香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九九九年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1999

附加數學 試卷一 ADDITIONAL MATHEMATICS PAPER 1

本評卷參考乃考試局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成 閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對, 但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取 此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致 但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考 試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上 述原則。

This marking scheme has been prepared by the Hong Kong Examinations Authority for markers' reference. The Examinations Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Examinations Authority is counting on the co-operation of markers/teachers in this regard.

考試結束後,各科評卷參考將存放於教師中心,供教師參閱。

After the examinations, marking schemes will be available for reference at the Teachers' Centres.

© 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1999

99-CE-A MATHS 1-1

只限教師參閱

FOR TEACHERS' USE ONLY

GENERAL INSTRUCTIONS TO MARKERS

1.	It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates would use alternative methods not specified in the marking scheme. Markers should be patient in marking these alternative solutions. In general, a correct alternative solution merits all the marks allocated to that part, unless a particular method is specified in the question.			
2.	In the marking scheme, marks are classified as follows:			
	'M' mai	rks – awarded for knowing a correct method of solution and attempting to apply it;		
	'A' mar	ks – awarded for the accuracy of the answer;		
	Marks v	vithout 'M' or 'A' - awarded for correctly completing a proof or arriving at an answer given in the question.		
3.	In mark	ing candidates' work, the benefit of doubt should be given in the candidates' favour.		
4.	_	nbol (pp-1) should be used to denote marks deducted for poor presentation (p.p.). Note the ag points:		
	(a)	At most deduct 1 mark for p.p. in each question, up to a maximum of 3 marks for the whole paper.		
	(b)	For similar p.p., deduct only 1 mark for the first time that it occurs, i.e. do not penalise candidates twice in the whole paper for the same p.p.		
	(c)	In any case, do not deduct any marks for p.p. in those steps where candidates could not score any marks.		
	(d)	Note: if the final answers are not expressed in the simplest form, deduct 1 mark for p.p.		
	(e)	Some cases in which marks should be deducted for p.p. are specified in the marking scheme. However, the lists are by no means exhaustive. Markers should exercise their professional judgement to give p.p.s in other situations.		
5.	The symbol u-1 should be used to denote marks deducted for wrong/no units in the final answers applicable). Note the following points:			
	(a)	At most deduct 1 mark for wrong/no units for the whole paper.		
	(b)	Do not deduct any marks for wrong/no units in case candidate's answer was already wrong.		
6.		ntered in the Page Total Box should be the net total score on that page.		
7.	In the Marking Scheme, steps which can be omitted are enclosed by dotted rectangles			
	whereas	alternative answers are enclosed by solid rectangles .		
8.	Unless of	otherwise specified in the question, numerical answers not given in exact values should not be		
9.		otherwise specified in the question, use of notations different from those in the marking scheme not be penalised.		
10. 99-CE-A	Unless the form of answer is specified in the question, alternative simplified forms of answers different from those in the marking scheme should be accepted if they were correct. A MATHS 1-2			

只限教師參閱 FOR TEACHERS' USE ON	VIV
-----------------------------	-----

	只限教師參閱 FOR TEAC	HERS' (JSE ONLY
	Solution	Marks	Remarks
. (a)	$\frac{d}{dx}\sin(x^{2}+1)$ $= \frac{d}{d(x^{2}+1)}\sin(x^{2}+1)\frac{d}{dx}(x^{2}+1)$ $= 2x\cos(x^{2}+1)$	IM 1A	For chain rule (can be omitted)
(b)	$\frac{\mathrm{d}}{\mathrm{d}x} \frac{\sin(x^2 + 1)}{x}$		
	$= \frac{x \frac{d}{dx} \sin(x^2 + 1) - \sin(x^2 + 1) \frac{d}{dx}(x)}{x^2}$	IM	For quotient rule (can be omitted)
	$=\frac{2x^2\cos(x^2+1)-\sin(x^2+1)}{x^2}$	1A	
	Alternative solution $\frac{d}{dx} \frac{\sin(x^2 + 1)}{x}$ $= \frac{1}{x} \frac{d}{dx} \sin(x^2 + 1) + \sin(x^2 + 1) \frac{d}{dx} \frac{1}{x}$ $= \frac{1}{x} 2x \cos(x^2 + 1) + \sin(x^2 + 1) \left(-\frac{1}{x^2}\right)$	1M	For product rule (can be omitted)
	$= 2\cos(x^{2} + 1) - \frac{1}{x^{2}}\sin(x^{2} + 1)$	1A	
		4	

