香港考試局 HONG KONG EXAMINATIONS AUTHORITY

2000年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 2000

附加數學 試卷一 ADDITIONAL MATHEMATICS PAPER 1

本評卷參考乃考試局專爲今年本科考試而編寫,供閱卷員參考之 用。閱卷員在完成閱卷工作後,若將本評卷參考提供其任教會考班 的本科同事參閱,本局不表反對,但須切記,在任何情況下均不得 容許本評卷參考落入學生手中。學生若索閱或求取此等文件,閱卷 員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致 但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育 原則,亦有違考試着重理解能力與運用技巧之旨。因此,本局籲請 各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations Authority for markers' reference. The Examinations Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Examinations Authority is counting on the co-operation of markers/teachers in this regard.

考試結束後,各科評卷參考將存放於教師中心,供教師參閱。 After the examinations, marking schemes will be available for reference at the teachers' centre.

©香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 2000

2000-CE-A MATH 1-1

GENERAL INSTRUCTIONS TO MARKERS

1.	howev patien	ery important that all markers should adhere as closely as possible to the marking scheme. In many cases, were, candidates would use alternative methods not specified in the marking scheme. Markers should be to in marking these alternative solutions. In general, a correct alternative solution merits all the marks ted to that part, unless a particular method is specified in the question.				
2.	In the	marking scheme, marks are classified as follows:				
	'M' m	arks - awarded for knowing a correct method of solution and attempting to apply it;				
	'A' m	arks - awarded for the accuracy of the answer;				
	Marks	without 'M' or 'A' - awarded for correctly completing a proof or arriving at an answer given in the question.				
3.	In mar	king candidates' work, the benefit of doubt should be given in the candidates' favour.				
4.	The symbol (pp-) should be use d to denote marks deducted for poor presentation (p.p.). Note the for points:					
	(a)	At most deduct 1 mark for p.p. in each question, up to a maximum of 3 marks for the whole paper.				
	(b)	For similar p.p., deduct only 1 mark for the first time that it occurs, i.e. do not penalise candidates twice in the whole paper for the same p.p.				
	(c)	In any case, do not deduct any marks for p.p. in those steps where candidates could not score any marks.				
	(d)	Some cases in which marks should be deducted for p.p. are specified in the marking scheme. However, the lists are by no means exhaustive. Markers should exercise their professional judgement to give p.p.s in other situations.				
5.	The sy	The symbol (u-1) should be used to denote marks deducted for wrong/no units in the final answers (if applicable).				
	Note the	ne following points:				
	(a)	At most deduct 1 mark for wrong/no units for the whole paper.				
	(b)	Do not deduct any marks for wrong/no units in case candidate's answer was already wrong.				
6.	Marks	entered in the Page Total Box should be the net total score on that page.				
7.	In the	Marking Scheme, steps which can be omitted are enclosed by dotted rectangles ,				
	wherea	as alternative answers are enclosed by solid rectangles .				
8.	(a)	Unless otherwise specified in the question, numerical answers not given in exact values should not be accepted.				
	(b)	In case a certain degree of accuracy had been specified in the question, answers not accurate up to that degree should not be accepted. For answers with an excess degree of accuracy, deduct 1 mark for the first time if happened. In any case, do not deduct any marks for excess degree of accuracy in those steps where candidates could not score any marks.				
9.	Unless otherwise specified in the question, use of notations different from those in the marking scheme should not be penalised.					
10.	Unless the form of answer is specified in the question, alternative simplified forms of answers different from those in the marking scheme should be accepted if they were correct.					

2000-CE-A MATH 1-2

只限教師參閱	FOR TEACHERS	3' USE ONLY
Solution	Marks	Remarks
1 .		
$\frac{1}{x} > 1$		
1 150	IM	
$\frac{1}{x} - i > 0$	1141	
$\frac{1-x}{x} > 0$	1A	
x		
$\frac{x-1}{x} < 0$		
x		
x(x-1) < 0		
0 < x < 1	lA	
Alternative solution (1)		
$\left \frac{1}{x}>1\right $		
x Multiply both side by x^2 ,		
$ x = x^2$	1M	
$x^2-x<0$	1A	
x(x-1) <0		
0 < x < 1	1A	
Alternative solution (2) Consider the following cases: (i) $x > 0$, (ii) $x < 0$	0. IM	Accept including equality sign
Case 1: $x > 0$	U. 11VI	Accept including equality sign
The inequality becomes		
$1 > x$ Since $x > 0$, $\therefore 0 < x < 1$.		
Case 2: $x < 0$	 −1A	Both are correct
The inequality becomes		
x > 1		
\therefore there is no solution. Combining the 2 cases, $0 < x < 1$.	1A	
ontoning the 2 states, o the tri		
	_3	
		,

	只阪教師参阅 FUR	TEACHERS	ACHERS, USE ONLY		
	Solution	Marks	Remarks		
(a)	$\frac{d}{dx}\sin^2 x$				
	dx				
	$= \frac{d}{d \sin x} (\sin^2 x) \frac{d}{dx} (\sin x)$	1M	For chain rule (can be omitted)		
	d sind	1101	Tor chain rule (can be officed)		
	$= 2\sin x \cos x \qquad \boxed{\text{OR} = \sin 2x}$	1A			
	Alternative solution				
	$\frac{d}{dx}\sin^2 x$				
	$= \frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{1}{2} (1 - \cos 2x) \right]$				
	$=\frac{1}{2}\sin 2x(2)$	1 M	For chain rule		
	$=\sin 2x$	1A			
(b)	$\frac{d}{dx}[\sin^2(3x+1)]$				
(0)	dx (32 + 1/)				
1	$= \frac{d}{d\sin(3x+1)}\sin^2(3x+1)\frac{d}{d(3x+1)}\sin(3x+1)$				
2 6 1					
	$\frac{\mathrm{d}}{\mathrm{d}x}(3x+1)$	1M	For chain rule (can be omitted)		
		¦			
	$\frac{OR}{OR} = 2\sin(3x+1)\cos(3x+1)\frac{d}{dx}(3x+1) \qquad \text{(using (a))}$)			
!_					
	= 2 sin(2 x + 1) con(2 x + 1) 2				
	$= 2\sin(3x+1)\cos(3x+1) \cdot 3$ = $6\sin(3x+1)\cos(3x+1) \cdot \frac{1}{2} \cdot $	1A			
	Alternative solution		<u> </u>		
	$\frac{\mathrm{d}}{\mathrm{d}x}[\sin^2(3x+1)]$		·		
	•				
	$= \frac{d}{dx} \left[\frac{1}{2} (1 - \cos(6x + 2)) \right]$				
	$=\frac{1}{2}\sin(6x+2).6$	1 M	For chain rule		
	$= 3\sin(6x+2)$	1A			
		4			
		1			

