HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY 香港考試及評核局

HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 2004 2004年香港中學會考

附加數學 ADDITIONAL MATHEMATICS

本評卷參考乃香港考試及評核局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對,但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上述原則。

document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Authority is counting on the co-operation of markers/teachers in this regard. markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this Assessment Authority for markers' reference. The Authority has no objection to This marking scheme has been prepared by the Hong Kong Examinations and

teachers' centre. After the examinations, marking schemes will be available for reference at the 考試結束後,各科評卷參考將存放於教師中心,供教師參閱。

⑥香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2004

2004-CE-A MATH-1

GENERAL INSTRUCTIONS TO MARKERS

- -It is very important that all markers should adhere as closely as possible to the marking scheme. allocated to that part, unless a particular method is specified in the question. patient in marking these alternative solutions. however, candidates would use alternative methods not specified in the marking scheme. In general, a correct alternative solution merits all the marks eme. In many cases, Markers should be
- 2. In the marking scheme, marks are classified as follows:
- 'M' marks awarded for knowing a correct method of solution and attempting to apply it;
- 'A' marks awarded for the accuracy of the answer;
- Marks without 'M' or 'A' awarded for correctly completing a proof or arriving at an answer given in the
- \dot{a} In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- points: The symbol (pp-1) should be used to denote marks deducted for poor presentation (p.p.). Note the following

4.

- (a) At most deduct 1 mark for p.p. in each question, up to a maximum of 3 marks for the whole paper
- **(b)** in the whole paper for the same p.p. For similar p.p., deduct only I mark for the first time that it occurs, i.e. do not penalise candidates twice
- <u>o</u> In any case, do not deduct any marks for p.p. in those steps where candidates could not score any marks.
- **a** in other situations. Some cases in which marks should be deducted for p.p. are specified in the marking scheme. the lists are by no means exhaustive. Markers should exercise their professional judgement to give p.p.s
- The symbol (u-1) should be used to denote marks deducted for wrong/no units in the final answers (if applicable).

Note the following points:

S

- (a) At most deduct 1 mark for wrong/no units for the whole paper.
- 9 Do not deduct any marks for wrong/no units in case candidate's answer was already wrong
- Marks entered in the Page Total Box should be the net total score on that page.

6

- .7 whereas alternative answers are enclosed by solid rectangles In the Marking Scheme, steps which can be omitted are enclosed by dotted rectangles
- (a) Unless otherwise specified in the question, numerical answers not given in exact values should not be

00

- 9 In case a certain degree of accuracy had been specified in the question, answers not accurate up to that degree should not be accepted. For answers with an excess degree of accuracy, deduct I mark for the first time if happened. In any case, do not deduct any marks for excess degree of accuracy in those steps where candidates could not score any marks.
- 9. be penalised. Unless otherwise specified in the question, use of notations different from those in the marking scheme should not
- 10. Unless the form of answer is specified in the question, alternative simplified forms of answers different from those in the marking scheme should be accepted if they were correct.

$\frac{OR}{2005} = \frac{(x-2)^{2005}}{2005} + c$	$=\frac{(2-x)^{2005}}{2005}+c$	(b) $ (2-x)^{2004} dx $,	$=\frac{1}{3}\sin(3x+1)+c$	1. (a) $\int \cos(3x+1) dx$	Solution	
	, where c is a constant.			, where c is a constant.			
4	1M+1A			IM+1A		Marks	
	$1M \text{ for } \int u^n du = \frac{u^{n+1}}{n+1}$		Withhold 1A if c was omitted	1M for $\int \cos u du = \sin u$		Remarks	

2. (a)
$$(1+2x)^6 = 1 + {}_6C_1(2x) + {}_6C_2(2x)^2 + {}_6C_3(2x)^3 + \cdots$$
 IM ${}_6C_1 = 6, {}_6C_2 = 15, {}_6C_3 = 20$
 $= 1 + 12x + 60x^2 + 160x^3 + \cdots$ IA (pp-1) if dots were omitted in all cases. $= (1 - \frac{1}{x} + \frac{1}{x^2})(1 + 2x)^6$
 $= (1 - \frac{1}{x} + \frac{1}{x^2})(1 + 12x + 60x^2 + 160x^3 + \cdots)$ Constant term $= 1(1) - 1(12) + 1(60)$ IM $= 49$

3.
$$\frac{dy}{dx} = 3x^2 + 1$$

$$y = \int (3x^2 + 1) dx$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

$$y = x^3 + x + k$$

$$y = 0$$

2004-CE-A MATH-3	Put $x = 1$, $y = 0$: $0 = 1^3 + 1 + k$ k = -2 \therefore the equation of C is $y = x^3 + x - 2$.	$y = x^3 + x + k$, where k is a constant.
	1M 1A	1A
		Award even if k was omitted.