	CUEKO,	USE ONLY
Solution	Marks	Remarks
<i>x</i>		
$\frac{x}{x-1} > 2$		·
	1M	
$\frac{x}{x-1} - 2 > 0$	1101	
$\frac{-x+2}{x-1} > 0$	1A	
		-
1 < x < 2	2A	·
Alternative solution (1)		\uparrow
Consider the following cases: (i) $x > 1$, (ii) $x < 1$	1M	Awarded even if equality sign is included
Case $1: x > 1$		
x > 2(x-1)		
x < 2		
Since $x > 1$, $\therefore 1 < x < 2$.	$\rightarrow 1A$	
Case 2: $x < 1$		
x < 2(x-1)		
x > 2		
Since $x < 1$, \therefore there is no solution. Combining the 2 cases, $1 < x < 2$.	2A	
Comoning the 2 cases, 1 < x < 2.	20	
Alternative solution (2)		
$\left \frac{x}{x-1}\right>2$		
	1M	
$x(x-1) > 2(x-1)^2$	1	
$x^2 - 3x + 2 < 0$		
(x-1)(x-2) < 0	1A	(can be omitted)
$\begin{vmatrix} x^{2} - 3x + 2 < 0 \\ (x - 1)(x - 2) < 0 \\ 1 < x < 2 \end{vmatrix}$		
1 < x < 2	2A	41
	4	-
•		
	1	•

只限教師參閱	FOR TEACHERS' USE ONLY
--------	------------------------

只限教師參閱 FOR TEAC	Marks	JSE ONLY Remarks
Solution	IVIAIKS	Kemarks
$ x-3 = x^2 - 4x + 3 $		
x-3 = x-1 x-3	2A	
x-3 = 0 or $ x-1 = 1$		
$x=3$ $x-1=\pm 1$		
x = 0 or 2		
$\therefore x = 0$, 2 or 3.	1A+1A+1A	Can be awarded even if the above '2A'
		were not given.
Alternative solutions	2A	
(1) $x-3=x^2-4x+3$ or $x-3=-(x^2-4x+3)$	ZA	
x-3=(x-1)(x-3) $(x-3)=-(x-1)(x-3)$		
x = 3 or $x - 1 = 1$ $x = 3$ or $x - 1 = -1$		
x = 2 x = 0		
$\therefore x = 0, 2 \text{ or } 3.$	1A+1A+1A	
$(2) (x-3)^2 = (x^2 - 4x + 3)^2$	2A	
$(x-3)^{2}[(x-1)^{2}-1]=0$		
$(x-3)^2 (x-2) (x) = 0$		
x = 0, 2 or 3.	1A+1A+1A	
(3) Consider the following cases: $x \ge 3, 1 < x < 3, x \le 1$.	1A	
Case 1: $x \ge 3$		
$x-3=x^2-4x+3$		· ·
$x^2 - 5x + 6 = 0$		
x = 2 (rejected) or 3		
Case 2: 1 < x < 3		
$-(x-3) = -(x^2 - 4x + 3)$		
x = 2 or 3 (rejected)		
Case 3: $x \le 1$		
$-(x-3) = x^2 - 4x + 3$	├ - , ,	Awarded only if the 3 equations were a
$x^2 - 3x = 0$	1A	correct.
l .		
x = 0 or 3 (rejected)		
Combining the 3 cases, $x = 0, 2 \text{ or } 3.$	1A+1A+1A	
		>
	_5	
() 2 (0) (1)	13.6	
(a) Discriminant = $4(k-4)^2 - 4(2)(k)$	1M	
$=4k^2-40k+64$	1A	
(b) Discriminant < 0		
$4k^2 - 40k + 64 < 0$	2M	1M for Δ≤0
	2111	
$\begin{cases} \frac{k^2 - 10k + 16 < 0}{(k-2)(k-8) < 0} \end{cases}$		
$\frac{(\kappa-2)(\kappa-3)}{2 < k < 8}.$	_1A	
2 (10 (0)	5	

