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sin (4+ B) =sin Acos Bz cos Asin B

cos(A+ B) =cos Acos BFsin Asin B

tan A+ tan B

b
1¥tan Atan B

2sin Acos B=sin(A+ B)+sin(4-B)
2cos Acos B=cos(A+ B)+cos(4A-B)
2sin Asin B=cos(4—-B)—-cos(A+B)

A+B A-B
cos 5

A+B . A-B
B

sin A +sin B =2sin

sin A-sin B=2cos sin

2
A-B
i
A-B
2

cos A+cos B =2cos 418

cos

cos A—cos B=-2sin A+Bsin
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(3 marks)

Section A (62 marks) 4
Answer ALL questicns in this section and write your answers in the spaces provided in this Question-Answer
Book.
L Find _c_l__[sm(2x+l)}‘
dx x
2 Prove the identity cos® x— cos? y =—sin(x+y)sin(x-y).

3¢ It is given that

(1-2x+3x2)" =1-10x+kx? + terms involving higher powers of x,

where n isa positive integer and k is a constant. Find the values of n and k.

(3 marks)

(5 marks)
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4, If Joc? +x+k>0 for all real values of x, where k=0, find the range of possible values of k.
(4 marks)

5. The straight line y = x+ & intersects the curve y= x? attwo points Pand Q. It is known that the
locus of the mid-point of PQ,as k varies, lies on a straight line L. Find the equationof L.
(4 marks)

Please do not write in the margin.
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Solve x|x|+5x+6=0.

{4 marks)
Let a and b be two vectors such that {a|= y‘g .| b|=2 and the angle between them is 150°,
(a) Finda-b.
(b) Find j2a+2b] .

(5 marks)

Please do not write in the margin.
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8. Prove that n° —n+3 is divisible by 3 for ail positive integers ».
’ {5 marks)
9. (a) Express cos@—ﬁsina in the form rcos{f+a), where » >0 and 0°<a <90°.
(b)  Find the general solution of the equation cos 2x-3sin2x=1.
. (6 marks)

Please do not write in the margin.
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The slope at any point (x, y) of a curve is given by ? =3+2cos2x
x

. 3 , .
point {—E—, —;’i} , find its equation.

Let L, be the straight line y=2x-5. L, and L;
are two straight lines passing through the origin and
each makes an angle of 45° with L, (see Figure 1).

(a)  Find the equations of I, and L.
{b) Find the area of the triangle bounded by L, ,

L, and Ls.
{6 marks)

Page total

. If the curve passes through the
(5 marks)
YA L
45°
/6 ’I
45°
_ / ' Figure 1
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12.

d
@ Let x*-xy+y?=7. Find <2

dx’

(b)  Find the equation of the normal to the curve x? —xy+y? =7 atthe point (1,3).

Let f(x) be a polynomial. Figure 2
shows a sketch of the curve y={f'(x),
where -2 <x<6. The curve cuts the
x-axis at the origin and (g, 0), where
0<a<6. Itis known that the areas of
the shaded regions R; and R, as
shown in Figure 2 are 3 and 1
respectively.

{a) Write down the x-coordinates of
the maximum and minimum
points of the curve y =f(x) for
-2<x<6.

(b) It is known that f(-2)=2 and
f(0=1.

() By considering L" £ dx,
find the value of f(a).

(ii) In Figure 3, sketch the curve
y="f(x) for -2<x<6.

Page total

(5 marks)
A
Ry
-2 § O a 6 ;
Figure 2
YA
_2 0 e e -y
Figure 3
{7 marks)
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SECTION B (48 marks)
Answer any FOUR questions in this section. Each question carries 12 marks.
Write your answers in the CE(B) answer book.

14, Let J bethe circle x> + y® =72, where #>0.
(@  Suppose that the straight line L:y = mx+c isatangentto J,
@@  Showthat ¢? =r2(m?+1),

(i)  If L passes througha point (h, k), show that (k—mh)? =r2(m? +1).

(4 marks)
®
YA P(1,4)
Q
J
; ’ =
x
R(5,-5) Figure 4

J is inscribed in a triangle POR (see Figure 4). The coordinates of P and R are (7,4) and
' (=35, — 5) respectively.

(iy  Find the radius of J.