) $(90 \text{ m}^{\circ} + (-1)^{m} (15^{\circ}))$	$\cos x = 0$ or $\sin 2x = \frac{1}{2}$ 1A+1A $2x = m\pi + (-1)^m \frac{\pi}{6}$ 1M $x = 2n\pi + \frac{\pi}{2}$ $x = \frac{m\pi}{2} + (-1)^m \frac{\pi}{2}$, where m, n are	Alternative Solution $\sin 3x + \sin x = \cos x$ $3 \sin x - 4 \sin^3 x + \sin x = \cos x$ $4 \sin x \cos^2 x = \cos x$ $\cos x (4 \sin x \cos x - 1) = 0$	$\sin 3x + \sin x = \cos x$ $2 \sin 2x \cos x = \cos x$ $\cos x (2 \sin 2x - 1) = 0$ 1A	(a) $x^{2} + y^{2} = 9$ Volume = $\int_{0}^{2} \pi x^{2} dy$ $= \int_{0}^{2} \pi (9 - y^{2}) dy$ $= \pi [9y - \frac{1}{3}y^{3}]_{0}^{2}$ $= \pi (18 - \frac{8}{3})$ $= \frac{46\pi}{3}$ IM $\frac{1}{4}$
	A IM for the correct form of a general solution		For LHS	For $V = \int_{a}^{b} \pi x^{2} dy$ For primitive function

6 Э (a) $\overrightarrow{OC} = \frac{2\overrightarrow{OA} + \overrightarrow{OB}}{}$ Solution $=\frac{2\vec{a}+\vec{b}}{3}$ 1+2 1A Marks Remarks

$$\overrightarrow{OC} = \frac{2OA + OB}{1 + 2}$$

$$= \frac{2\vec{a} + \vec{b}}{3}$$

$$= \frac{2\vec{a} + \vec{b}}{3}$$

$$|\overrightarrow{OC}|^2 = \overrightarrow{OC} \cdot \overrightarrow{OC}$$

$$= (\frac{2\vec{a} + \vec{b}}{3}) \cdot (\frac{2\vec{a} + \vec{b}}{3})$$

$$= \frac{1}{9} [4\vec{a} \cdot \vec{a} + 4\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b}]$$

$$= \frac{1}{9} [4(1)^2 + 4(1)(2)\cos\frac{2\pi}{3} + (2)^2]$$

$$= \frac{4}{9}$$

$$= \frac{4}{9}$$

$$\therefore |\overrightarrow{OC}| = \frac{2}{3}$$

$$1A+1A$$

Alternative Solution	$ \overrightarrow{OC} = \frac{2}{3}$	$=\frac{4}{9}$	$= \frac{1}{9} \left[4 \left(1 \right)^2 + 4 \left(1 \right) \left(2 \right) \cos \frac{2 \pi^2}{3} + \left(2 \right)^2 \right]$
	1A		1A+1A
)	Omit vector sign / dot sign in most cases (pp-1)	1A for $\vec{a} \cdot \vec{b} = (1)(2) \cos \frac{2\pi}{3}$	1A+1A 1A for $\vec{a} \cdot \vec{a} = 1$ and $\vec{b} \cdot \vec{b} = 4$

 $AB^2 = OA^2 + OB^2 - 2(OA)(OB)\cos \angle AOB$

S

	7 3 7 7 2 2 1 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	;	
	Solution	Marks	Remarks
.7	For $n=1$		
	$9^{n} - 1 = 9 - 1 = 8$, which is divisible by 8.		
	\therefore the statement is true for $n=1$.	may provide a final a	
	Assume $9^k - 1$ is divisible by 8, where k is a positive integer. $(\underline{OR} \ 9^k - 1 = 8 \ m$, where k and m are positive integers.)	possib	
	$9^{k+1} - 1 = 9(9^k) - 1$ $\boxed{\underline{OR} = 9^{k+1} - 9 + 8}$ $= 9(9^k - 1) + 8$		$\overline{OR} = 8(9^k) + 9^k - 1$
	=9(8m+1)-1 $=9(8m)+8$	jumak	$=8(9^k)+8m$
	= 72m + 8 $= 8(9m + 1)$ $= 8(9m + 1)$		$=8(9^k+m)$
	$9^{k+1} - 1$ is also divisible by 8.		
	: the statement is also true for $n = k + 1$ if it is true for $n = k$.		
	: the statement is also true for $n = k + 1$ if it is true for $n = k$.		
	By the principle of mathematical induction, the statement is		

true for all positive integers n.

Put x = 9, y = 1: Alternative Solution (1)
Consider $x^{n} - y^{n} = (x - y) (x^{n-1} + x^{n-2}y + x^{n-3}y^{2} + \dots + xy^{n-2} + y^{n-1})$ 1M + 1A1M for considering $x^n - y^n$ marks was withheld

Not awarded if anyone of the above

 $9^{n}-1=(9-1)(9^{n-1}+9^{n-2}+9^{n-3}+\cdots+9+1)$ = 8 m, where $m = 9^{n-1} + 9^{n-2} + \dots + 1$ is an integer. 1M + 1A

 \therefore 9ⁿ - 1 is divisible by 8 for all positive integers n. Alternative Solution (2)

Consider $f(x) = x^n - 1$, where n is a positive integer $f(1) = 1^n - 1 = 0$ M

Put x = 9. $9^{n} - 1 = (9 - 1)(9^{n-1} + 9^{n-2} + 9^{n-3} + \dots + 9 + 1)$. 9 - 1 = 8 is a factor of $9^{n} - 1$. $\therefore (x-1) \text{ is a factor of } f(x).$ $f(x) = (x-1)(x^{n-1} + x^{n-2} + \dots + x + 1)$

 $9^{n}-1$ is divisible by 8 for all positive integers n

Alternative solution (3) $9^{n} - 1 = (1+8)^{n} - 1$ $=1+{}_{n}C_{1}(8)+{}_{n}C_{2}(8)^{2}+\cdots+8^{n}-1$

2A 1M

1_A

1A

M

1A

 $= 8 \left[{_n C_1 + _n C_2(8) + \dots + 8^{n - 1}} \right]$ 1 is divisible by 8 for all positive integers n

