, $BC^2 = (6k-2)^2 + (3k-6)^2$	1M	For finding 2 of the length
		Since $\triangle OBC$ is a right-angled triangle,	'''	To mang 2 of the length
		so $45k^2 + (36k^2 - 24k + 4) + (9k^2 - 36k + 36) = 40$ (Pythagoras theorem)	1M	
			1111	
		$90k^2 - 60k = 0$,	
		$k = \frac{2}{3}$ or 0 (rej.)	1A	(pp-1) if arrow sign was
			(5)	omitted in most cases
			(5)	
	(-)	By Pythagoras Theorem, $\frac{x^2}{4} + y^2 = 25$	1.4	
	(a)	By Pythagoras Theorem, $\frac{-}{4} + y = 23$	1A	
		x dx dy		
	(b)	$\therefore \frac{x}{2} \cdot \frac{dx}{dt} + 2y \cdot \frac{dy}{dt} = 0$	1M+1A	1M for differentiation
		dx - 4y dy		1
		$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{-4y}{x} \cdot \frac{\mathrm{d}y}{\mathrm{d}t}$		
		By (a), when $y = 3$, $x = 8$	1M	For finding x
		dx = -4.3 (2) - 3		
		$\left. \frac{\mathrm{d}x}{\mathrm{d}t} \right _{y=3} = \frac{-4\cdot3}{8} \left(-2\right) = 3$		
		Alternative solution	-	
		$\frac{x}{2} + 2y \cdot \frac{dy}{dx} = 0$	1M	1M for differentiation
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-x}{4y}$		
		$\frac{dx}{dx} = \frac{4y}{4y}$		
		<u>dy</u>		n n n
		$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}y}{\mathrm{d}t}} = \frac{-4y}{x} \cdot \frac{\mathrm{d}y}{\mathrm{d}t}$	1A	
		$\frac{dt}{dt} = \frac{dy}{dt} = x + dt$,= y
		By (a), when $y = 3$, $x = 8$	1M	For finding x
			1111	Tol Initing x
		$\left \therefore \frac{\mathrm{d}x}{\mathrm{d}t} \right _{y=3} = \frac{-2}{\left(\frac{-8}{100} \right)} = 3$		
		$\left(\begin{array}{c} u_{1y=3} & \left(\frac{-\delta}{4\cdot 3}\right) \end{array}\right)$		
		Hence the rate of change of the distance between A and B is 3 m s^{-1} .	1A	Accept $\frac{dx}{dx} = 3 \text{ m s}^{-1}$
		Trende the rate of change of the distance between A and D is 3 ins.	I IA	Accept $\frac{\mathrm{d}x}{\mathrm{d}t}\Big _{y=3} = 3 \mathrm{m s^{-1}}$
				(u-1) if m s ⁻¹ was omitted
			(5)	
			1	•

	六队软即参阅 TONTERONENO	OOL O	
	Solution	Marks	Remarks
10. (a)	The equation of the given line is $\frac{x}{4} + \frac{y}{2} = 1$.	1M	For any straight line form
	$\therefore f'(x) = y = 2 - \frac{x}{2}$		
	Hence the slope of the tangent at $x = 1$ is $f'(1) = \frac{3}{2}$.	1M+1A	1M for substituting $x = 1$
(b)	There is only one turning point, with x-coordinate 4.	1 A	(pp-1) for (4,0)
	It is a maximum point since the slope changes from positive to negative.	1A (5)	$\underline{OR} \text{ since } f''(x) = \frac{-1}{2} < 0$
		(3)	
11. (a)	For $0 \le x \le 1$, $ x-1 = x - 1$ becomes	1.4	ř
	$ 1-x=x-1 \\ x=1 $	1A 1A	
24.5			
(b)	For $x < 0$, $ x-1 = x - 1$ becomes $1-x = -x - 1$		For considering BOTH
	Hence there is no solution in this case.	1A	x < 0 and $x > 1$
	For $x > 1$, $ x-1 = x - 1$ becomes	1M	
	For $x > 1$, $ x-1 = x - 1$ becomes $x - 1 = x - 1$ For either one	1111	
	which is true for all real x Hence the solution in this case is $x > 1$.		
		22.22-5	No. i
	Combining all three cases, the overall solution is $x \ge 1$.	1A	$\overline{\eta}$
	Alternative solution y		V V V V V V V V V V V V V V V V V V V
	y = x-1 $y = x - 1$		- J -
	y = x -1		
		1M	For attempting to use
			graphical method
	x	1A	For either graph
	From the graph, we see that the condition for $ x-1 = x - 1$ is $x \ge 1$.	1A	
		(5)	
	2)n (1. 12n	43.5	2 (1)2
12. (1-	$(2x+x^2)^n = (1-x)^{2n}$	1M	For $1 - 2x + x^2 = (1 - x)^2$
OB	$= 1 - \frac{1}{2n} C_1 x + \frac{1}{2n} C_2 x^2 - \frac{1}{2n} C_3 x^3 + \cdots$ General term = $\frac{1}{2n} C_r (-1)^r x^r$	1M	For bin. expansion up to
		1M	
	$\frac{2n(2n-1)}{2} = 66$	1M	For $_{2n}C_2 = 66$
$2n^2$	$\frac{n^2 - n - 66 = 0}{1 - n - 35}$		1 1 2
n =	6 or $\frac{-11}{2}$ (rej.)	1A	
	ince the coefficient of $x^3 = -12 C_3$	1M	
	= -220	. 1A	