	Solution	Marks	Remarks
3. (a	$\frac{1}{\sqrt{x + \Delta x}} - \frac{1}{\sqrt{x}}$ $= \frac{\sqrt{x - \sqrt{x + \Delta x}}}{\sqrt{x + \Delta x}(\sqrt{x})}$		
	$=\frac{\sqrt{x}-\sqrt{x+\Delta x}}{\sqrt{x}(\sqrt{x+\Delta x})}(\frac{\sqrt{x}+\sqrt{x+\Delta x}}{\sqrt{x}+\sqrt{x+\Delta x}})$	1M	
	$= \frac{x - (x + \Delta x)}{\sqrt{x}(\sqrt{x + \Delta x})(\sqrt{x} + \sqrt{x + \Delta x})}$ $= \frac{-\Delta x}{\sqrt{x}(\sqrt{x + \Delta x})(\sqrt{x} + \sqrt{x + \Delta x})}$	1	
(I	$\frac{d}{dx}(\frac{1}{\sqrt{x}}) = \lim_{\Delta x \to 0} \frac{1}{\Delta x} (\frac{1}{\sqrt{x + \Delta x}} - \frac{1}{\sqrt{x}})$ $= \lim_{\Delta x \to 0} \frac{1}{\Delta x} [\frac{-\Delta x}{\sqrt{x + \Delta x}} (\sqrt{x + \Delta x} + \sqrt{x + \Delta x})]$	1A (using (a))	Withhold this mark if $\Delta x ightarrow 0$ was omitted
	$= \lim_{\Delta x \to 0} \frac{-1}{\sqrt{x}(\sqrt{x + \Delta x})(\sqrt{x} + \sqrt{x + \Delta x})}$	1A	
	$= \frac{-1}{(\sqrt{x})^2 (2\sqrt{x})}$ $= \frac{-\sqrt{x}}{2x^2} \qquad \boxed{OR = \frac{-1}{2x^{\frac{1}{2}}}, -\frac{1}{2}x^{-\frac{1}{2}}, \frac{-1}{2x\sqrt{x}}}$	1A	
		_5	
		1	

	只限教師參閱 FOR TEA	ACHERS	S' USE ONLY
	Solution	Marks	Remarks
(a)	(x+2)(y+3) = 5		
	$(x+2)\frac{d}{dx}(y+3) + (y+3)\frac{d}{dx}(x+2) = \frac{d}{dx}(5)$	1 M	(can be omitted)
	$(y+3)+(x+2)\frac{\mathrm{d}y}{\mathrm{d}x}=0$	1A	
	Alternative solution (1) xy+3x+2y+1=0		
	$y + x \frac{\mathrm{d}y}{\mathrm{d}x} + 3 + 2 \frac{\mathrm{d}y}{\mathrm{d}x} = 0$	1M+1A	1M for product rule
	$(y+3)+(x+2)\frac{\mathrm{d}y}{\mathrm{d}x}=0$,	
	Alternative solution (2)		
	$y = \frac{5}{x+2} - 3$ $dy \qquad 5$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{5}{(x+2)^2}$	1M+1A	1M quotient rule
	Substitute $x = -1$, $y = 2$:		
	$(2+3) + (-1+2)\frac{dy}{dx} = 0$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -5$	1A	
(b)	Equation of tangent is		
	$\frac{y-2}{x+1} = -5$	1M	
	5x + y + 3 = 0. Alternative solution	1A	Accept equivalent forms
	Using the formula $\frac{1}{2}(xy_1 + x_1y) + \frac{3}{2}(x + x_1) + (y + y_1) + 1 = 0$,	
	the equation of the tangent is		
	$\frac{1}{2}(2x-y) + \frac{3}{2}(x-1) + (y+2) + 1 = 0$	1 M	
	5x + y + 3 = 0	1A	
		_5	

	Solution	Marks	Remarks
(a)	1-x =2		
(-)	1-x=2 or $1-x=-2$	1 M	
	x = -1 or 3	1A	
	Alternative solution (1)		h
	Case 1: $x \ge 1$		
	The equation becomes		
	-(1-x)=2		
	$\begin{array}{c} x = 3 \\ C = 2 + m + 1 \end{array}$		
	Case 2: x < 1 The equation becomes		
	1-x=2	—1М	For $ 1-x =-(1-x)$ when $x \ge 1$
			1 1
	x = -1		and $ 1-x =1-x$ when $x < 1$
	$\therefore x = -1 \text{ or } 3$	1A	
	Alternative solution (2)		H
	1-x =2		
	$\left \left 1 - x \right ^2 = 4$	1M	
	l' '		
	$x^2-2x-3=0$		
	x = -1 or 3	1A	
(L)	Const. v. <1		
(b)	Case 1: $x \le 1$		
	$\left 1 - x \right = 1 - x$ The equation becomes		
	The equation becomes $1-x=x-1$		
	x = 1	1A	
	-		
	Case 2: $x > 1$		
	1-x =x-1		
	The equation becomes		
	x-1=x-1		
	which is true for all $x > 1$.	1A	
	Combining the 2 cases, the solution is $x \ge 1$.	1A	·
	Alternative solution (1)		<u> </u>
	1-x =x-1		
	x-1 =x-1	1M	For $ 1-x = x-1 $ (can be omitted)
	[
	The solution is $x-1 \ge 0$	1A	
	$ x \leq 1$	1A	
	Alternative solution (2)		†1
	1-x =x-1		
	Squaring both sides,		
	$(1-x)^2 = (x-1)^2$	1 M	For squaring both sides (can
	The equation is true for all x .		omitted)
	As $ 1-x \ge 0$, the expression on the RHS should be		
	non-negative.		
		1	
	$x-1\geq 0$	1A	
	$x \ge 1$		
	\therefore the solution is $x \ge 1$.	1A	11