	只限教師參閱 FOR TEAC	HERS' L	
	Solution	Marks	Remarks
5. 1+ <i>i</i>	$=\sqrt{2}\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$	1A+1A	IA for modulus, IA for argument (Accept degrees, Accept other equivalent values for argument)
(1+1	$i^{\frac{1}{3}} = \left[\sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})\right]^{\frac{1}{3}}$		•
	$= (\sqrt{2})^{\frac{1}{3}} \left(\cos \frac{2k\pi + \frac{\pi}{4}}{3} + i\sin \frac{2k\pi + \frac{\pi}{4}}{3}\right) \left[\frac{k = -1, 0, 1}{3}\right]$	IM+1A	IM for De Moivre's Theorem, IA for modulus
	$=2^{\frac{1}{6}}\left[\cos(\frac{2k\pi}{3}+\frac{\pi}{12})+i\sin(\frac{2k\pi}{3}+\frac{\pi}{12})\right] \qquad k=-1, 0, 1$	1A	1A for argument (accept degrees) (accept k = any 3 consecutive integers
OR.	$=2^{\frac{1}{6}}\left(\cos\frac{-7\pi}{12}+i\sin\frac{-7\pi}{12}\right), 2^{\frac{1}{6}}\left(\cos\frac{\pi}{12}+i\sin\frac{\pi}{12}\right),$ $2^{\frac{1}{6}}\left(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right).$		
<u>L</u>	` 4 4'		
. (a)	$3x^2 - xy - y^2 - a^2 = 0$		
	$6x - y - x \frac{\mathrm{d}y}{\mathrm{d}x} - 2y \frac{\mathrm{d}y}{\mathrm{d}x} = 0$	1A+1A	1A for $\frac{d}{dx}(xy)$, 1A for other terms
	$\frac{dy}{dx} = \frac{6x - y}{x + 2y}$ Substitute $x = a, y = a$: $dy 6a - a$		
	$\frac{3}{dx} = \frac{3}{a+2a}$ $= \frac{5}{3}$	1M 1A	} (can be awarded in (b))
(b)	Equation of tangent is		
	$\frac{y-a}{x-a} = \frac{5}{3}$	1M	
	5x-3y-2a=0.	_1A _6	Accept equivalent forms
	÷		
	». »		1

		只限教師參閱 FOR TEAC Solution	Marks	Remarks
		Solution	14101 72	IXIIIII KS
' .	(a)	$ \vec{a} = \sqrt{3^2 + 4^2} = 5$	1A	
	(b)	$\vec{a} \cdot \vec{b} = \vec{a} \vec{b} \cos 60^{\circ}$		
		$= 5(4)\cos 60^{\circ}$	1M	
		=10 .	1 A	
	(c)	$(m\vec{a}+\vec{b})\cdot\vec{b}=0$	1M	
		$m\vec{a}\cdot\vec{b}+\vec{b}\cdot\vec{b}=0$	1M	For distribution law only
		$m(10) + 4^2 = 0$	· :	•
		m = -1.6	1A	Omit vectors sign in most cases (pp-1)
				Omit dot product sign more than
			6	once (pp-1)
		1.40		
3.	(a)	(i) $\tan \theta = \frac{h+40}{55}$		
		• •		
		$=\frac{20t-5t^2+40}{55}$		
		55		
		$\tan\theta = \frac{4t - t^2 + 8}{11} - \cdots - (1)$	1A	
		11		
		$4(3)-3^2+8$		
		(ii) At $t = 3$, $\tan \theta = \frac{4(3) - 3^2 + 8}{11} = 1$		
		$\theta = \frac{\pi}{4} (QR = 45^{\circ})$	1 A	
		$\theta = \frac{1}{4} \left(QK - 43 \right)$	IA	
	(b)	Differentiate (1) with respect to t:		
	(0)		43.5.4.4.4.4	1146
		$\sec^2\theta \frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{4-2t}{11}$	1M+1A+1A	1M for chain rule,
				1A for LHS, 1A for RHS
		At $t = 3$, $\sec^2 \frac{\pi}{4} \frac{d\theta}{dt} = \frac{4 - 2(3)}{11}$	1M	For substituting t and θ
		•		
		$2\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{-2}{11}$		
		$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{-1}{11}$		
		41		
		\therefore the rate of change of θ with respect to time at $t=3$		
		is $\frac{-1}{11}$ s ⁻¹ .	1 A	Omit/wrong unit $(u-1)$
		(QR θ decreases at a rate of $\frac{1}{11}$ s ⁻¹ at $t = 3$.)		
		•		
		\$		
				•