2004-CE-A MATH-6

USE ONLY

	1A	Combining the 3 cases, $x = 1, 2$ or 4.	
equations (4), (5), (6) was/were correct		$x = 1 \text{ or } 4$ $\text{Since } x < 3 \qquad x = 4$	
Award 1A if only one or two of the	2A	x-1=(x-1)(x-3)(6)	
		$x = 1 \text{ or } 2$ Since $1 < x < 3 \qquad x = 2$	
		x-1 = -(x-1)(x-3)(5)	
		Since $x \le 1$, $x = 1$	
		x = 1 or 2	
		-(x-1) = (x-1)(x-3)(4)	
1			
Accept the equality signs omitted	1M	(1) $x \le 1$, (2) $1 < x \le 3$, (3) $x > 3$	
		Consider the three cases:	
		x-1 = (x-1)(x-3)	
		$ x-1 = x^2 - 4x + 3 $	
	IA	Alternative Solution (3)	
	<u>.</u>	x = 4 Of Z	
		1 = C - Y 10	
	177.177	or $(x-3) = 1$	
	1 A+1 A		
		$(x-1)^2 [(x-3)^2 - 1] = 0$	
		$(x-1)^2 - (x-1)^2(x-3)^2 = 0$	
	IM	$(x-1)^2 = (x^2-4x+3)^2$	
	<u>.</u>		
		Anemauve Solution (2) $ x-1 = x^2 - 4x + 3 $	
•	1A	x = 1, 2 or 4	
		x = 1 or 4 $x = 1 or 2$	
		(x-1)(x-4) = 0 $(x-1)(x-2) = 0$	
	1A+1A	$x^2 - 5x + 4 = 0 x^2 - 3x + 2 = 0$	
	1M	$x-1=x^2-4x+3$ or $x-1=-(x^2-4x+3)$	
		+3	
		Alternative Solution (1)	
	1A	x = 1, 2 or 4	
		x = 1 or $x = 4$ or 2 (using (a))	
	1A+1A	x-1 = 0 or $ x-3 = 1$	
	1M	x-1 (x-3 -1)=0	
		x-1 = (x-1)(x-3)	
		$ x-1 = x^2 - 4x + 3 $	(b)
	1A	x = 4 or 2	
		$x^2 - 6x + 8 = 0$	
	IM	$\left(x-3\right)^2=1$	
		x-3 = 1	
		Alternative Solution	
	1A	x=4 or 2	
	1M	x-3 -1 x-3=1 or $x-3=-1$	0. (a)
		21_1	
Remarks	Marks	Solution	

$y-b = 3a^{2}(x-a)$ Put $x = 0$, $y = 2$:	At $P(a, b)$, $\frac{dy}{dx} = 3a^2$. Equation of the tangent	$\frac{\text{Alternative Solution}}{\frac{dy}{dx}} = 3x^2$	$b=3a^3+2$	Since the tangent to C at F passes through $(0, 2)$, $\frac{b-2}{a-0} = 3a^2$	At $P(a, b)$, $\frac{\mathrm{d}y}{\mathrm{d}x} = 3a^2$.	9. (a) $\frac{dy}{dx} = 3x^2$	Solution
) IM	1M		—	1M	1M		Marks
$ OR y = 3a^2x + 2 $ Put $x = a$, $y = b$:			P(a,b)		(0, 2)	*	Remarks

Since P lies on C, $b = a^3$. $\begin{cases} b = 3a^3 + 2 \\ b = a^3 \end{cases}$	1A	
$3a^3 + 2 = a^3$	1M	
$\frac{OR}{\int y = 3ax^2 + 2}$		
$y = x^3$		
$3ax^2 + 2 = x^3$	IM	
Substitute $x = a$: $3a^3 + 2 = a^3$	1A	

(b)

 $b = 3a^3 + 2$

 $2-b=3a^2(0-a)$

 $b=3a^3+2$

a = -1 $b = a^3 = -1$

 $\therefore a = b = -1$

10.

$O \xrightarrow{P(x,y)} A(3,4)$	Solution
	Marks
	Remarks

Let the coordinates of P be (x, y).

Area of
$$\triangle OAP = \begin{vmatrix} 1 & 3 & 4 \\ 2 & x & y \\ 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} \frac{1}{2}(3y - 4x) \end{vmatrix}$$

1M

Accept omitting absolute values

$$\frac{1}{2} |3y - 4x| = 2$$

 $\frac{3y - 4x}{3} = 4$ or $3y - 4x = -4$

4x-3y+4=0 4x-3y-4=0The slopes of the two lines are equal.

1M

 \therefore the locus of P is a pair of parallel lines.

the locus of P is a pair of parallel lines which are of equal distance from OA.	the distance from P to OA is a constant.	Since the area of $\triangle OPA$ is a constant,	Alternative Solution
1	2M		

Consider the line 4x-3y+4=0:

Fut
$$y = 0$$
, $x = -1$.
 $\therefore (-1, 0)$ is a point on the

1M

Put y = 0, x = -1. $\therefore (-1, 0)$ is a point on the line. Distance between the two lines

$$= \left| \frac{4(-1)-3(0)-4}{\sqrt{4^2+(-3)^2}} \right|$$

$$= \frac{8}{5}$$

$$=\frac{4}{\sqrt{4^2+(-3)^2}}$$

1M

1_A

M

Distance between the lines

1 A

1M

2004-CE-A MATH-9

只限教師參閱
FOR TEACH
HERS' USE
ONLY

	1A 1M	$h = \frac{4}{5}$ $h = \frac{4}{5}$ Distance between the two lines = 2h $= \frac{8}{5}$
	M	Alternative Solution (3) Let h be the distance from P to OA. Since area of $\triangle OPA = 2$, $\frac{h(OA)}{2} = 2$
Accept omitting absolute values	2M 1A	Alternative Solution (2) Distance between the two lines $= \begin{vmatrix} 4 - (-4) \\ \sqrt{4^2 + (-3)^2} \end{vmatrix}$ $= \frac{8}{5}$
Remarks	Marks	Solution