Solution	Marks	Remarks
Alternative solution		
$\left(1 - 2x + x^2\right)^n = \left[1 + \left(-2x + x^2\right)\right]^n$	1M	For grouping the trinomial expression into binomial
$=1+{}_{n}C_{1}(-2x+x^{2})+{}_{n}C_{2}(-2x+x^{2})^{2}+{}_{n}C_{3}(-2x+x^{2})^{3}+\cdots$	1M	For binomial expansion
$=1+{}_{n}C_{1}\left(-2x+x^{2}\right)+{}_{n}C_{2}\left(4x^{2}-4x^{3}+\cdots\right)+{}_{n}C_{3}\left(-8x^{3}+\cdots\right)+\cdots$		up to $\left(-2x+x^2\right)^2$
$= 1 - 2_n C_1 x + (_n C_1 + 4_n C_2) x^2 + (-4_n C_2 - 8_n C_3) x^3 + \cdots$		
$\therefore n+4\frac{n(n-1)}{2}=66$	1M	For ${}_{n}C_{1} + 4_{n}C_{2} = 66$
$2n^2 - n - 66 = 0$		
(n-6)(2n+11)=0		
$n = 6 \text{ or } \frac{-11}{2} \text{ (rej.)}$	1A	
Hence the coefficient of $x^3 = -4_6 C_2 - 8_6 C_3$	1M	
= -220	1A	(pp-1) if dots were omitted
	(6)	in most cases
$\int y = x^2$		
13. (a) $\begin{cases} y = x^2 \\ y = mx - 2m \end{cases}$		
$\therefore x^2 - mx + 2m = 0$ (*)	1M	For eliminating y
Since C intersects L at 2 distinct points, so $\Delta > 0$		
i.e. $(-m)^2 - 4(1)(2m) > 0$	1M	Accept $\Delta \ge 0$
Alternative solution	1M	For aliminating w
$\therefore y^2 + m(4 - m)y + 4m^2 = 0$ Since C intersects L at 2 distinct points, so $\Delta > 0$	IM	For eliminating x
i.e. $m^2(4-m)^2 - 4(1)(4m^2) > 0$	1M	Accept $\Delta \ge 0$
m(m-8)>0		
m < 0 or $m > 8$	1A	
(b) (i) Let A , B and M be (x_1, y_1) , (x_2, y_2) and (p, q) respectively.		
Since x_1 and x_2 are roots of (*), so $x_1 + x_2 = m$.	1M	
Alternative solution	h	
$x_1 = \frac{m + \sqrt{m^2 - 8m}}{2}$ and $x_2 = \frac{m - \sqrt{m^2 - 8m}}{2}$ (or vice versa)		1
$\therefore x_1 + x_2 = m$		
$\therefore p = \frac{x_1 + x_2}{2} = \frac{m}{2}$		
2 2		¥
$\therefore q = m\left(\frac{m}{2}\right) - 2m = \frac{m^2 - 4m}{2}$		
i.e. M is $\left(\frac{m}{2}, \frac{m^2 - 4m}{2}\right)$	1	
i.e. M is $\left(\frac{2}{2}, \frac{2}{2}\right)$	•	
(ii) If AB is bisected by the straight line $x + y = 5$, then		
$\frac{m}{2} + \frac{m^2 - 4m}{2} = 5$	1A	a
$m^2 - 3m - 10 = 0$ m = -2 or 5 (rej. by (a))		
i.e. $m = -2$	1A	
	(7)	1