只限教師參閱 FOR TEACHERS'				S' USE ONLY	
		Solution	Marks	Remarks	
9.	(a)	(i) $f'(x) = 2a\cos 2x - b\sin x$	1A		
		(ii) From figure 2 (a), $f'(0) = -4$. $2a \cos 0 - b \sin 0 = -4$ 2a = -4 a = -2	1M 1	OR $f'(\pi) = -4$	
		$f'(\frac{\pi}{6}) = 0 \qquad 2(-2)\cos\frac{\pi}{3} - b\sin\frac{\pi}{6} = 0$ $b = -4$ $\therefore f(x) = -2\sin 2x - 4\cos x$	1	$OR f'(\frac{5\pi}{6}) = 0$	
	(b)	(i) $f(0) = -4$ the y-intercept is -4.	1A	(pp-1) for (0, -4)	
		Put $f(x) = 0$: $-2\sin 2x - 4\cos x = 0$ $-4\sin x \cos x - 4\cos x = 0$ $-4\cos x(1 + \sin x) = 0$ $\cos x = 0$ or $\sin x = -1$ (rejected)	1M 1A		
		$x = \frac{\pi}{2}$ $\therefore \text{ the } x\text{-intercept is } \frac{\pi}{2}.$	1A	No mark for $x = 90^{\circ}$ (pp-1) for $(\frac{\pi}{2}, 0)$	
		(ii) From Figure 2 (a), $f'(x) = 0$ when $x = \frac{\pi}{6}$ or $\frac{5\pi}{6}$. As $f'(x)$ changes from -ve to +ve as x increases through $\frac{\pi}{6}$, so $(\frac{\pi}{6}, -3\sqrt{3})$ is a minimum point. As $f'(x)$ changes from +ve to -ve as x increases through $\frac{5\pi}{6}$, so $(\frac{5\pi}{6}, 3\sqrt{3})$ is a maximum point.	1A+1M 1A	Withhold 1M if explanation was omitted	
		Alternative solution $f'(x) = 0 \text{ at } x = \frac{\pi}{6} \text{ or } \frac{5\pi}{6}.$ $f''(x) = 4 \cos x + 8 \sin 2x$ $f''(\frac{\pi}{6}) \left[= 6\sqrt{3} \right] > 0.$ $\therefore (\frac{\pi}{6}, -3\sqrt{3}) \text{ is a minimum point.}$ $f''(\frac{5\pi}{6}) \left[= -6\sqrt{3} \right] < 0$ $\therefore (\frac{5\pi}{6}, 3\sqrt{3}) \text{ is a maximum point.}$	1M+1A	Withhold 1M if checking was omitted	
		$\therefore (\frac{3\pi}{6}, 3\sqrt{3}) \text{ is a maximum point.}$	1A		

<u> </u>		Remarks
Solution (c) $ \begin{array}{cccccccccccccccccccccccccccccccccc$	Marks 1A 1A 1A	
$y = -2 \sin 2x - 4 \cos x$ $(\frac{\pi}{6}, -3 \sqrt{3})$ (d) $6 - 3\sqrt{3} \le g(x) \le 6 + 3\sqrt{3}$	3 1A+1A 	1A for LHS, 1A for RHS Award 1A for $6 - 3\sqrt{3} < g(x) < 6 + 3\sqrt{3}$