2004-CE-A MATH-10

只限教師參閱 FOR TEACHERS' USE ONLY

				(b)						12. (a)	
$ \frac{OR}{AP:PB} = \text{area of } \triangle OAP: \text{ area of } \triangle OBP $ $ = \frac{1}{2}(c) \left(\frac{2c}{3}\right) : \frac{1}{2}(c) \left(\frac{c}{3}\right) $ $ = 2:1 $	Let $AP:PB=r:1$. $\frac{1(c)+r(0)}{1+r} = \frac{c}{3}$ $r = 2$ $\therefore AP:PB = 2:1$ $OR \frac{1(0)+r(c)}{1+r} = \frac{2c}{3}$ $r = 2$	$y = \frac{2c}{3}$ $\therefore \text{ the coordinates of } P \text{ are } (\frac{c}{3}, \frac{2c}{3}).$	$\begin{cases} y = 2x \\ y = -x + c \end{cases}$ $2x = -x + c$ $x = \frac{c}{3}$	The coordinates of A and B are $(c, 0)$ and $(0, c)$ respectively.	$\begin{vmatrix} 1+2(-1) \\ = 3 \end{vmatrix}$	$\tan \theta = \left \frac{m_2 - m_1}{1 + m_1 m_2} \right $ $= \left \frac{2 - (-1)}{1 + 2 - (-1)} \right $	Slope of $L_1 = -1$ Slope of $L_2 = 2$	$ \begin{array}{c c} & & \\ \hline O & \\ \hline A (c, 0) \end{array} $	B(0,c) D	*	Solution
1M 1A	1M 1A		1M	1A	1A	IM	} 1A				Marks
						Accept omitting absolute sign					Remarks

	7	
	1A	$=\frac{1+3}{3-1}$ $=2$
		$=\frac{1+\tan\theta}{\tan\theta-1}$
		$\frac{AP}{PB} = \frac{\sin(135^\circ - \theta)}{\sin(\theta - 45^\circ)} = \frac{1}{\tan(\theta - 45^\circ)}$
	M	
		$\frac{OP}{5^{\circ}} = \frac{OP}{\sin 4}$
1M for using sine law, 1A if at least one was correct	} 1M + 1A	$(-\theta)^{-\theta}$
	1A	= 2:1
	1M	$AP:PB = \frac{\sqrt{8c}}{3}: \frac{\sqrt{2c}}{3}$
		$PB = \sqrt{(\frac{c}{3})^2 + (\frac{2c}{3} - c)^2} = \frac{\sqrt{2}c}{3}$
		$\left(\frac{-2c}{3}\right)^2$
		re (
		$y = \frac{2c}{3}$
) IM	$x = \frac{c}{3}$
		2x = -x + c
		y = -x + c
		respectively. $\int_{V} v = 2x$
	1A	Alternative Solution (2) The coordinates of A and B are $(c, 0)$ and $(0, c)$
	1A	$\therefore AP: PB = 2:1$
**************************************	1M	$\frac{rc}{1+r} = 2\left(\frac{c}{1+r}\right)$
		e P lies on L_2 ,
		$=\frac{c}{1+r} = \frac{rc}{1+r}$
	1M	$u = \frac{1(0) + r(0)}{1 + r} \qquad v = \frac{1(0) + r(0)}{1 + r}$
		= r:1 and coordination
	1A	Alternative Solution (1) The coordinates of A and B are $(c, 0)$ and $(0, c)$ respectively
TOTAL		
Remarks	Marks	Solution

$\angle ADO = \angle CFO$ $\therefore O, P, D \text{ and } F \text{ are concyclic.}$ $\angle FPD = \angle FOD$ $\angle EDD = O00$	Alternative Solution Let P be the point of intersection of \overrightarrow{AD} and \overrightarrow{FC} . Consider $\triangle AOD$ and $\triangle COF$: $OA = OC$ $OD = OF$ $\angle AOD = 90^{\circ} + \theta = \angle COF$ $\triangle AOD \cong \triangle COF$ $AOD \cong \triangle COF$	$= [(2 + \sin \theta) \vec{i} - \cos \theta \vec{j}] \cdot [\cos \theta \vec{i} + (\sin \theta + 2) \vec{j}]$ $= (2 + \sin \theta) \cos \theta - \cos \theta (\sin \theta + 2)$ $= 0$ $= 0$ $\overrightarrow{AD} \text{ is always perpendicular to } \overrightarrow{FC}.$	(b) $\overrightarrow{FC} = \overrightarrow{OC} - \overrightarrow{OF}$ $= \cos \theta \vec{i} + \sin \theta \vec{j} - (-2\vec{j})$ $= \cos \theta \vec{i} + (\sin \theta + 2)\vec{j}$ $\overrightarrow{AD} \cdot \overrightarrow{FC}$	(ii) $\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA}$ $= 2 \vec{i} - (-\sin \theta \vec{i} + \cos \theta \vec{j})$ $= (2 + \sin \theta) \vec{i} - \cos \theta \vec{j}$	(a) (i) $\overrightarrow{OC} = \cos \theta \vec{i} + \sin \theta \vec{j}$ $\overrightarrow{OA} = \cos (90^{\circ} + \theta) \vec{i} + \sin (90^{\circ} + \theta) \vec{j}$ $= -\sin \theta \vec{i} + \cos \theta \vec{j}$	Solution	くだなが、手がら、・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
–	1M+1	1 IM	M	1M	1A 1A	Marks	<u>י</u>
$\frac{OR}{\angle PQD} = \angle OQF$ $\angle PDQ + \angle PQD = \angle OFQ + \angle OQF$	IM for attempting to prove $\Delta AOD \cong \Delta COF$	F.	$A \longleftrightarrow C$ Q D D	B	$-\cos(90^{\circ}-\theta)\ \vec{i} + \sin(90^{\circ}-\theta)\vec{j}$	Remarks	