2000-CE-A MATH 1-7

只限教師參閱

FOR TEACHERS' USE ONLY

只限教師參閱

FOR TEACHERS' USE ONLY

Solution Alternative solution (1) $ x = x - 1$ or $ -x = -(x - 1)$ $ x = 1$ or (true for all x) As the RHS must be non-negative, $ x - 1 \ge 0$ $ x \ge 1$ $ x \ge 1$	六败教即参阅	FOR 1E	ACHERS	O USE ONLY
Alternative solution (3) $\begin{vmatrix} 1-x=x-1 & \text{or } (1-x=-(x-1)) \\ x=1 & \text{or } (\text{true for all } x) \end{vmatrix}$ As the RHS must be non-negative, $\begin{vmatrix} x-1\geq 0 \\ x\geq 1 \end{vmatrix}$ $\begin{vmatrix} x-1\geq 0 \\ x\geq 1 \end{vmatrix}$ $\begin{vmatrix} x-1\geq 0 \\ x\geq 1 \end{vmatrix}$	Solution		Marks	Remarks
$x=1$ or (true for all x) As the RHS must be non-negative, $x-1 \ge 0$ $x \ge 1$ $1A$ $1A$ 5	Alternative solution (3)			
$x = 1 or (true for all x)$ As the RHS must be non-negative, $x - 1 \ge 0$ $x \ge 1$ $1A$ $1A$ 5	1-x=x-1 or $1-x=-(x-1)$		1M	
$\begin{vmatrix} x-1 \ge 0 \\ x \ge 1 \end{vmatrix}$ $\begin{vmatrix} x-1 \ge 0 \\ x \ge 1 \end{vmatrix}$ $\begin{vmatrix} x-1 \ge 0 \\ x \ge 1 \end{vmatrix}$	x = 1 or (true for all x)	:		
$\begin{array}{c} x-1 \geq 0 \\ x \geq 1 \end{array}$ $\begin{array}{c} 1A \\ 1A \end{array}$! !		
<u>IA</u> <u>S</u>	1			
5			1A	
	121		I IA	
			_5	
		:		
			•	

Solution Marks Remarks $ \frac{1+\sqrt{3}i}{\sqrt{3}+i} = \frac{1+\sqrt{3}i}{\sqrt{3}+i} \cdot (\sqrt{3}-i) \\ = \frac{1+\sqrt{3}i}{\sqrt{3}+i} \cdot (\sqrt{3}-i) \\ = \frac{\sqrt{3}-i+3i+\sqrt{3}}{4} \\ = \frac{\sqrt{3}+i}{2} $ IM (can be omitted) $ \frac{1+\sqrt{3}i}{\sqrt{3}+i} = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} $ 1A Accept degrees Alternative solution Consider $1+\sqrt{3}i$ $ r = \sqrt{1^2 + (\sqrt{3})^2} = 2 $ $ \tan \theta = \sqrt{3} \theta = \frac{\pi}{3} $ $ \therefore 1+\sqrt{3}i = 2(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}) $ Consider $\sqrt{3}+i$ $ r = \sqrt{(\sqrt{3})^2 + i^2} = 2 $ $ \tan \theta = \frac{1}{\sqrt{3}} \theta = \frac{\pi}{6} $ $ \therefore \sqrt{3}+i = 2(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}) $ $ \frac{1+\sqrt{3}i}{\sqrt{3}+i} = \frac{2(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3})}{2(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6})} $ $ = \cos(\frac{\pi}{3} - \frac{\pi}{6}) + i \sin(\frac{\pi}{3} - \frac{\pi}{6}) $ IM
$=\frac{1+\sqrt{3}i}{\sqrt{3}+i}(\frac{\sqrt{3}-i}{\sqrt{3}-i})$ $=\frac{\sqrt{3}-i+3i+\sqrt{3}}{4}$ $=\frac{\sqrt{5}+i}{2}$ $IM \qquad (can be omitted)$ $\frac{1+\sqrt{3}i}{\sqrt{3}+i}=\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}$ $\frac{1+\sqrt{3}i}{\sqrt{3}+i}=\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}$ $\frac{1+\sqrt{3}i}{\sqrt{3}+i}=\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}$ $\frac{1+\sqrt{3}i}{\sqrt{3}+i}=\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}$ $\frac{1+\sqrt{3}i}{\sqrt{3}+i}=\frac{2(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3})}{2(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6})}$ $\frac{1+\sqrt{3}i}{\sqrt{3}+i}=\frac{2(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6})}{2(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6})}$ $\frac{1+\sqrt{3}i}{\sqrt{3}+i}=\frac{2(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6})}{2(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6})}$ $=\cos(\frac{\pi}{6}+i\sin\frac{\pi}{6})$ $=\cos(\frac{\pi}{6}+i\sin\frac{\pi}{6})$ $=\cos(\frac{\pi}{6}+i\sin\frac{\pi}{6})$ $=\cos(\frac{\pi}{6}+i\sin\frac{\pi}{6})$
$r = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2} = 1$ $\tan \theta = \frac{1}{\sqrt{3}} \theta = \frac{\pi}{6}$ $\frac{1 + \sqrt{3}i}{\sqrt{3} + i} = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$ $r = \sqrt{1^2 + (\sqrt{3})^2} = 2$ $\tan \theta = \sqrt{3} \theta = \frac{\pi}{3}$ $\therefore 1 + \sqrt{3}i = 2(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3})$ $\operatorname{Consider} \sqrt{3} + i$ $r = \sqrt{(\sqrt{3})^2 + 1^2} = 2$ $\tan \theta = \frac{1}{\sqrt{3}} \theta = \frac{\pi}{6}$ $\therefore \sqrt{3} + i = 2(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6})$ $\therefore \sqrt{3} + i = 2(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6})$ $= \cos(\frac{\pi}{6} - i + i \sin \frac{\pi}{6})$
$ \frac{1+\sqrt{3}i}{\sqrt{3}+i} = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6} $ Alternative solution Consider $1+\sqrt{3}i$ $ \begin{vmatrix} r = \sqrt{1^2 + (\sqrt{3})^2} = 2 \\ \tan\theta = \sqrt{3} & \theta = \frac{\pi}{3} \end{vmatrix} $ $ \therefore 1+\sqrt{3}i = 2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}) $ Consider $\sqrt{3} + i$ $ \begin{vmatrix} r = \sqrt{(\sqrt{3})^2 + 1^2} = 2 \\ \tan\theta = \frac{1}{\sqrt{3}} & \theta = \frac{\pi}{6} \end{vmatrix} $ $ \therefore \sqrt{3} + i = 2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}) $ $ \frac{1+\sqrt{3}i}{\sqrt{3}+i} = \frac{2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})}{2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})} $ $ = \cos(\frac{\pi}{6} - \frac{\pi}{3}) + i\sin(\frac{\pi}{6} - \frac{\pi}{3}) $ $ = \cos(\frac{\pi}{6} - \frac{\pi}{3}) + i\sin(\frac{\pi}{6} - \frac{\pi}{3}) $
Consider $1+\sqrt{3}i$ $r = \sqrt{1^2 + (\sqrt{3})^2} = 2$ $\tan \theta = \sqrt{3} \theta = \frac{\pi}{3}$ $\therefore 1+\sqrt{3}i = 2(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3})$ Consider $\sqrt{3}+i$ $r = \sqrt{(\sqrt{3})^2+1^2} = 2$ $\tan \theta = \frac{1}{\sqrt{3}} \theta = \frac{\pi}{6}$ $\therefore \sqrt{3}+i = 2(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6})$ $\frac{1+\sqrt{3}i}{\sqrt{3}+i} = \frac{2(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3})}{2(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6})}$ $= \cos(\frac{\pi}{6}-\frac{\pi}{6})+i\sin(\frac{\pi}{6}-\frac{\pi}{6})$
$\therefore \sqrt{3} + i = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$ $\frac{1+\sqrt{3}i}{\sqrt{3}+i} = \frac{2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)}{2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)}$ $= \cos\left(\frac{\pi}{6} - \frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6} - \frac{\pi}{6}\right)$
$= \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$ 1A Accept degrees