只限教師參閱 FOR TEACHERS' USE ONLY

	六峽教師參閱 FOR TEACHERS	USE	
	Solution	Marks	Remarks
14. (a)	$AX \perp XB$, $AX^2 + XB^2 = AB^2$ (Pythagoras Theorem)	1M	← ç
	$AX^2 + XB^2 + BC^2 = AB^2 + BC^2$	1M	For either one
	$\therefore XB^2 + BC^2 = XC^2$ and $AB^2 + BC^2 = AC^2$ (Pythagoras Theorem)		← //]
	$AX^2 + XC^2 = AC^2$		/iB
	Hence $AX \perp XC$ (Converse of Pythagoras Theorem)	1	/
		(3)	A
			X
			1 211-1611
(b)	(i) $FB = \sqrt{(1)^2 + (3\sqrt{2})^2 - 2(1)(3\sqrt{2})\cos 135^\circ} = 5$	1M	For cosine formula
	$\frac{AF}{\sin \angle ABF} = \frac{FB}{\sin \angle FAB}$		$\frac{D}{3\sqrt{2}m}$
	$\frac{1}{\sin \angle ABF} = \frac{5}{\sin 135^{\circ}}$	1M	lm 35°
	$\sin \angle ABF = \frac{1}{5\sqrt{2}}$		
	$\therefore \cos \angle ABF = \frac{\sqrt{(5\sqrt{2})^2 - 1^2}}{5\sqrt{2}} = \frac{7}{5\sqrt{2}}$		X
	$\therefore \cos \angle ABF = \frac{\sqrt{\sqrt{2}}}{5\sqrt{2}} = \frac{\sqrt{2}}{5\sqrt{2}}$	1A	F
	Hence $XB = AB \cos \angle ABF$		- 10 T
	$=\left(3\sqrt{2}\right)\left(\frac{7}{5\sqrt{2}}\right)=\frac{21}{5}$ m	1	
	(3\(\frac{2}{2}\)		n di se
	Alternative solution (1)		1 2 22 Hz 1 2 25 -
	$FB = \sqrt{(1)^2 + (3\sqrt{2})^2 - 2(1)(3\sqrt{2})\cos 135^\circ} = 5$	1M	For cosine formula
	The area of $\triangle AFB = \frac{1}{2}(1)(3\sqrt{2})\sin 135^{\circ}$	1A	
	$=\frac{3}{3}$		
	1424 3		2. 2.
	Hence $\frac{1}{2}(5)(AX) = \frac{3}{2}$ $AX = \frac{3}{5}$	1M	
	$AX = \frac{3}{5}$		
	Therefore $XB = \sqrt{(3\sqrt{2})^2 - \left(\frac{3}{5}\right)^2} = \frac{21}{5} \text{ m}$	1	
	Alternative solution (2)		
	$FB = \sqrt{(1)^2 + (3\sqrt{2})^2 - 2(1)(3\sqrt{2})\cos 135^\circ} = 5$	1M	For cosine formula
	Let $XB = x$ and therefore $FX = 5 - x$	1. 1	
	In $\triangle AXB$, $AX^2 = (3\sqrt{2})^2 - x^2$	$\left \right $ 1A	
	In $\triangle AXF$, $AX^2 = (1)^2 - (5-x)^2$]	
	$\therefore 18 - x^2 = 1 - 25 + 10x - x^2$	1M	
	$x = \frac{21}{6}$ m	1	
	1 5	1 1	

只限教師参阅 FOR TEACHER	S'USE C	DNLY
Solution	Marks	Remarks
(ii) By (a), since $AX \perp XB$, so $AX \perp XC$; and since $AX \perp XF$, so $AX \perp X$. Hence the required angle (θ) is $\angle CXE$.	Œ 1A	
	, C. 35 990ga ari	
$\tan \angle CXB = \frac{\left(5\right)}{\left(5\right)}$		
$\tan \angle CXB = \frac{\left(\frac{7}{5}\right)}{\left(\frac{21}{5}\right)}$		
$=\frac{1}{3}$	1A	
$FX = 5 - \frac{21}{5} = \frac{4}{5}$	2.50	
$\left(\frac{7}{5}\right)$		Either one
$\tan \angle EXF = \frac{\left(\frac{7}{5}\right)}{\left(\frac{4}{5}\right)}$		
$=\frac{7}{4}$		
$\therefore \tan \theta = \tan(180^{\circ} - \angle CXB - \angle EXF)$	1M	For $\theta = 180^{\circ} - \angle CXB - \angle EX$
$= -\tan(\angle CXB + \angle EXF)$	1101	FOI U = 180 - ZCAB - ZEA
$= -\frac{\frac{1}{3} + \frac{7}{4}}{1 - \frac{1}{2} \cdot \frac{7}{4}}$	1M	
$1 - \frac{1}{3} \cdot \frac{1}{4}$ $= -5$	1A	
	IA	
Alternative solution By (a), since $AX \perp XB$, so $AX \perp XC$; and since $AX \perp XF$, so $AX \perp X$	Œ	
Hence the required angle (θ) is $\angle CXE$.	1A	
$CX = \sqrt{\left(\frac{7}{5}\right)^2 + \left(\frac{21}{5}\right)^2}$		1
$=\frac{7\sqrt{10}}{5}$	1A	\leftarrow
$FX = 5 - \frac{1}{5} = \frac{1}{5}$		
$FX = 5 - \frac{21}{5} = \frac{4}{5}$ $EX = \sqrt{\left(\frac{7}{5}\right)^2 + \left(\frac{4}{5}\right)^2}$		Either one
$=\frac{\sqrt{65}}{5}$		
$\therefore EC^2 = CX^2 + EX^2 - 2(CX)(EX)\cos\theta$		
$5^2 = \left(\frac{7\sqrt{10}}{5}\right)^2 + \left(\frac{\sqrt{65}}{5}\right)^2 - 2\left(\frac{7\sqrt{10}}{5}\right)\left(\frac{\sqrt{65}}{5}\right)\cos\theta$	1M	
$\cos\theta = \frac{-1}{\sqrt{26}}$		
$\therefore \tan \theta = \frac{\sqrt{26 - 1^2}}{-1}$	1M	
= -5	1A	
	(9)	j