(i)  Using (a) (ii), or otherwise, find the slope of PO.

(iii)  Find the coordinates of Q.
{8 marks)
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In Figure 5, ABCD is a horizontal square board of side 2 m for displaying diamonds. Let M, N be the
mid-points of BA and CD respectively. Three identical small bulbs are located at points N, P and ¢

respectively for illumination purpose, where P and O are ata height V2m vertically above A4 and B

respectively. A diamond is placed at a point S along MN and MS=xm , where 0<x<

[V

Let PS+0S+NS=£fm.

(@

(b)

(©

Express £ interms of x.

Hence show that _d_E = 2x -1.
dx x? 43
(2 marks)
Find the values of x at which £ attains
(i) the least value, and
(i) the greatest value.
{6 marks)

Suppose that the intensity of light energy received by the diamond from each bulb varies
inversely as the square of the distance of the bulb from the diamond, with & (> 0, in suitable
unit) being the variation constant. Let E (in suitable unit) be the total intensity of light energy
received by the diamond from the three bulbs.

(i) Express £ interms of £ and x.
(i) A student guesses that when ¢ aitains its least value, E will atfain its greatest value.

Explain whether the student’s guess is correct or not.
{4 marks)
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16. Let C be the curve y=§1x2-§x+l. C; isapartof C with 0<x <[ and Cy is a part of C with

3£x<4,
@ ()

(i)
(b)

Show that the equation of C; is x=2- 3y+1.

Write down the equation of C, inthe form x=f ().
(2 marks)

A container is formed by revolving C, , the line segment y=0(for1<x<3), C;, the line
segment y =] (for 3<x<4)and the line segment x=3 (for 1<y <4) about the y-axis (see
-Figure 6). Starting from time =0, water is poured into the container at a constant rate of § rr

cubic units per minute. Let the volume and depth of water in the container at time ¢ minutes be
¥ cubic units and % units respectively.

0]

()

(iii)

Consider 0<h<].

16 3
(1) Show that V=~91[(3h+1)2-1].

(2) Find %?— in terms of A.

Consider 1<h<4, Find %‘:1 3

It is known that A=1 at t=t, and h=4 at t=1t,. Sketch a graph to show how A
varies with ¢ for 0<f<¢,. (You are not required to find the values of £ and 7 .)
(10 marks)
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17,

(a)

®)

B Figure 7

ABC is atriangle with 4B=6, BC=7 and CA=5. A circle is inscribed in the triangle (see
Figure 7). Let O be the centre of the circle and » be its radius.

(i) Find the areca of AA4BC.

26

(i) By considering the areas of AAOB, ABOC and ACOA, show that r= =5

(4 marks)

VABC is a tetrahedron with the A4BC described in (a) as the base (see Figure 8). Furthermore,

point O is the foot of perpendicular from ¥ to the plane ABC. It is given that the angle
between the planes ¥AB and 4BC is 60°.

()  Find the volume of the tetrahedron ¥4BC .

(ii)  Find the area of AVBC .

(iif)  Find the angle between the side 4B and the plane ¥BC, giving your answer correct to the
nearest degree.

(8 marks)
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M
Figure 9

Figure 9 shows a triangle OAB. Let OAd=a, OB=b and M be the mid-point of OA .

Let G be the centroid of AOAB (see Figure 10). Itis given that BG:GM =2:1. Express 0G

(1 mark)

(@)
B
o # =8
Figure 10
intermsof a and b.
(b) B
T
L
(o]
Figure 11

Let T be the orthocentre of AOAB (see Figure 11). Show that OT-a-b-a=0 and write

down the value of aTh ~-a-b.

18
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(d)

Figure 12

Let C be the circumcentre of AOAB (see Figure 12). Show that 2 OC-a ={a|® and find

OC-b interms of 1bh].
(3 marks)

Consider the points G, T and C described in (a), (b) and (c) respectively.

(i) Using the above results, find the values of {af' - ZCTG.) -a and (6? - ZEE}") -b.

(ii) Showthat G, T and C are collinear.

! Note : You may use the following property for vectors in the two-dimensional space :

If w.u=w-v=0,where u and v are non-parallel, then w=0.

(5 marks)

END OF PAPER
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