2000-CE-A MATH 1-9

只限教師參閱

FOR TEACHERS' USE ONLY

	Solution	Marks	Remarks
7. $x^2 +$	+(p-2)x+p=0		
(a)	$\alpha + \beta = 2 - p$	1A	
	$\alpha \beta = p$	1A	
(b)	$\alpha^2 + \beta^2 = 11$		
	$(\alpha + \beta)^2 - 2\alpha\beta = 11$	1A	
	$(2-p)^2-2p=11$	1M	For substitution
	$p^2 - 6p - 7 = 0$		
	p = -1 or 7	1A	
	Put $p = -1$, the equation becomes $x^2 - 3x - 1 = 0$ Discriminant = $(-3)^2 - 4(-1) > 0$ \therefore the equation has real roots. Put $p = 7$, the equation becomes $x^2 + 5x + 7 = 0$ Discriminant = $(5)^2 - 4(7) < 0$ (rejected) $\therefore p = -1$.	 	For checking No mark if checking was omitted

只限教師參閱	FOR TEA	CHERS'	USE ONLY
Solution		Marks	Remarks
$\left(\frac{1+\sqrt{3}i}{\sqrt{3}+i}\right)^{2000} = \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^{2000}$			
$= \cos 2000(\frac{\pi}{6}) + i \sin 2000(\frac{\pi}{6})$,	1M	OR $\arg\left(\frac{1+\sqrt{3}i}{\sqrt{3}+i}\right)^{2000} = 2000(\frac{\pi}{6})$
$= \cos(334\pi - \frac{2\pi}{3}) + i\sin(334\pi - \frac{\pi}{3})$ $OR = \cos(332\pi + \frac{4\pi}{3}) + i\sin(332\pi + \frac{\pi}{3})$	3	1M	For $= 2n\pi \pm \alpha (\alpha < 2\pi)$ (can be omitted)
	3		
Argument of $(\frac{1+\sqrt{3}i}{\sqrt{3}+i})^{2000} = -\frac{2\pi}{3}$		1 A	Accept degrees
Alternative solution			
$\left(\frac{1+\sqrt{3}i}{\sqrt{3}+i}\right)^{2000} = \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^{2000}$			
$= \cos 2000(\frac{\pi}{6}) + i \sin 2000(\frac{\pi}{6})$		1M	
$= -\frac{1}{2} - \frac{\sqrt{3}i}{2}$ $\arg \text{ of } (\frac{1+\sqrt{3}i}{\sqrt{3}+i})^{2000} = \tan^{-1}(\frac{-\sqrt{3}/2}{-1/2})$		} IM	
$=-\frac{2\pi}{3}$		1 A	

只限教師參閱 FOR TE	EACHERS' USE ONLY	
Solution	Marks	Remarks
В		
D		
c		
A		
(a) $\overrightarrow{OC} = (1+k)\vec{i}$		
$\overrightarrow{OD} = \frac{\overrightarrow{OC} + 2\overrightarrow{OB}}{3}$	1M	For division formula
3		
$=\frac{(1+k)\vec{i}+2\vec{j}}{2}$	1	$=\frac{1+k}{3}\vec{i}+\frac{2}{3}\vec{j}$
3		3 3
Alternative solution		<u> </u>
$\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD}$		
$=\overrightarrow{OB} + \frac{1}{3}\overrightarrow{BC}$		
$= \overrightarrow{OB} + \frac{1}{3}(\overrightarrow{OC} - \overrightarrow{OB})$		
	1M	
$= \vec{j} + \frac{1}{3}[(1+k)\vec{i} - \vec{j}]$		
$=\frac{1}{3}(1+k)\vec{i}+\frac{2}{3}\vec{j}$	1	
	-	
(b) (i) $\left \overrightarrow{OD} \right = 1$		
$\left(\frac{1+k}{3}\right)^2 + \left(\frac{2}{3}\right)^2 = 1$	1M	
$k^2 + 2k - 4 = 0$	111/1	
$k = -1 + \sqrt{5} \text{ or } -1 - \sqrt{5} \text{ (rejected } :: k > 0)$		
$\therefore k = \sqrt{5} - 1$	1A	
(ii) $\overrightarrow{OB} \cdot \overrightarrow{OD} = \overrightarrow{OB} \overrightarrow{OD} \cos \angle BOD$		
	13.6	
$\vec{j} \cdot \left[\frac{1+k}{3} \vec{i} + \frac{2}{3} \vec{j} \right] = \overrightarrow{OB} \overrightarrow{OD} \cos \angle BOD$	1M	
$\frac{2}{3} = 1(1)\cos \angle BOD (\because \overrightarrow{OD} \text{ is a unit vector})$	1M	For $\vec{j} \cdot \vec{i} = 0$ and $\vec{j} \cdot \vec{j} = 1$
$\angle BOD = 48^{\circ}$ (correct to the nearest degree)	1A	