	六队教训参阅 FOR TEACHERO		
	Solution	Marks	Remarks
5. (a)	The distance from P to L_1 is $\left \frac{2a-b}{\sqrt{2^2+(-1)^2}} \right $	1A	C $P \bullet 8\sqrt{5}$ M A
	Hence $\left(\frac{2a-b}{\sqrt{5}}\right)^2 + \left(4\sqrt{5}\right)^2 = r^2$ (Pythagoras theorem)	1M	0/B
	i.e. $r^2 = \frac{4a^2 - 4ab + b^2 + 400}{5}$	1	Withhold if the absolute sign of (*) is missed
		(3)	
(b)	(i) The distance from P to L_2 is $\left \frac{2a+b}{\sqrt{2^2+1^2}} \right $.	1A	Withhold 1A if the absolut sign was omitted OR (x, y) was used instead of (a, b)
	Since C touches L_2 , so $r = \left \frac{2a+b}{\sqrt{5}} \right $.	1M	L ₂ y
	$\therefore r^2 = \frac{4a^2 + 4ab + b^2}{5}$	1A	P• //
	Alternative Solution Solving $C:(x-a)^2+(y-b)^2=r^2$ and $L_2:y=-2x$, we have		843
	$x^{2} - 2ax + a^{2} + 4x^{2} + 4bx + b^{2} = r^{2}.$ $5x^{2} - 2(a - 2b)x + a^{2} + b^{2} - r^{2} = 0$	1A	9
	$5x^{2} - 2(a - 2b)x + a^{2} + b^{2} - r^{2} = 0$ $\Delta = 4(a - 2b)^{2} - 4 \cdot 5(a^{2} + b^{2} - r^{2}) = 0$	1M	For $\Delta = 0$
	$a^{2} - 4ab + 4b^{2} = 5(a^{2} + b^{2} - r^{2})$ $\therefore r^{2} = \frac{4a^{2} + 4ab + b^{2}}{5}$	1A	
	By (a), $\frac{4a^2 - 4ab + b^2 + 400}{5} = \frac{4a^2 + 4ab + b^2}{5}$	1M	
	i.e. $ab = 50$ Hence the equation of the locus of P is $xy = 50$.	1A	
	(ii) C is smallest when the chord is in fact the diameter of C , i.e. when P lies on L_1 .	1M	Can be omitted
	Hence P satisfies $xy = 50$ (from (b)(i)) and $L_1: y = 2x$	1M	San St Similar
	Solving, $(x, y) = (-5, -10) \text{ or } (5, 10)$	1A	

只സ教師参阅 FUR TEACHERS	09E C	INLT
Solution	Marks	Remarks
	+	
Alternative Solution		
From (a) and (b)(i), $r^2 = \frac{1}{5} \left 4a^2 - 4(50) + \left(\frac{50}{a} \right)^2 + 400 \right $	1M	
5 la 1(35) (a) 1 100	1	
4 2 500		
$=\frac{4}{5}a^2+40+\frac{500}{a^2}$		
dr 8a 1000	134	
$\therefore 2r \frac{dr}{da} = \frac{8a}{5} - \frac{1000}{a^3} - \dots $ (*)	1M	11 , 18
When $\frac{dr}{dr} = 0$ $\frac{4}{r} = 625$ which gives $r = \pm 5$		
When $\frac{dr}{da} = 0$, $a^4 = 625$ which gives $a = \pm 5$.		21 1
$d^2r (dr)^2 = 4 \cdot 1500$		
From (*), $r \frac{d^2 r}{da^2} + \left(\frac{dr}{da}\right)^2 = \frac{4}{5} + \frac{1500}{a^4}$		
d^2r $1 \begin{bmatrix} 4 & 1500 \end{bmatrix}$		
$\left \frac{d^2 r}{da^2} \right _{a=\pm 5} = \frac{1}{r} \left[\frac{4}{5} + \frac{1500}{(\pm 5)^4} \right] > 0$		Accept using sign test
Hence when C is smallest, r is minimum and that occurs when $a = \pm 5$ Therefore the centre is $(a,b) = (-5,-10) \text{ or } (5,10)$	1A	Withhold 1A if the condition
Therefore the centre is $(a,b) = (-3,-10)$ of $(3,10)$	17	of minimum was unchecked
	1	or minimum was unencodes
:. by (a), $r^2 = 80$		
Hence C is $(x+5)^2 + (y+10)^2 = 80$ or $(x-5)^2 + (y-10)^2 = 80$	1A	,
i.e. $x^2 + y^2 \pm 10x \pm 20y + 45 = 0$		
1.e. $x + y \pm 10x \pm 20y + 43 = 0$		
	(9)	
		-
		- 2
e e		
		I ₁
84 A. 9		
	1	
	9 1	