只限教師參閱	FOR TEACHERS' USE ONLY
A CAIN THE DITTINGS IN THE	1 ON TEACHENS USE ONET

只限教師參閱 FOI		TEACHERS' USE ONLY		
	Solution	Marks	Remarks	
10. (a)	$\overrightarrow{OC} = \frac{7\vec{a} + 8\vec{b}}{15}$	1A		
	$\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA}$	1M	Accept other correct methods	
	$=\frac{16}{21}\vec{b}-\vec{a}$	1A+1A	1A for $\overrightarrow{OD} = \frac{16}{21} \vec{b}$	
	Alternative solution			
	$\overrightarrow{AD} = \frac{16\overrightarrow{AB} + 5\overrightarrow{AO}}{21}$	1M		
	$=\frac{16(\vec{b}-\vec{a})+5(-\vec{a})}{21}$	1A	1A for $\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$	
	$=\frac{16}{21}\vec{b}-\vec{a}$	1A		
	·	_4		
(b)	(i) $\overrightarrow{OE} = r\overrightarrow{OC}$			
	$=\frac{7r}{15}\vec{a}+\frac{8r}{15}\vec{b}$	1A		
	$=\frac{r}{15}(7\vec{a}+8\vec{b})$			
	(ii) $\overrightarrow{OE} = \overrightarrow{OA} + \overrightarrow{AE}$		$OR = \overrightarrow{OD} + \overrightarrow{DE}$	
	$=\vec{a}+k\overrightarrow{AD}$		$=\frac{16}{21}\vec{b}+(1-k)\overrightarrow{DA}$	
	$= \vec{a} + k \left(\frac{16\vec{b}}{21} - \vec{a} \right)$	1M	$= \frac{16}{21}\vec{b} + (1-k)(\vec{a} - \frac{16}{21}\vec{b})$	
	$=(1-k)\vec{a}+\frac{16k}{21}\vec{b}$	1A	$= (1-k) \vec{a} + \frac{16k}{21} \vec{b}$	
	Alternative solution $(1-k)\overrightarrow{OA} + k\overrightarrow{OD}$			
	$\overrightarrow{OE} = \frac{(1-k)\overrightarrow{OA} + k\overrightarrow{OD}}{(1-k) + k}$ $= (1-k)\overrightarrow{a} + \frac{16k}{21}\overrightarrow{b}$	1M		
	$= (1-k)\vec{a} + \frac{10k}{21}\vec{b}$	1A		
	Comparing the two expressions:			
	$\int \frac{7r}{15} = 1 - k (1)$			
	$\begin{cases} \frac{7r}{15} = 1 - k &(1) \\ \frac{8r}{15} = \frac{16}{21}k &(2) \end{cases}$	} 1M	For comparing coefficients	
	$(1) \div (2) \frac{7}{8} = \frac{21(1-k)}{16k}$			
	14k = 21 - 21k			
	$k=\frac{3}{5}$	1		

只限教師參閱 FOR TEACHERS' USE ONLY					
Solution	Marks	Remarks			
Substitute $k = \frac{3}{5}$ into (1): $\frac{7}{15}r = 1 - \frac{3}{5}$					
$r = \frac{6}{7}$	1				
$\therefore k = \frac{3}{5} \text{ and } r = \frac{6}{7}.$					
· •	_6				
(c) (i) Let $EC = x$. Since $EC : ED = 1:2$, $ED = 2x$.		Let $EC = 1$ etc. (pp-1)			
From (b), $\overrightarrow{OE} = \frac{6}{7} \overrightarrow{OC}$.					
$\therefore EO: EC = 6:1$, i.e. $EO = 6x$.					
From (b), $\overrightarrow{AE} = \frac{3}{5} \overrightarrow{AD}$	1M+1A	1A for $EO : EC = 6 : 1$ or $EA : ED = 3 : 2$ etc.			
$\therefore EA: ED = 3:2, \text{ i.e. } EA = 3x.$]				
$\therefore EA:EO=3x:6x$					
= 1 : 2.	1A				
(ii) In $\triangle EAC$ and $\triangle EOD$,					
$\angle AEC = \angle OED$		1A for naming a pair of similar Δ s			
From (b), $\frac{EA}{EO} = \frac{1}{2} = \frac{EC}{ED}$	1A+1	1 for completing the proof			
$\therefore \Delta EAC \sim \Delta EOD.$	J				
$\angle EAC = \angle EOD$ (Corr \angle s of similar Δ s)	}1				
: OACD is a cyclic quadrilateral.	'				
(Converse of ∠s in the same segment)		Omit vector sign in most cases (pp-1)			