六队软肿参阅 ION ILACILING OCL		OOL OILL
Solution	Marks	Remarks
Alternative solution		B
Put $k = \sqrt{5} - 1$, $\overrightarrow{OD} = \frac{\sqrt{5}}{3} \vec{i} + \frac{2}{3} \vec{j}$.		D
3 3		
$\tan \angle BOD = \frac{\sqrt{5}/3}{2/3}$ $= \frac{\sqrt{5}}{2}$	2M	
$\sqrt{5}$		0
$=\frac{1}{2}$		
$\angle BOD = 48^{\circ}$ (correct to the nearest degree)	1A	Omit vector sign in most cases (pp-1) Omit dot product sign more than one
		∐(pp−1)
	_7	
:		
		·

Marks	Remarks
1	
1A	
1M 1	For a correct method to express \overrightarrow{OC} in terms of \vec{a} , \vec{b}
1M 1	Same as above
1M _1A _5	- - -
1M 1A 1A	(can be omitted)
	1M 1 1M 1 1M 1 1M 1A 5

只限教師參閱	FOR TEACHER	S' USE ONLY
Solution	Marks	Remarks
(ii) (1) $\overrightarrow{OE} \cdot \overrightarrow{EF} = 0$ $\overrightarrow{OR} \cdot \overrightarrow{OB} \cdot \overrightarrow{EF} = 0$		
$k\vec{b} \cdot [\vec{a} + (1-k)\vec{b}] = 0$	-	
$k\vec{a} \cdot \vec{b} + k(1-k) \vec{b} \cdot \vec{b} = 0$	1M	For distributive law
3k+4k(1-k)=0	1 M	For substitution
$7k-4k^2=0$		
$k = 0$ (rejected) or $k = \frac{7}{4}$		
$\therefore k = \frac{7}{4}.$	1A	
(2) Put $k = \frac{7}{4}$:		
$\overrightarrow{EF} = \vec{a} + (1 - \frac{7}{4})\vec{b} = \vec{a} - \frac{3}{4}\vec{b}$	1 M	For finding \overrightarrow{EF}
$\overrightarrow{CE} = \overrightarrow{OE} - \overrightarrow{OC}$) IM	For finding \overrightarrow{CE} (OR \overrightarrow{CF})
$=\frac{7}{4}\vec{b}-(-\frac{1}{2}\vec{a}+\frac{3}{2}\vec{b})$	\\ \frac{1}{2} \tag{1}	$\overrightarrow{CF} = \overrightarrow{OF} - \overrightarrow{OC}$
7 2 2		1 1
$=\frac{1}{2}\vec{a}+\frac{1}{4}\vec{b}$		$=\frac{3}{2}\vec{a}-\frac{1}{2}\vec{b}$
Since $\overrightarrow{CE} \neq \mu \overrightarrow{EF}$,] _{1M+1}	
So C , E , F are not collinear. The st		
Alternative solution		
$\overrightarrow{CE} = \cdots = \frac{1}{2} \vec{a} + \frac{1}{4} \vec{b}$	1M	Same as above
$\overrightarrow{OE} \cdot \overrightarrow{CE}$		
		$\bigcirc R \overrightarrow{OB} \cdot \overrightarrow{CE}$
$= k\vec{b} \cdot (\frac{1}{2}\vec{a} + \frac{1}{4}\vec{b})$		=
$=\frac{7}{4}\left[\frac{1}{2}(3)+\frac{1}{4}(4)\right]$) 2M	$\left \cdot \right = \frac{3}{2}$
$=\frac{35}{8}\begin{bmatrix} \frac{1}{20}\end{bmatrix}$		
OC is not perpendicular to CE . So C , E , F are not collinear. The str	udant is in compat	
So C, E, F are not commear. The su	udent is incorrect. 1	Omit vector sign in most cases (pp-1)
	11	Omit dot product sign more than once (pp-1
		_
· · · · · · · · · · · · · · · · · · ·		
	1	1