2004-CE-A MATH-14

<u>OR</u>	$= (2 - \cos \theta) \vec{i} - (2 + \sin \theta) \vec{j}$ If B, C and E are collinear, $\frac{\sin \theta}{2 - \cos \theta} = \frac{\cos \theta}{2 + \sin \theta}$	(c) $BC = AO$ $= -(-\sin\theta \vec{i} + \cos\theta \vec{j})$ $= \sin\theta \vec{i} - \cos\theta \vec{j}$ $\overrightarrow{CE} = \overrightarrow{OE} - \overrightarrow{OC}$ $= 2 \vec{i} - 2 \vec{j} - (\cos\theta \vec{i} + \sin\theta \vec{j})$					
	1M) IM	Marks				
		For finding \overrightarrow{BC} , \overrightarrow{CE} , or \overrightarrow{BE}					

$\overrightarrow{CE} = \overrightarrow{OE} - \overrightarrow{OC}$		
$\vec{i} = 2\vec{i} - 2\vec{j} - (\cos\theta \vec{i} + \sin\theta \vec{j})$	1M	$A \wedge$
$= (2 - \cos \theta) \vec{i} - (2 + \sin \theta) \vec{j}$		
If B , C and E are collinear,		
$\overrightarrow{OC} \cdot \overrightarrow{CE} = 0$		
$\left[\left(\cos\theta\vec{i} + \sin\theta\vec{j}\right) \cdot \left[\left(2 - \cos\theta\right)\vec{i} - \left(2 + \sin\theta\right)\vec{j}\right] = 0$	1M	
$\cos\theta(2-\cos\theta)-\sin\theta(2+\sin\theta)=0$		
<u>OR</u>		
If B , C and E are collinear,		
$\angle ECM = \theta$		
		ļ

$\theta = 24^{\circ}$ (correct to the nearest degree)	$\theta + 45^{\circ} \approx 69.3^{\circ}$	$\cos(\theta + 45^\circ) = \frac{1}{2\sqrt{2}}$	$\frac{1}{\sqrt{2}}\cos\theta - \frac{1}{\sqrt{2}}\sin\theta = -\frac{1}{\sqrt{2}}\sin\theta $
nearest degree)	$45^{\circ} - \theta \approx 20.7^{\circ}$	$\sin(45^\circ - \theta) = \frac{1}{2\sqrt{5}}$	$\frac{1}{2\sqrt{2}}$
1A		1M	***************************************

3 $0^{\circ} < \theta < 90^{\circ}, :: t = \frac{-2 + \sqrt{7}}{3} (\approx 0.2153)$ $\theta = 24^{\circ} \text{ (correct to the nearest degree)}$	$\therefore \frac{1-t^2}{1+t^2} - \frac{2t}{1+t^2} = \frac{1}{2}$ $3t^2 + 4t - 1 = 0$ $t = \frac{-2 \pm \sqrt{7}}{2}$	Let $t = \tan \frac{\theta}{2}$. Then $\cos \theta = \frac{1 - t^2}{1 + t^2}$ and $\sin \theta = \frac{2t}{1 - t^2}$	$\cos \theta - \sin \theta = \frac{1}{2}$	$\theta = 24^{\circ}$ (correct to the nearest degree) OR	$\theta \approx 24.3^{\circ}$ or 65.7° (rejected)	$2\theta \approx 48.6^{\circ}$ or 131.4°	$\sin 2\theta = \frac{3}{4}$	$\cos^2\theta - 2\sin\theta\cos\theta + \sin^2\theta = \frac{1}{4}$	$\cos\theta - \sin\theta = \frac{1}{2}$	OR	Solution
1A	1M			1A				1M			Marks
											Remarks

	1A	= 24° (correct to the nearest degree)
	2M	≈ 45° – 20.7°
		$\angle OEC \approx 20.7^{\circ}$ $\theta = 45^{\circ} - \angle OEC$
	1M	$=\frac{1}{\sqrt{2^2+2^2}}=\frac{1}{\sqrt{8}}$
		$\sin \angle OEC = \frac{OC}{OE}$
******		Alternative Solution Consider $\triangle OCE$:

	1
င္သ	
Omit vector sign/dot sign in most cases (pp-1)	A B D D D D D E

$y\sin\theta - 6\sin^2\theta = -x\cos\theta + 6\cos^2\theta$	$y - 6\sin\theta = \frac{-\cos\theta}{\sin\theta}(x - 6\cos\theta)$	At P, $\frac{dy}{dx} = \frac{-6\cos\theta}{6\sin\theta} = \frac{-\cos\theta}{\sin\theta}$ Equation of tangent to C at P is	$2x + 2y \frac{\mathrm{d}y}{\mathrm{d}x} = 0$	(ii) $x^2 + y^2 = 36$	$= 36$ $\therefore P \text{ always lies on } C_1.$	14. (a) (i) $x^2 + y^2 = (6\cos\theta)^2 + (6\sin\theta)^2$	Solution	
	1171	₹			-		Marks	
							Remarks	