		只限教師參閱 FOR TEACHERS' USE ONLY Solution Marks Remarks			
		Solution		Marks	Remarks
11.	(a)	$z_1 = 2(\cos 60^\circ + i \sin 60^\circ)$		1A	-
		$=1+\sqrt{3}i$		1A	
		$z_3 = (\sqrt{3}i) z_1$			
		$=\sqrt{3}i(1+\sqrt{3}i)$			
		$= -3 + \sqrt{3}i$		1A	- :
		Alternative solution			<u> </u>
		$OC = 2\sqrt{3}$			
		$arg(z_3) = 60^\circ + 90^\circ = 150^\circ$			
		$z_3 = 2\sqrt{3}(\cos 150^\circ + i \sin 150)$			
		$=-3+\sqrt{3}i$		1 A	
		z_2 $z_1 + z_2$		3	
	(b)	$\frac{z_2}{z_1} = \frac{z_1 + z_3}{z_1}$		1 M	For $z_2 = z_1 + z_3$
				1 A	
		$=1+\left(\frac{z_3}{z_1}\right)$		IA	
		$=1+\sqrt{3}i (\because z_3=(\sqrt{3}i)z_1)$		1	
		Alternative solution		13.7	
		$z_2 = z_1 + z_3$		1M	
		$= (1 + \sqrt{3}i) + (-3 + \sqrt{3}i)$		1.	
		$=-2+2\sqrt{3}i$		1A	
		$\frac{z_2}{z_1} = \frac{-2 + 2\sqrt{3}i}{1 + \sqrt{3}i} \left(\frac{1 - \sqrt{3}i}{1 - \sqrt{3}i}\right)$			
		$=\frac{-2+2\sqrt{3}i+2\sqrt{3}i+6}{4}$			
		· ·			
		$=1+\sqrt{3}i$		1	#
		(40R are (² 2)		13.6	
		$\angle AOB = \arg\left(\frac{z_2}{z_1}\right)$		1 M	
		$= \arg\left(1 + \sqrt{3}i\right)$			
		= 60°		1A	
•		Alternative solution (1)			
		$\arg(z_2) = 180^{\circ} + \tan^{-1}(\frac{2\sqrt{3}}{-2})$			
		= 120°			
		$\angle AOB = \arg(z_2) - \arg(z_1)$		1M	
		= 120° - 60° = 60°		1 A	
		Alternative solution (2)			
		$\tan \angle AOB = \frac{AB}{OA}$	· <u>-</u>	1 M	
) 011		1171	
		$=\frac{2\sqrt{3}}{2}$			
		$=\frac{2\sqrt{3}}{2}$ $=\sqrt{3}$			
		$\therefore \angle AOB = 60^{\circ}$	7.5	1 A	
				-	-
				_5	-

只限教師參閱 FOR TEAC	HERS' U	ISE ONLY
Solution	Marks	Remarks
(c) (i) $z_3 = 2\sqrt{3}(\cos 150^\circ + i \sin 150^\circ)$		
$arg(z_3) = 150^{\circ}$	1A	
Let u be the complex number represented by E .		
$u = wz_3$		
$= (\cos \theta + i \sin \theta) 2\sqrt{3} (\cos 150^{\circ} + i \sin 150^{\circ})$ $= 2\sqrt{3} [\cos(150^{\circ} + \theta) + i \sin(150^{\circ} + \theta)]$		can be awarded in (ii)
[-245[cos(150 +0)+75m(150 +0)]		
$\arg(u) = 150^{\circ} + \theta$	1M	
$\overline{z}_3 = 2\sqrt{3}[\cos(-150^\circ) + i\sin(-150^\circ)]$		
$\arg(\overline{z}_3) = -150^{\circ}$	1A	$(\underline{OR} = 210^{\circ})$
If E represents the complex number \overline{z}_3 ,		
$150^{\circ} + \theta = -150^{\circ} + 360^{\circ}$	1M	$\underline{OR} \ 150^{\circ} + \theta = 210^{\circ}$
$\theta = 60^{\circ}$	1A	
Alternative solution $wz_3 = \overline{z}_3$		
$w(-3+\sqrt{3}i)=-3-\sqrt{3}i$	1M	
$w = \frac{-3 - \sqrt{3}i}{-3 + \sqrt{3}i} \left(\frac{-3 - \sqrt{3}i}{-3 - \sqrt{3}i} \right)$		
$\cos\theta + i\sin\theta = \frac{6 + 6\sqrt{3}i}{12}$		
$\cos \theta = \frac{1}{2}$ and $\sin \theta = \frac{\sqrt{3}}{2}$ (OR $\tan \theta = \sqrt{3}$)	1A	
$\theta = 60^{\circ}$	1A	,
(ii) If E , O and A lie on a straight line,		
$150^{\circ} + \theta = 60^{\circ} + 360 \ k^{\circ} \text{ or } 150^{\circ} + \theta = -120^{\circ} + 360 \ k^{\circ}$	^d 1M	Awarded if either one was correct
$OR 150^{\circ} + \theta = 60^{\circ} + 360^{\circ} \text{ or } 150^{\circ} + \theta = -120^{\circ} + 360^{\circ}$	p	
or $=60^{\circ} + 180^{\circ}$	┦	
$\theta = 270^{\circ} \text{ or } 90^{\circ}.$	1A+1A 	
3		