2000-CE-A MATH 1-15 **只限教師參閱** FOR TEACHERS' USE ONLY

Provided by dse.life

	六败软 即 参阅 「C	I LACHERS	USE UNLT
	Solution	Marks	Remarks
$f(x) = \frac{7}{x}$	-4x		
x	2+2		
(a) (i)	Put $x = 0$, $y = \frac{7}{2}$ the y-intercept is $\frac{7}{2}$		(pp-1) for intercept = $(0, \frac{7}{2})$
	Put $y = 0$, $x = \frac{7}{4}$: the x-intercept is $\frac{7}{4}$. 1A	(pp-1) for intercept = $(\frac{7}{4}, 0)$
(ii) $f(x)$ is decreasing when $f'(x) \le 0$.		or $\frac{dy}{dx} < 0$
	$f'(x) = \frac{-4(x^2+2) - (7-4x)2x}{(x^2+2)^2}$	1M+1A	1M for quotient rule or product rule
	$=\frac{4x^2-14x-8}{(x^2+2)^2}$		
	$\frac{4x^2 - 14x - 8}{\left(x^2 + 2\right)^2} \le 0$	1M	
	$(2x+1)(x-4)\leq 0$		
	$-\frac{1}{2} \le x \le 4$	1A	
(iii	f(x) is increasing when $f'(x) \ge 0$,		
	i.e. $x \ge 4$ or $x \le -\frac{1}{2}$.		
	$f'(x) = 0$ when $x = 4$ or $-\frac{1}{2}$.		OR
	As $f'(x)$ changes from positive to negative	ve as	$\left -2 < x < -\frac{1}{2} \right x = -\frac{1}{2} \left -\frac{1}{2} < x < 2 \right $
	x increases through $-\frac{1}{2}$, so $f(x)$ attains	a IM	$\begin{vmatrix} -2 < x < -\frac{1}{2} & x = -\frac{1}{2} & -\frac{1}{2} < x < 4 \\ f'(x) > 0 & 0 & f'(x) < 0 \end{vmatrix}$
	maximum at $x = -\frac{1}{2}$.		
	At $x = -\frac{1}{2}, y = 4$		
	the maximum value of $f(x)$ is 4. As $f'(x)$ changes from negative to positive	/e as	Not awarded if justification was omitted
	x increases through 4, so $f(x)$ attains a		
	minimum at $x = 4$. At $x = 4$, $y = -\frac{1}{2}$		
	$\therefore \text{ the minimum value of } f(x) \text{ is } -\frac{1}{2}.$	1	Not awarded if justification was omitted
	Alternative solution 2		
	$f'(x) = \frac{4x^2 - 14x - 8}{(x^2 + 2)^2}$		
	$=\frac{2(2x+1)(x-4)}{(x^2+2)^2}$		
	$f'(x) = 0$ at $x = -\frac{1}{2}$ or 4		
	2		

Solution	Marks	Remarks
$f''(x) = \frac{(x^2 + 2)^2 (8x - 14) - (4x^2 - 14x - 8)2 (x^2 + 2)}{(x^2 + 2)^4}$ $f''(-\frac{1}{2}) = \frac{32}{9} = 0$	(2x) 1M	For checking
$f(x) \text{ attains a maximum at } x = -\frac{1}{2}.$ $f(-\frac{1}{2}) = 4$ So the maximum value of $f(x)$ is 4.	1	Not awarded if (i) checking was omitted,
$f''(4) = \frac{1}{18} > 0$ $\therefore f(x) \text{ attains a minimum at } x = 4.$		(ii) f"(x) is wrong
$f(4) = -\frac{1}{2}$ So the minimum value of $f(x)$ is $-\frac{1}{2}$.	1	Not awarded if (i) checking was omitted, (ii) f''(x) is wrong
(b) $y = (-\frac{1}{2}, 4)$ 7	9	(Awarded even if checking in (a) (iii) was incomplete or omitted)
$(-2, \frac{5}{2})$ $y = f(x)$	1A 1A	For shape For intercepts and turning points
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1A	for end-points
$(5, -\frac{13}{27})$ or $(5, -0.48)$		
00-CE-A MATH 占 ⁷ 限 数 篩 終 悶 FOR T	<u>3</u>	S' USE ONLY

'只限教師參閱

FOR TEACHERS USE ONLY

即绕动体即口

	Solution	Marks	Remarks
(c)	 Put x = sinθ, f(sinθ) = (7-4 sinθ)/(sin²θ+2) = p. The range of possible value of sinθ is -1 ≤ sinθ ≤ 1. From the graph in (b), the greatest value of f(x) in the range -1 ≤ x ≤ 1 is 4. ∴ the greatest value of p is 4 and the student is correct. From the graph in (b), f(x) attains its least value at one of the end-points. f(1) = 1 , f(-1) = 11/3. ∴ the least value of p is 1 and the student is incorrect. 	1M } 1 } 1+1A	For explaining why 'Greatest value = is correct 1 for explaining why 'least value = $-\frac{1}{2}$ ' is wrong 1 A for least value = 1
	From the graph, $f(x) = -\frac{1}{2}$ when $x = 4$. As 4 lies outside the range of possible values of p , the least value of p is not $-\frac{1}{2}$.	} 1	
	Alternative solution From the graph, $f(x)$ is greatest when $f(x) = -\frac{1}{2}$ i.e. $f(x)$ is greatest at $\sin \theta = -\frac{1}{2}$ $f(x)$ the greatest value of $f(x)$ and the student is correct. From the graph, $f(x)$ when $f(x)$ and $f(x)$ which is impossible. $f(x)$ the least value of $f(x)$ and $f(x)$ when $f(x)$ and $f(x)$ is impossible. $f(x)$ the least value of $f(x)$ and $f(x)$ are the least value of $f(x)$ are the least value of $f(x)$ and $f(x)$ are the least value of $f(x)$ and $f(x)$ are the least value of $f(x)$ are the least value of $f(x)$ and	1M 1	
		4	