 $x\cos\theta + y\sin\theta - 6 =$

0

1A

 $y = (-\cot\theta)x + 6\sin\theta + 6\cos\theta\cot\theta$

2004-CE-A MATH-17

The equation of the tangent is	Slope of the tangent = $\tan \alpha = \frac{3}{4}$	$a = 10$ $\theta = \sqrt{10^2 + 2^2} = 0$	$\frac{a-5}{a} = \frac{3}{6}$	$(x-5)^2 + y^2 = 9$ Centre of C_2 is $(5, 0)$, radius = 3	Alternative Solution $x^2 + y^2 - 10x + 16 = 0$	(rejected) $3x - 4y - 30 = 0$	0 or	When $\cos \theta = \frac{3}{5}$, $\sin \theta = \frac{4}{5}$ (rejected) or $-\frac{4}{5}$ Equation of L is	Solution	
	} 1M + 1A		1M	} IM		1A			Marks	
	K	0 3 3	$(5,0)$ $(a,0)$ α		→~	•			Remarks	

 Ξ

 $y = \frac{3}{4}(x - 10)$

1A

$$x^{2} + y^{2} - 10x + 16 + k(x^{2} + y^{2} - 36) = 0$$

$$\frac{1}{(k \text{ is a constant})}$$

$$(1+k)(x^{2} + y^{2}) - 10x + 16 - 36k = 0$$

M

The centre of the circle is
$$(\frac{5}{1+k}, 0)$$
.

The centre of
$$C_3$$
 lies on L .
 $3(\frac{5}{1+L})-4(0)-30=0$

1M

$$3\left(\frac{3}{1+k}\right) - 4(0) - 30 = 0$$

The equation of
$$C_3$$
 is

$$x^{2} + y^{2} - 10x + 16 - \frac{1}{2}(x^{2} + y^{2} - 36) = 0$$

$$x^{2} + y^{2} - 20x + 68 = 0$$

$$\frac{OR}{k_1(x^2 + y^2 - 36 + k_1(x^2 + y^2 - 10x + 16) = 0}{OR}$$

$$\frac{OR}{1 + k_1} (x^2 + y^2 - 36 + k_2(5x - 26) = 0)$$

$$\frac{OR}{1 + k_1} (\frac{5k_1}{1 + k_1}, 0) \frac{OR}{1 + k_1} (-\frac{5k_2}{2}, 0)$$

1M

$$\underline{OR} k_1 = -2 \underline{OR} k_2 = -4$$

$$(\underline{OR} (x-10)^2 + y^2 = 32)$$

1A

$(x-10)^2 + y^2 = 32$	The equation of C_3 is	$=\sqrt{(10-\frac{26}{5})^2+(0-\frac{4\sqrt{14}}{5})^2}=\sqrt{32}$: the coordinates of the centre of C_3 are (10, 0). Radius of C_3	Centre of C_3 is at the point where L cuts the x-axis.	: the coordinates of Q are $(\frac{26}{5}, \frac{4\sqrt{14}}{5})$.	$y = \pm \frac{4\sqrt{14}}{5}$	$y^2 = 36 - \left(\frac{26}{5}\right)^2$	$x = \frac{26}{5}$	$x^2 + (36 - x^2) - 10x + 16 = 0$	$\left \left(x^2 + y^2 = 36 \right) \right $	$\begin{cases} x^2 + y^2 - 10x + 16 = 0 \end{cases}$	Alternative Solution	Solution	
1A		M	1M						IM				Marks	
										$\int 5x - 26 = 0$	$\int x^2 + y^2 - 10x + 16 = 0$		Remarks	

只限教師參閱

$\begin{array}{c} (1) = 0: \\ (-4)^2 + 9 \end{array} \qquad \qquad 1M$ $(-\frac{1}{4}(x-4)^2 + 9)$	$\frac{OR}{c - \frac{b^2}{4a} = 9}$ $\frac{OR}{-\frac{b}{2a} = 4}$ For completing square	1 IM IM IA	Alternative Solution (1) Let the equation of C_1 be $y = ax^2 + bx + c$. Since C_1 passes through (4, 9) and (10, 0) $16a + 4b + c = 9 - \cdots (1)$ $100 a + 10b + c = 0 - \cdots (2)$ Since the vertex of C_1 is (4, 9), $\frac{dy}{dx} = 2ax + b$ $2a(4) + b = 0$ $b = -8a$ $-1 - 4, b = 2, c = 5$ $\therefore f(x) = -\frac{1}{4}x^2 + 2x + 5$ Alternative Solution (2) $Consider g(x) = -\frac{1}{4}x^2 + 2x + 5$ $g(x) = -\frac{1}{4}(x^2 - 8x) + 5$ $= -\frac{1}{4}(x^2 - 8x) + 5$ $= -\frac{1}{4}(x - 4)^2 + 9$ The vertex of $y = g(x)$ is $(4, 9)$. $g(10) = -\frac{1}{4}(10)^2 + 2(10) + 5$ $= \frac{0}{g(x)}$ g(x) passes through the point $(10, 0)$. $\therefore f(x) = -\frac{1}{4}x^2 + 2x + 5$		
+9			$a = -\frac{1}{4}$ $\therefore f(x) = -\frac{1}{4}(x-4)^2 + 9$ $= -\frac{1}{4}x^2 + 2x + 5$		
$=a(x-4)^2+9$. 1A		1A IM	Let $f(x) = a(x-4)^2 + 9$. Put $f(10) = 0$: $0 = a(10-4)^2 + 9$	(a)	
on Marks Remarks	Remarks	Marks	Solution		