	只限教師參閱 FOR TEACHERS' USE ONLY					
		Solution	Marks	Remarks		
2.	(a)	S = Area of $\triangle ABCD$ - Area of $\triangle ABE$ - Area of $\triangle CEF$ - Area of $\triangle ADF$				
		$= 2(2k) - \frac{1}{2}(2)(2x) - \frac{1}{2}(x)(2k - 2x) - \frac{1}{2}(2k)(2 - x)$	1M+1A			
		$= 4k - 2x - (kx - x^{2}) - (2k - kx)$				
		$=x^2-2x+2k$	_1			
			_3			
	(b)	(i) As E lies on BC, so $0 \le 2x \le 2k$				
		$0 \le x \le \frac{3}{2}.$	1A			
		As F lies on CD , so $0 \le x \le 2$.				
		Combining the two inequalities, $0 \le x \le \frac{3}{2}$.	}1			
		(ii) $S = x^2 - 2x + 2k$				
		$=x^2-2x+3$				
		$S = (x-1)^2 + 2$	1M+1A	1M for method of completing square		
		As $x = 1$ lies in the range of possible value of				
		$x(0 \le x \le \frac{3}{2}),$				
		\therefore the least value of $S=2$, which occurs when				
		x = 1.	1A+1A	$S = 2 \text{ cm}^2, x = 1 \text{ cm } (u - 1)$		
		Alternative solution				
		$S = x^2 - 2x + 3$				
		$\frac{\mathrm{d}S}{\mathrm{d}x} = 2x - 2$				
		$\frac{\mathrm{d}S}{\mathrm{d}x} = 0$ when $x = 1$.	1 A			
		$\frac{d^2S}{dx^2} = 2 > 0 \therefore S \text{ is a minimum at } x = 1.$	1M	For checking		
		As $x = 1$ lies in the range of possible values of x ,				
		$\therefore \text{ the least value of } S = 1^2 - 2(1) + 3$				
		= 2 which occurs when x = 1	. 1A+1A	H		
		(iii) Since $S = x^2 - 2x + 3$ is a parabola and there is				
		only a minimum in the range $0 \le x \le \frac{3}{2}$, so	1 M	(can be omitted)		
		greatest value of S occurs at the end points.				
			١ ،			
		At $x = 0, S = 3$.	1M	For evaluating the end-values		
		At $x = \frac{3}{2}$, $S = (\frac{3}{2})^2 - 2(\frac{3}{2}) + 3 = \frac{9}{4}$.	J			
		\therefore the greatest value of S is 3.	_ <u>1A</u>			