ALTERNATIVE SOLUTION

15 (a) Consider area of APB	
$\frac{1}{2}r^2\sin 2\langle APM = \frac{1}{2}AB\times PM$	
r2(2:sin LAPM Coo LAPM) = AB x PM	
$2r^{2}\frac{4\sqrt{5}}{\sqrt{5}}\left[1-\left(\frac{4\sqrt{5}}{5}\right)^{2}-8\sqrt{5}\left(\frac{2\alpha-b}{\sqrt{5}}\right)^{2}\right]$	←[M.
$2r^{2} \frac{4\sqrt{5}}{r} \int \left[-\left(\frac{4\sqrt{5}}{r}\right)^{2} - 8\sqrt{5} \left(\frac{2a-b}{\sqrt{5}}\right)^{2} \right]$ $r \int \left[-\frac{80}{r^{2}} - \frac{2a-b}{\sqrt{5}} \right]$	
$F(r^2-80) = (2a-b)^2$	
i.e. $r^2 = \frac{4a^2 - 4ab + b^2 + 400}{5}$	<u> </u>
5	
(b) (i) Solving $C: (x-q)^2 + (y-b)^2 = r^2$ and $L_2: y = -2x$, we have
$x^2 + 2ax + a^2 + 4x^2 + 4bx + b^2 = x^2$	
(b) (i) Solving $C: (x-a)^2 + (y-b)^2 = r^2$ and $L_2: y=-2x$ $x^2 - 2ax + a^2 + 4x^2 + 4bx + b^2 = r^2$ from (a) $\frac{1}{5}x^2 - 2(a-2b)x + a^2 + b^2 - \frac{4a^2 - 4ab + b^2 + 4oo}{5} = 0$	5 IM (r2 f
$5x^2 - 2(q-2b)x + \frac{a^2 + 4ab + 4b^2 - 400}{5} = 0.$	A. (for.
$\Delta = 4(a-2b)^2 - 4.5 \cdot \left(\frac{a^2 + 4ab + 4b^2 - 400}{5}\right) = 0.$	A IM
	4 114
$a^2 + 4ab + 4b^2 - (a^2 + 4ab + 4b^2 - 400) = 0$	
Sab = 400	* 1 A
ab = 50	<u></u> ← \ A.
Ci). Area of C attains its least when the length of di	iguater = 815
ie. 2r= 8√5. ← IM	
$r^2 = \frac{1}{2} \delta$	
from (a) (4a2-4ab+b2+400, -80)	
Jon (a) (40 (45 tb) (1) = 80)	1 x xxxxxxx
$(2a-b)^2 = 0$	
2a-b = 0	
2x - y = 0.	

		Solution	Marks	Remarks
16.	(a)	(i) The area of the minor segment enclosed by \widehat{PR} and PR		
		$= \frac{1}{2}(1)^2(2\theta) - \frac{1}{2}(1)(1)(\sin 2\theta)$	1A	
		$=\theta-\frac{1}{2}\sin 2\theta$		
		$\therefore A = \pi(1)^2 - \pi(\cos\theta)^2 - \left(\theta - \frac{1}{2}\sin 2\theta\right)$	1M	For $A = C_1 - C_2$ – segment
		$= \pi \sin^2 \theta - \theta + \frac{1}{2} \sin 2\theta$	1	
		(ii) $\frac{dA}{d\theta} = \pi (2 \sin \theta \cos \theta) - 1 + \frac{1}{2} (\cos 2\theta)(2)$	1A	n de la la marie de la
		$= \pi \sin 2\theta - 1 + \left(1 - 2\sin^2\theta\right)$		1 20-7
		$= \pi \sin 2\theta - 2 \sin \theta \cos \theta \tan \theta$		
		$= (\pi - \tan \theta) \sin 2\theta$	1	Follow through
			(5)	1
	(b)	Since $0 < 2\theta < \pi$, so $\sin 2\theta > 0$.	1M	
		$\therefore \frac{\mathrm{d}A}{\mathrm{d}\theta} = 0 \text{ when } \tan \theta = \pi$	1M	For $\frac{dA}{d\theta} = 0$
		$\frac{d^2 A}{d\theta^2} = (\pi - \tan \theta)(2\cos 2\theta) + (-\sec^2 \theta)\sin 2\theta$		
		$= 2(\pi - \tan \theta)\cos 2\theta - 2\tan \theta$		
		$\frac{\mathrm{d}^2 A}{\mathrm{d}\theta^2}\bigg _{\tan\theta=0} = 0 - 2\pi < 0$		
		tan $\theta = \pi$		
		Alternative Solution		
		$\frac{\mathrm{d}A}{\mathrm{d}\theta} > 0$ when $0 < \tan \theta < \pi$,		
		and $\frac{dA}{d\theta} < 0$ when $\tan \theta > \pi$,		
		Therefore A attains its greatest value when $\tan \theta = \pi$.	1A	
			(3)	
	(c)	The perimeter is $s = PQR + PR + \text{circumference of } C_2$		
	(0)	$= 2\pi - 2\theta + 2\sin\theta + 2\pi\cos\theta$	1A	
			***	1
		When A is max., $\tan \theta = \pi$ which gives $\cos \theta = \frac{1}{\sqrt{1+\pi^2}}$ and $\sin \theta = \frac{\pi}{\sqrt{1+\pi^2}}$		
		$\frac{\mathrm{d}s}{\mathrm{d}\theta} = -2 + 2\cos\theta - 2\pi\sin\theta$	1M	
		ds $\frac{1}{2}$ $\frac{2}{3}$ $\frac{2\pi^2}{3}$		<u>OR</u>
		$\left. \frac{\mathrm{d}s}{\mathrm{d}\theta} \right _{\tan\theta=\pi} = -2 + \frac{2}{\sqrt{1+\pi^2}} - \frac{2\pi^2}{\sqrt{1+\pi^2}}$		$\frac{ds}{ds} = -2(1 - \cos\theta + \pi \sin\theta)$
		$\frac{\sqrt{1+n}}{ \alpha -7.38 } \neq 0$	1M	$\frac{ds}{d\theta} = -2(1 - \cos\theta + \pi \sin\theta)$ < 0 for any $0 < \theta < \frac{\pi}{2}$
		Alternative solution	 	2
		At $\theta = \tan^{-1} \pi \approx 1.26$, $s \approx 2\pi - 2(1.26) + 2\sin(1.26) + 2\pi\cos(1.26)$	1M	
		≈ 7.57 At $\theta = 1.2$, $s = 2\pi - 2(1.2) + 2\sin(1.2) + 2\pi\cos(1.2)$	1M	Can use any θ for $0 < \theta < 1.26$
		$\approx 8.02 > 7.57$	1141	
		Hence s will not attain its greatest value when A attains its greatest value.		
		The student is incorrect.	1A	Follow through
			(4)]
			•	•