: the x-coordinate of the point of intersection other than $(10, 0)$ is $2h-10$.	$\alpha = 2h-10$	$\alpha + 10 = 2h$	From (a) and (b) (1), $x = 10$ is a root of (*). Let α be the other root of the equation. Sum of roots = $2h$	$x^2 - 2hx + 20h - 100 = 0 (*)$	$\frac{1}{20}x^2 - \frac{h}{10}x + h - 5 = 0$	$-\frac{1}{4}x^2 + 2x + 5 = -\frac{1}{5}x^2 - (\frac{h-20}{10})x + h$	$y = -\frac{1}{5}x^2 - (\frac{h - 20}{10})x + h$	(ii) $y = -\frac{1}{4}x^2 + 2x + 5$	$= -20 - (n - 20) + n = 0$ $\therefore C_7 \text{ also passes through the point (10, 0).}$	$y = -\frac{1}{5}(10) - (\frac{1}{10})(10) + n$	$\frac{1}{100^2} (h-20)(10)$	Put $x = 10$,	(b) (i) $y = -\frac{1}{5}x^2 - (\frac{h-20}{10})x + h$	Solution	
74/2000	IA	IM			1A	1M			-	•				Marks	
$\alpha = 2h - 10$	$\alpha(10) = 20h - 100$	OR												Remarks	

OR

(x-10)[x-(2h-10)]=0x=10 or 2h-10

: the x-coordinate of the point of intersection other than (10, 0) is 2h-10.

1 A

 \mathbb{X}

2004-CE-A MATH-21

Combining (1) and (2), $10 \le OD_2 \le 15$.	In order for the two streams of water not to cross each other before reaching the ground, $\begin{vmatrix} 2h - 10 < 0 & \text{or} \\ 2h - 10 \ge 10 \end{vmatrix} = 2h - 10 \ge 10$ $\begin{vmatrix} h < 5 & \text{or} \\ h \ge 10 & \end{aligned} h \ge 10 (2)$	As D_2 is above D_1 , $5 < h \le 15$ (1) From (b) (ii), C_1 and C_2 intersect at the points where $x = 10$ and $x = 2h - 10$.	(ii) C_2 : $y = -\frac{1}{5}x^2 - (\frac{h-20}{10})x + h$ Put $x = 0$, $y = h$ $\therefore OD_2 = h$	(c) (i) $C_1: y = -\frac{1}{4}x^2 + 2x + 5$ Put $x = 0, y = 5$ $\therefore OD_1 = 5$	Solution
1A 4	MI	ire IM		IA	Marks
		0	$D_1 \qquad C_1$	P C_2	Remarks

	$\frac{d^2S}{d\theta^2} = -r^2 [2\sin 2\theta + \sin(\beta - \theta)]$ At $\theta = \frac{\beta}{3}$, $\frac{d^2S}{d\theta^2} = -r^2 [2\sin \frac{2\beta}{3} + \sin(\beta - \frac{\beta}{3})]$ $= -3r^2 \sin \frac{2\beta}{3} < 0$ $S \text{ attains a maximum at } \theta = \frac{\beta}{3}.$ [As S has only one turning point, S attains the greatest value at $\theta = \frac{\beta}{3}$. $S_{\beta} = \frac{r^2}{2} [\sin \frac{2\beta}{3} - \sin 2\beta + 2\sin(\beta - \frac{\beta}{3})]$ $= \frac{r^2}{2} (3\sin \frac{2\beta}{3} - \sin 2\beta)$	$\frac{d\theta}{d\theta} = 0 \cos 2\theta = \cos(\beta - \theta)$ $2\theta = 2n\pi \pm (\beta - \theta)$ $2\theta = \beta - \theta 12\theta = 2\pi + (\beta - \theta) 2\theta = 2\pi - (\beta - \theta)$ $\theta = \frac{\beta}{3} \theta = \frac{2\pi}{3} + \frac{\beta}{3} \theta = 2\pi - \beta$ (rejected)	(b) $S = \frac{r^2}{2} [\sin 2\theta - \sin 2\beta + 2\sin(\beta - \theta)]$ $\frac{dS}{d\theta} = \frac{r^2}{2} [2\cos 2\theta - 2\cos(\beta - \theta)]$	Alternative Solution $S = \frac{1}{2}(AB + CD)h$ $= \frac{1}{2}[2r\sin(\pi - \beta) + 2r\sin\theta][r\cos\theta + r\cos(\pi - \beta)]$ $= r^{2}(\sin\beta + \sin\theta)(\cos\theta - \cos\beta)$ $= r^{2}(\sin\beta\cos\theta - \sin\beta\cos\beta + \sin\theta\cos\theta - \sin\theta\cos\beta)$ $= \frac{r^{2}}{2}[\sin2\theta - \sin2\beta + 2\sin(\beta - \theta)]$	16. (a) $S = \text{area of } \triangle OCD + \text{area of } \triangle OBC + \text{area of } \triangle OAB + \text{area of } \triangle OAD$ $= \frac{r^2}{2} \sin 2\theta + \frac{r^2}{2} \sin(\beta - \theta) + \frac{r^2}{2} \sin(2\pi - 2\beta) + \frac{r^2}{2} \sin(\beta - \theta)$ $= \frac{r^2}{2} [\sin 2\theta - \sin 2\beta + 2\sin(\beta - \theta)]$	
) IM	1A 1	3 1M	1M+1A	1M+1A	Marks
²	For checking	$\frac{OR}{OR}\cos 2\theta - \cos(\beta - \theta) = 0$ $-2\sin\frac{\theta + \beta}{2}\sin\frac{3\theta - \beta}{2} = 0$ $\theta = \frac{\beta}{3}$				Remarks