2000-CE-A MATH 1-18 **只限教師參閱**

FOR TEACHERS' USE ONLY

Provided by dse.life

	八水纹叶沙园	FOR TEACHERS	OSE UNLT
	Solution	Marks	Remarks
1. (a			
	$w^2 = \cos 2\theta + i \sin 2\theta$	1A	$QR = \cos^2 \theta - \sin^2 \theta + 2\sin \theta \cos \theta$
	1!		
	$\frac{1}{w} = \frac{1}{\cos \theta + i \sin \theta}$		
	$=\cos(-\theta)+i\sin(-\theta)$		
	$=\cos\theta-i\sin\theta$	1A	
	$w^2 + \frac{5}{w} - 2$		
	$= \cos 2\theta + i \sin 2\theta + 5(\cos \theta - i \sin \theta) - 2$		
	$=\cos 2\theta + 5\cos \theta - 2 + i(\sin 2\theta - 5\sin \theta)$		
	Since $w^2 + \frac{5}{w} - 2$ is purely imaginary,		
	$\cos 2\theta + 5\cos \theta - 2 = 0$	1 M	For equating real part = 0
	$(2\cos^2\theta - 1) + 5\cos\theta - 2 = 0$	1M	For $\cos 2\theta = 2\cos^2 \theta - 1$ or
			$\sin^2\theta = 1 - \cos^2\theta$
	$2\cos^2\theta + 5\cos\theta - 3 = 0$	1	
	$\cos \theta = \frac{1}{2} \left[\text{ or } \cos \theta = -3 \text{ (rejected)} \right]$	1A	
	2 1		
	$\theta = \frac{\pi}{3} (\because \ 0 < \theta < \pi)$	1A	
	Imaginary part		
	$=\sin\frac{2\pi}{3}-5\sin\frac{\pi}{3}\neq0$		
	$\therefore w = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \qquad OR = \frac{1}{2} + \frac{\sqrt{3}}{2}i$]	Accept degrees
	2 2	_8	
(b)	(i) $\left \frac{z_2}{z_1} \right = w $	1 M	For using $\frac{z_2}{z_1} = w$
	*1 = 1	1A	z_1
	$\arg(\frac{z_2}{z_1}) = \arg(w)$	'^	
	$=\frac{\pi}{3}$	1A	Imaginary
	(ii) $ z_2 - z_2 - 1$		$\int_{B(z_2)}$
	(ii) $\left \frac{z_2}{z_1} \right = \frac{ z_2 }{ z_1 } = 1$		
	$\therefore z_2 = z_1 $		$A(z_{\nu})$
	i.e. $OA = OB$.	1A	O Page
	$\angle AOB = \arg(z_1) - \arg(z_1)$	1M	O' Real
	$= \operatorname{arg}(\frac{z_2}{z_1})$		
	•		
	$=\frac{\pi}{3}$	1A	
		1	

Solution	Marks	Remarks
Alternative solution		\mathbf{h}
Since $z_2 = wz_1$ and $ w = 1$, z_2 is formed	by rotating	
z_1 by $\frac{\pi}{2}$.	1M	(pp-1) if omitting this step
3	1144	(pp-1) it officing this step
z_1 by $\frac{\pi}{3}$. $\therefore \angle AOB = \frac{\pi}{3}$.	1A	
3		
Since $OA = OB$, $\triangle OAB$ is isosceles.		
$\angle OAB = \angle OBA = \frac{1}{2}(\pi - \frac{\pi}{3}) = \frac{\pi}{3}$	1A	
$\begin{array}{ccc} 2 & 3 & 3 \\ \therefore & \Delta OAB \text{ is equilateral.} \end{array}$	1A	
AOAB is equilateral.	IA.	
Alternative solution		ħ
Let $OA = OB = \ell$.		
$AB^2 = \ell^2 + \ell^2 - 2(\ell)(\ell)\cos\frac{\pi}{3}$		
$=\ell^2$		
$AB = \ell$	1A	
OA = OB = AB.		
$\therefore \Delta OAB$ is equilateral.	1A	$oldsymbol{ol}oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}$

		Solution	Marks	Remarks
2.	(a)	$f(x) = x^2 - 4mx - (5m^2 - 6m + 1)$		
۷.	(a)	Discriminant $\Delta = (-4m)^2 + 4(5m^2 - 6m + 1)$	1M	For $\Delta = b^2 - 4ac$
		$= 36m^2 - 24m + 4$	1111	101 2 = 0 = 440
		$= 4(9 m^2 - 6 m + 1)$		
		$= 4(3m-1)^2 > 0 \dots m > \frac{1}{3} $	1M+1	1M for completing squares
		\therefore the equation $f(x) = 0$ has distinct real roots.		
			_3	
	(b)	(i) $x = \frac{4m \pm \sqrt{\Delta}}{2}$	1116	OD 6(1) [(1)][(5 1)]
	(0)	2	1M	OR $f(x) = [x - (1-m)][x - (5m-1)]$
		$=2m\pm(3m-1)$		
		=(5m-1) or $(-m+1)$	1A	
		Since $\alpha < \beta$,	1	
		$\alpha = 2m - (3m - 1) = -m + 1$	} 1A	
		$\beta = 2 m + (3 m - 1) = 5 m - 1$	J	
		(ii) (1) Since $4 < \beta < 5$,		
		4<5m-1<5	1M	For substitution
		5 < 5m < 6		
		$1 < m < \frac{6}{5}$	1	
		 (2) Sketch A: Since the coefficient of x² in f(x) is positive, the graph of y = f(x) should open upwards. However, the graph in sketch A opens downwards, so sketch A is incorrect. 	1	OR concave upwards, convex downwar
		Sketch B:		
		Since $\alpha = 1 - m$ and $1 < m < \frac{6}{5}$,		
		$ 1-1 1-m > 1-\frac{6}{5}$	1M	For using m to consider the range of
		$ 0> \alpha>-\frac{1}{5}$	1A	
		In sketch B, α is less than -1 .	1	
		QR α does not lie within the above range. So sketch B is incorrect.	1	
		Sketch <i>C</i> :		
		$\begin{cases} y = x^2 - 4mx - (5m^2 - 6m + 1) \\ y = -1 \end{cases}$		
		$-1 = x^2 - 4mx - (5m^2 - 6m + 1)$	1M	
		$x^{2} - 4mx - (5m^{2} - 6m) = 0 (*)$	""	
		Discriminant $\Delta = (-4m)^2 + 4(5m^2 - 6m)$	1M	
		$=36m^2-24m$		
		=12m(3m-2)		
				1