			只败致即参阅	FUR TEACHERS USE	UNLT
			Solution	Mark	Remarks
17.	(a)	\overrightarrow{OM}	$\ddot{c} = \frac{\mathbf{a} + \mathbf{b}}{2}$	1A	
				(1)	
			→ 2 →		
	(b)	(i)	$\overrightarrow{OP} = \frac{2}{3}\mathbf{a}$ and $\overrightarrow{OQ} = k\mathbf{b}$		
			$\therefore \overrightarrow{OG} = \frac{3\left(\frac{2}{3}\mathbf{a}\right) + 4(k\mathbf{b})}{3+4}$		
			$\therefore OG = \frac{3+4}{3+4}$	1M	
			$=\frac{2\mathbf{a}+4k\mathbf{b}}{7}$	1A	
		('')	Circa O. Caral Managellinasa		
		(ii)	Since O , G and M are collinear, so $\left(\frac{2}{2}\right) \left(\frac{4k}{2}\right)$		
			$\frac{\left(\frac{2}{7}\right)}{\left(\frac{1}{2}\right)} = \frac{\left(\frac{4k}{7}\right)}{\left(\frac{1}{2}\right)}$	1M	
			$\left(\frac{1}{2}\right)$ $\left(\frac{1}{2}\right)$	·	
		3	Alternative Solution		
			Since O , G and M are collinear, so $\overrightarrow{OG} \cdot \overrightarrow{AB} = 0$	7	
			$\frac{2\mathbf{a} + 4k\mathbf{b}}{7} \cdot (\mathbf{b} - \mathbf{a}) = 0$	1M	
			$\left 4k \mathbf{b} ^2 + (2-4k)\mathbf{a} \cdot \mathbf{b} - 2 \mathbf{a} ^2 = 0 \right $		
			$\therefore \mathbf{a} \cdot \mathbf{b} = (1)(1)\cos 60^{\circ} = \frac{1}{2}$		
			$4k \mathbf{b} ^2 + (2-4k)\mathbf{a} \cdot \mathbf{b} - 2 \mathbf{a} ^2 = 0$ $\therefore \mathbf{a} \cdot \mathbf{b} = (1)(1)\cos 60^\circ = \frac{1}{2}$ $\therefore 4k(1)^2 + (2-4k)(\frac{1}{2}) - 2(1)^2 = 0$		
			$k = \frac{1}{2}$		
			$\therefore \overrightarrow{OQ} = \frac{1}{2}\mathbf{b}$		7,
			$\therefore \overrightarrow{PQ} = \frac{1}{2}\mathbf{b} - \frac{2}{3}\mathbf{a}$	1	
				(4)	
	(c)	(i)	$\mathbf{a} \cdot \mathbf{b} = (1)(1)\cos 60^\circ = \frac{1}{2}$	1A	
	(-)	(-)	$\left \overrightarrow{PQ} \right ^2 = \left(\frac{1}{2} \mathbf{b} - \frac{2}{3} \mathbf{a} \right) \cdot \left(\frac{1}{2} \mathbf{b} - \frac{2}{3} \mathbf{a} \right)$	1M	
				1141	
			$=\frac{1}{4}\left \mathbf{b}\right ^2-\frac{2}{3}\mathbf{a}\cdot\mathbf{b}+\frac{4}{9}\left \mathbf{a}\right ^2$,	
			$= \frac{1}{4}(1)^2 - \frac{2}{3}(\frac{1}{2}) + \frac{4}{9}(1)^2$		
			$=\frac{13}{36}$		
			$\left \overrightarrow{PQ} \right = \frac{\sqrt{13}}{6}$	1A	
			1 ~1 6		