2004-CE-A MATH-23

 $=2r^2\sin^3(\frac{2\beta}{3})$

 $= \frac{r^2}{2} \left[3\sin\frac{2\beta}{3} - (3\sin\frac{2\beta}{3} - 4\sin^3\frac{2\beta}{3}) \right]$

1M

 $\underline{OR} = \frac{r^2}{2} (4\sin^3 \frac{2\beta}{3}),$

 $OR = \frac{r^2}{2} [3 \sin \frac{2\beta}{3} - \sin 3(\frac{2\beta}{3})]$

				(c)
CA and BD are straight lines and CA⊥BD. ∴ ABCD is a square (diagonals ⊥ and bisect each other). ∴ the student is correct.	$\angle COD = 2\theta = \frac{\pi}{2}$ $\angle BOC \left\{ = \angle AOD \right\} = \beta - \theta = \frac{3\pi}{4} - \frac{\pi}{4}$ $= \frac{\pi}{2}$	$\beta = \frac{3\pi}{4}$ $\theta = \frac{\beta}{3} = \frac{\pi}{4}$	$\sin(\frac{2\beta}{3}) = 1,$ i.e. $\frac{2\beta}{3} = \frac{\pi}{2}$	Solution
3 1		IM	1A	Marks
·				Remarks

		2004-CE-A MATH-25
	7	
	1M 1A	$= \left(-\frac{\pi}{2} + 0\right) - \left(-\frac{\pi}{2} + 0\right)$ $= 0$
		$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (x - \pi) \cos x dx = \left[(x - \pi) \sin x + \cos x \right]_{\frac{\pi}{2}}^{\frac{\pi}{2}}$
		Alternative Solution 3π
(control)	1A	$=\frac{1}{0}$
(can be omitted)	<u>I</u> M	$= \frac{\pi \operatorname{Area of } \kappa_1 - \operatorname{Area of } \kappa_2}{(1) - (1)}$
		$\int_{\pi}^{2\pi} (x-\pi) \cos x dx$
		(2) $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (x-\pi) \cos x dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (x-\pi) \cos x dx + \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (x-\pi) \cos x dx$
		3π
For area of R_1 and area of R_2	1A	$=\frac{\pi}{2}-1$
		$= -(-\frac{\pi}{2} + 0) + (0 - 1)$
		$= -\left[\left(x - \pi\right)\sin x + \cos x\right] \frac{3\pi}{2}$
		$= -\int_{\pi}^{2} (x-\pi)\cos x \mathrm{d}x$
		Area of R_2 $\int_{0}^{3\pi} \frac{3\pi}{2\pi}$
		$=\frac{\pi}{2}-1$
		$= (0-1) - (-\frac{\pi}{2} + 0)$
	45-26	$= \left[(x - \pi) \sin x + \cos x \right] \frac{\pi}{2}$
		$\frac{2}{2}$
can be awarded in finding R_2	1A	$= \int_{\pi}^{\pi} (x - \pi) \cos x \mathrm{d}x$
		(ii) (1) Area of R_1
withhold if c was omitted	1A	$= (x - \pi) \sin x + \cos x + c$, where c is a constant.
		$\int (x-\pi)\cos x\mathrm{d}x$
	jumak.	$= (x - \pi) \cos x$
		$= (x - \pi)\cos x + \sin x - \sin x$
For product rule	1M	$\frac{dy}{dx} = (x - \pi) \frac{d}{dx} \sin x + \sin x \frac{d}{dx} (x - \pi) + \frac{d}{dx} \cos x$
		17. (a) (i) $y = (x - \pi) \sin x + \cos x$
ronning	ATAMAAAA	
Remarks	Marks	Solution

	y = f(x)	$O \xrightarrow{x_1} \xrightarrow{x_2} \xrightarrow{x_3} \xrightarrow{x_4} \xrightarrow{x}$	(ii) <i>y</i>	$f(x_1) = f(x_3)$	$ \frac{\left[\left[f(x)\right]_{x_{1}}^{x_{2}} = -\left[f(x)\right]_{x_{2}}^{x_{3}}\right]}{f(x_{2}) - f(x_{1}) = -\left[f(x_{3}) - f(x_{2})\right]} $	Area of S_1 = Area of S_2 $\int_{x_1}^{x_2} f'(x) dx = -\int_{x_2}^{x_3} f'(x) dx$	$f(x_1) = f(x_3)$	$\left[f(x)\right]_{x_1}^{x_3} = 0$	(b) (i) $\int_{1}^{x_3} f'(x) dx = 0$	Solution	
5	1A	1A+1A		Junua		1A			1A	Marks	
	All correct	1A for W-shape, 1A for x-coordinates of the turning points								Remarks	

2004-CE-A MATH-26

只限教師參閱 FOR TEACHERS' USE ONLY