2000-CE-A MATH 1-21 只限教師參閱

FOR TEACHERS' USE ONLY

Provided by dse.life

Solution	Marks	Remarks
Since $1 < m < \frac{6}{5}$, $\Delta > 0$. As $\Delta > 0$, equation (*) has real roots, i.e. $y = f(x)$ and $y = -1$ always have intersecting points. However, the line and the graph in sketch C do not intersect. So sketch C is incorrect.	1M+1	1M for attempting to show that $\Delta > 0$
Alternative solution $f(x) = x^2 - 4mx - 5m^2 + 6m - 1$ $= (x^2 - 4mx + 4m^2) - 4m^2 - 5m^2 + 6m - 1$ $= (x - 2m)^2 - (3m - 1)^2$ $\therefore \text{ the } y\text{-coordinate of the vertex of } y = f(x) \text{ is } -(3m - 1)^2.$ OR the coordinates of the vertex of $y = f(x)$ are $(2m, -(3m - 1)^2)$.	} 1M+IM	1M for considering the vertex 1M for finding the y-coordinate of the vertex $ \underline{OR} = -9m^2 + 6m - 1 $
Alternative solution $f'(x) = 2x - 4m$ $f'(x) = 0 \text{ at } x = 2m$ $f(2m) = (2m)^2 - 4m(2m) - 5m^2 + 6m - 1$ $= -9m^2 + 6m - 1$ $= -(3m - 1)^2$ $\therefore \text{ the } y \text{ coordinate of the vertex of } y = f(x) \text{ is }$ $-(3m - 1)^2.$	 	1M for considering the vertex 1M for finding the y-coordinate of t vertex
As $1 < m < \frac{6}{5}$, $ \begin{vmatrix} -(3 \times \frac{6}{5} - 1)^2 \\ -(3m - 1)^2 < -(3m - 1)^2 < -(3m - 1)^2 \end{vmatrix} $ $ \begin{vmatrix} -169 \\ 25 \end{vmatrix} (QR \approx -6.76) \\ \therefore \text{ the } y\text{-coordinate of the vertex lies within the range } \frac{-169}{25} < y < -4.$	1M	For finding the range of y-coordina of the vertex
As the y-coordinate of the vertex in sketch C is larger than -1, OR does not lie within the above range, so sketch C is incorrect.	1	

Solution	Marks	Remarks
$ \begin{array}{c} $		
(a) $\tan \angle ARQ = \frac{100 - x}{100}$	1A	
$\tan \theta = \tan \left(\angle ARQ + \angle QRB \right)$	1A	(can be omitted)
$= \frac{\tan \angle ARQ + \tan \angle QRB}{1 - (\tan \angle ARQ) (\tan \angle QRB)}$ $= \frac{\frac{100 - x}{100} + \frac{y}{100}}{1 - (\frac{100 - x}{100}) (\frac{y}{100})}$ $= \frac{100(100 - x + y)}{10000 - 100y + xy}$	1M _1	
(b) (i) At $t = 0$, $\tan \theta = \frac{PQ}{RQ}$	1M	For considering $t = 0$
$= \frac{100}{100} = 1.$ Since $\angle ARB$ remains unchanged,	1A	
$\frac{100(100 - x + y)}{10000 - 100y + xy} = 1$ $10000 - 100x + 100y = 10000 - 100y + xy$ $200y - xy = 100x$	1M	For " = a constant"
$y = \frac{100x}{200 - x}$	1	
(ii) $\frac{dy}{dt} = \frac{(200-x)(100)-100x(-1)}{(200-x)^2} \frac{dx}{dt}$ $= \frac{20000}{(200-x)^2} \frac{dx}{dt}$	IM+1A	IM for chain rule
$=\frac{40000}{(200-x)^2}$	1M	For putting $\frac{dx}{dt} = 2$

只限教師参阅 FOR TEA	ACHERS'	USE ONLY
Solution	Marks	Remarks
$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{40000}{(200 - 80)^2}$	1M	For putting $x = 80$
$=\frac{25}{9}$ (m s ⁻¹)	1A	Omit/wrong units $(u-1)$
\therefore the speed of boat B at $t = 40$ is $\frac{25}{9}$ m s ⁻¹ .		
Alternative solution $200y - xy = 100x$		
$200 \frac{dy}{dt} - x \frac{dy}{dt} - y \frac{dx}{dt} = 100 \frac{dx}{dt}$	1M+1A .	1) A Complete
		1M for chain rule
At $t = 40$, $\frac{dx}{dt} = 2$, $x = 80$,	1 M	For putting $\frac{dx}{dt} = 2$
$y = \frac{100(80)}{200 - 80} = \frac{200}{3}$		
$(200-80)\frac{dy}{dt} - \frac{200}{3}(2) = 100(2)$	1 M	For putting $x = 80$
$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{25}{9} (\mathrm{m s^{-1}})$	1111	or putting x = 80
$\frac{dt}{dt} = \frac{1}{9} (ms^{-1})$	1A	
(iii) From (ii), $\frac{dy}{dt} = \frac{40000}{(200-x)^2}$		
		·
$\frac{\mathrm{d}y}{\mathrm{d}t} \le 3$	1M	
$\frac{40000}{(200-x)^2} \le 3$		
$200-x\geq \frac{200}{\sqrt{3}}$		
$x \le 200(1 - \frac{1}{\sqrt{3}}) \boxed{QR \approx 84.5}$	1A	
When $x > 200(1 - \frac{1}{\sqrt{3}}), \frac{dy}{dt} > 3$.		
So it is impossible to keep $\angle ARB$ unchanged before boat A reaches Q .	1	
2		

2000-CE-A MATHU-2008 PR FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
Alternative solution (1)		\uparrow
From (ii), $\frac{dy}{dt} = \frac{40000}{(200-x)^2}$		
$dt = \frac{(200 - x)^2}{}$		
Put $\frac{dy}{dt} = 3$:		
dt = 3	1M	
$\frac{40000}{(200-x)^2} = 3$		
$x = 200(1 - \frac{1}{\sqrt{3}})$ $\frac{dy}{dt} \text{ increases as } x \text{ increases.}$		
$\sqrt{3}$	1A	
$\frac{dy}{dy}$ increases as x increases.		
d <i>t</i>		
To annual dy		
:. For $x > 200(1 - \frac{1}{\sqrt{3}}), \frac{dy}{dt} > 3$.		
So it is impossible to keep $\angle ARB$		
unchanged before boat A reaches Q	. 1	\bot
Alternative solution (2)		
From (ii), $\frac{dy}{dt} = \frac{40000}{(200-x)^2}$		
When boat A reach Q , $x = 100$.	1M	For considering any $100 \ge x > 84$.
•		To considering any 100 = x > 04
At $x = 100$, $\frac{dy}{dt} = \frac{40000}{(200 - 100)^2}$		
= 4	1A	
As the maximum speed of boat A is C		· ·
3 m s ⁻¹ , it is impossible to keep $\angle AR$ unchanged before boat A reaches Q.	$B \mid 1$	
unicitatiged before boat A features Q.		+
	_12	-
	,	
	,	
	İ	
	1	