六败教副参阅 FUR TEAUTIERS	0010	116
Solution	Marks	Remarks
(ii) $\left \overrightarrow{OM} \right = \sqrt{1^2 - \left(\frac{1}{2}\right)^2} = \frac{\sqrt{3}}{2}$	1A	
$\overrightarrow{PQ} \cdot \overrightarrow{OM} = \left \overrightarrow{PQ} \right \overrightarrow{OM} \right \cos \angle QGM$ $\left(\frac{1}{2}\mathbf{b} - \frac{2}{3}\mathbf{a}\right) \cdot \left(\frac{\mathbf{a} + \mathbf{b}}{2}\right) = \left(\frac{\sqrt{13}}{6}\right) \left(\frac{\sqrt{3}}{2}\right) \cos \angle QGM$	1M	ups u
$\frac{\sqrt{39}}{12}\cos\angle QGM = \frac{1}{4} \mathbf{b} ^2 - \frac{1}{12}\mathbf{a}\cdot\mathbf{b} - \frac{1}{3} \mathbf{a} ^2$ $= \frac{1}{4}(1)^2 - \frac{1}{12}(\frac{1}{2}) - \frac{1}{3}(1)^2$		A
$=\frac{-1}{8}$	1A	
$\therefore \cos \angle QGM = \frac{-3}{2\sqrt{39}}$ $\therefore \angle QGM = 104^{\circ} \text{ (correct to the nearest degree)}$	1A	
Alternative Solution $OQ = \left \frac{1}{2} \mathbf{b} \right = \frac{1}{2}$ $\frac{OQ}{\sin \angle OPQ} = \frac{QP}{\sin \angle QOP}$ $\frac{\frac{1}{2}}{\sin \angle OPQ} = \frac{\frac{\sqrt{13}}{6}}{\sin 60^{\circ}}$ $\sin \angle OPQ = \frac{3\sqrt{3}}{2\sqrt{13}}$	1M 1A	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Alternative Solution $OP = 1 \cdot \left(\frac{2}{2+1}\right) = \frac{2}{3}$ $\therefore OQ^2 = OP^2 + PQ^2 - 2(OP)(PQ)\cos \angle OPQ$ $\therefore \left(\frac{1}{2}\right)^2 = \left(\frac{2}{3}\right)^2 + \left(\frac{\sqrt{13}}{6}\right)^2 - 2\left(\frac{2}{3}\right)\left(\frac{\sqrt{13}}{6}\right)\cos \angle OPQ$ $\cos \angle OPQ = \frac{5}{2\sqrt{13}}$	1M	Marking Criteria 1M for any trigo. method 1A for any ONE relevant side / angle correctly fou 1A for ALL relevant side
$\angle OPQ \approx 46.1^{\circ}$ (since $\angle OPQ$ is acute from the figure) Since M is the mid-point of AB, so $\angle AOM = \angle BOM = 30^{\circ}$ $\therefore \angle OGP \approx 180^{\circ} - 30^{\circ} - 46.1^{\circ} = 103.9^{\circ}$ Hence $\angle QGM = \angle OGP = 104^{\circ}$ (correct to the nearest degree)	1A 1A	angles correctly found 1A for ∠QGM
	(7)	

Solution	Marks	Remarks
Solution	IVIAIKS	Kemarks
8. (a) $y = 2\sqrt{x} - x$		
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{x}} - 1$	1A	
For horizontal tangent, $\frac{dy}{dx}\Big _{x=r} = 0$.		
$\therefore \frac{1}{\sqrt{r}} - 1 = 0 \text{ which gives } r = 1$	1	
\sqrt{r}		
	(2)	1
(b) (i) Area under C_1 is $\int_0^1 (2\sqrt{x} - x) dx$	1A	
$= \left[\frac{4}{3}x^{\frac{3}{2}} - \frac{1}{2}x^{2}\right]_{0}^{1}$		
$=\frac{5}{6}$	1A	
Area under C_2 is $\int_2^3 \left[2\sqrt{3-x}-(3-x)\right] dx$	1M	
$= \left[2 \cdot \frac{2}{-3} \left(3 - x\right)^{\frac{3}{2}} - 3x + \frac{1}{2} x^{2}\right]_{2}^{3}$		
$=\frac{5}{6}$		
Alternative Solution		
Since C_2 is the reflection of C_1 about the line $x = \frac{3}{2}$, so the area under		
C_2 equals the area under C_1 .	1M	
So the area of $S = 4\left(\frac{5}{6}\right) + 2(1 \cdot 1)$		
$=\frac{16}{3}$	1A	2
(ii) Volume = $\frac{1}{2} \left\{ \pi \int_0^1 (2\sqrt{x} - x)^2 dx + \pi (1)^2 (1) + \pi \int_2^3 [2\sqrt{3 - x} - (3 - x)]^2 dx \right\}$	1M+1M	1M for $V_1 = \pi \int_a^b y^2 dx$ 1M for $V = \frac{1}{2} \left[V_1 + \pi (1)^2 (1) + V_1 \right]$
$= \frac{\pi}{2} \int_0^1 \left(4x - 4x^{\frac{3}{2}} + x^2 \right) dx + \frac{\pi}{2} + \frac{\pi}{2} \int_2^3 \left[4(3-x) - 4(3-x)^{\frac{3}{2}} + (3-x)^2 \right] dx$	dx	IM for $V = \frac{1}{2} \left[V_1 + \pi (1)^2 (1) + V \right]$
$= \frac{\pi}{2} \left[2x^2 - \frac{8}{5}x^{\frac{5}{2}} + \frac{1}{3}x^3 \right]_0^1 + \frac{\pi}{2} + \frac{\pi}{2} \left[-2(3-x)^2 + \frac{8}{5}(3-x)^{\frac{5}{2}} - \frac{1}{3}(3-x)^{\frac{5}{2}} \right]_0^1$	3] 1A	
$=\frac{37}{30}\pi$	1	

六阪教師参阅 FOR TEACHERS	USE	INLI
Solution	Marks	Remarks
Alternative Solution		
Volume = $\frac{1}{2} \left[2 \cdot \pi \int_0^1 (2\sqrt{x} - x)^2 dx + \pi (1)^2 (1) \right]$		$1M \text{ for } V_{\rm I} = \pi \int_a^b y^2 \mathrm{d}x$
$= \pi \int_0^1 \left(4x - 4x^{\frac{3}{2}} + x^2 \right) dx + \frac{\pi}{2}$		1M for $V = \frac{1}{2} \left[2V_1 + \pi (1)^2 (1) \right]$
$= \pi \left[2x^2 - \frac{8}{5}x^{\frac{5}{2}} + \frac{1}{3}x^3 \right]_0^1 + \frac{\pi}{2}$	1A	
$=\frac{37}{30}\pi$	1	
(iii) The volume of the middle part is $\frac{37}{90}\pi$ (by (ii)).		
Area of S_1 is $\frac{1}{2}\pi(1)^2 = \frac{\pi}{2}$		
Hence the length of the middle part is $\left(\frac{37\pi}{90}\right) / \left(\frac{\pi}{2}\right) = \frac{37}{45}$	1M	
$\therefore OQ = \frac{1}{2} \left(3 - \frac{37}{45} \right) = \frac{49}{45}$		
$\therefore OQ: OP = \frac{49}{45}: 3 = 49: 135$	1A	
Alternative Solution		
The volume of the first part is $\frac{37}{90}\pi$ (by (ii)).		mage in what you had
By (ii), the volume formed by C_1 is $\pi \int_0^1 \left(4x - 4x^{\frac{3}{2}} + x^2 \right) dx = \frac{11\pi}{30}$.		
Area of S_1 is $\frac{1}{2}\pi(1)^2 = \frac{\pi}{2}$		
Hence $Q - 1 = \left(\frac{37\pi}{90} - \frac{11\pi}{30}\right) / \frac{\pi}{2}$	1 M	For RHS
$\therefore OQ = \frac{49}{45}$ $\therefore OQ : OP = \frac{49}{45} : 3 = 49 : 135$	7.71	
$\therefore OQ: OP = \frac{49}{45}: 3 = 49: 135$	1A	
	(10)	-

SUPPLEMENTARY NOTES (1)

1.

Marking Scheme			
$x = \sqrt{2}$	1A		

Sample 1

$x = \sqrt{2}$	✓	1A	
= 1.414			

Sample 2

x = 1.414	×	0A

2.

	Marking Scheme				
(a)	: .	1M			
	$x = \sqrt{2}$	1A			
(b)	Substitute: $x = \sqrt{2}$	1M			
	:				
	y = 4.3	1A			

Sample 3

:	<u>Sample 5</u>						
	(a)	:	✓	1M			
		x = 1.414	×	0A			
	(b)	Substitute: $x = 1.414$	✓	1M			
		:					
		y = 4.3	1	1A			

Sample 4

(a)	:	1	1M			
	$x = \sqrt{3}$	×	0A			
(b)	Substitute: $x = \sqrt{3}$	✓	1M			
	:					
	y = 4.3	×	0A			

3.

	Marking Scheme				
(a)	:	1M			
	x = 2	1A			
(b)	:	1M			
	<i>y</i> = 4	1A			

Sample 5

(a)		×	0M
	•••••	×	0A
(b)	:	✓	1M
	x = 2	×	0A
	÷	✓	1M
	<i>y</i> = 4	✓	1A

Sample 6

:	✓	1M
x = 2	✓	1A
÷	✓	1M
y = 4	✓	1A

4. Final Answer

Like terms are not collected	Answers were not simplified		
$12x - 3y + 2 = 10x + 1$ $x = 2n\pi + \frac{\pi}{2} - \frac{\pi}{4}$ $y - 6\sin\theta = (\cos\theta)(x - 2\tan\theta)$) 0A	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x\cos(x^2 + 1)}{x^2}$ $x = \frac{4}{8}$ $20x - 30y = 0$) (pp-1)

SUPPLEMENTARY NOTES (2)

Section A Question 5

Part I

1. n=1, $\frac{1}{a-1} - \frac{1}{a} - \frac{1}{a^2} - \dots - \frac{1}{a^n} = \frac{1}{a^n(a-1)}$.

The statement is true for n = 1.

×

2. Assume / Let the statement be true for n = 1.

×

3. Assume / Let the statement be true for n = 1.

✓ (pp-1)

$$\frac{1}{a-1} - \frac{1}{a} = \frac{1}{a(a-1)}$$

The statement is true for n = 1.

Part II

4. $\frac{1}{a-1} - \frac{1}{a} - \frac{1}{a^2} - \dots - \frac{1}{a^k} = \frac{1}{a^k(a-1)}$ (NOT an assumption)

×

5. Assume (OR let / when / if / suppose) the statement is true for n = k. (k NOT defined)

6. Assume the statement is true for some / any / all positive integer(s).

✓

Assume the statement is true for some / any / all integer(s).

✓ (pp-1)

Assume the statement is true for some / any / all integer(s) k.

✓ (pp-1)

Assume the statement is true for some / any / all integer(s) n.

V

Assume the statement is true for n = k, where k is real / a constant.

×

7. Assume n = k. / Assume n = k is true. / Assume n is true for k.

✓ (pp-1)

8. Assume n = k, / Assume n = k is true, / Assume n is true for k,

$$\frac{1}{a-1} - \frac{1}{a} - \frac{1}{a^2} - \dots - \frac{1}{a^k} = \frac{1}{a^k(a-1)}.$$

✓

Part III

9. The statement is true for all real numbers /all integers / any integers.

×

10. The statement is true for all n /all integers n.

V