只限教師參閱 FOR TEACHERS' USE ONLY				
Solution	Marks	Remarks		
(c) (i) Put $k = \frac{3}{8}$, $S = x^2 - 2x + \frac{3}{4}$.				
The range of possible values of x is $0 \le x \le \frac{3}{8}$.	1A	(can be awarded in (ii))		
As $x = 1$ does not lie in the above interval, the least value of S will not happen when $x = 1$. \therefore the student is incorrect.	} 1M+1			
Alternative solution Put $x = 1$: $S = 1^{2} - 2(1) + \frac{3}{4} = -\frac{1}{4}$ As $S < 0$ at $x = 1$, so the least value of S will not happen when $x = 1$.	1M 1			
(ii) As S is monotonic decreasing on $0 \le x \le \frac{3}{8}$,				
least value of S occurs when $x = \frac{3}{8}$.				
: least value of $S = (\frac{3}{8})^2 - 2(\frac{3}{8}) + \frac{3}{4}$		·		
$=\frac{9}{64}$	1A			
Alternative solution (i) Put $k = \frac{3}{8}$, $S = x^2 - 2x + \frac{3}{4}$.				
The range of possible values of x is $0 \le x \le \frac{3}{8}$.	1A			
$\frac{\mathrm{d}S}{\mathrm{d}x} = 2x - 2$				
As $\frac{\mathrm{d}S}{\mathrm{d}x} < 0$ for $0 \le x \le \frac{3}{8}$,				
the least value of S occurs when $x = \frac{3}{8}$.	} 1M+1			
(S is monotonic decreasing on $0 \le x \le \frac{3}{8}$.)				
∴ the student is incorrect.				
(ii) Least value of $S = (\frac{3}{8})^2 - 2(\frac{3}{8}) + \frac{3}{4}$				
$=\frac{9}{64}$	1A			
	4	_		

只限教師參閱	FOR	TE	CHERS	'USF	ONLY
ス pre sty fill 参 ioi	FUR		れいロドドシ	こしろに	. UNL.

	只限教師參閱	FOR TEAC	CHERS' L	JSE ONLY
	Solution		Marks	Remarks
. (a)	$V = \pi x^2 h$			
()	$h = \frac{V}{m^2}$		1A	
	/LL		IA IA	
	$C = (2\pi x h) + k(\pi x^2)2$		1A	
	$=2\pi x(\frac{V}{\pi x^2})+2\pi x^2 k$			
	$=\frac{2V}{x}+2\pi kx^2$		1	
			3	
	d <i>C</i> 2 <i>V</i>			
(b)	$\frac{\mathrm{d}C}{\mathrm{d}x} = -\frac{2V}{x^2} + 4\pi kx$		1A	
	$\frac{\mathrm{d}C}{\mathrm{d}x} = 0 \qquad -\frac{2V}{x^2} + 4\pi kx = 0$			
	$\frac{dx}{dx} = 0 \qquad \frac{1}{x^2} + 4\pi kx = 0$			
	$x^3 = \frac{V}{2\pi k}$		1A	
	270 10			
	$\frac{\mathrm{d}^2 C}{\mathrm{d}x^2} = \frac{4V}{x^3} + 4\pi k$		1A	
		2 mk		
	Put $x^3 = \left(\frac{V}{2\pi k}\right) : \frac{d^2 C}{dx^2}$	$2n\kappa$ $i > 0$.	1M	For checking
	∴ C is a mi	nimum		$OR \frac{d^2C}{dx^2} > 0 \text{ for all } x.$
	0 13 4 111			$\frac{\partial K}{dx^2}$ o for all x .
	Alternative solution	1 700000		h
	$\frac{\mathrm{d}C}{\mathrm{d}x} = \frac{4\pi k}{x^2} (x^3 - \frac{V}{2\pi k})$		1,,	
	$dx x^2 2\pi k'$		1A	
	When $x > \left(\frac{V}{2\pi k}\right)^{\frac{1}{3}}, \frac{dC}{dx} > 0$		١	
	$2\pi k$ dx		} iM	For checking
	When $\left[0 < \frac{V}{2\pi k}\right]^{\frac{1}{3}}$,	$\frac{\mathrm{I}C}{\mathrm{I}}$ < 0)	
	$2\pi k$	ix		
	ν	1 -		
	$\therefore C \text{ is a minimum at } x = (\frac{V}{2\pi k})$	-)3.		
	Version of the second of the s			
	$\frac{x}{h} = \frac{x}{V/\pi x^2}$		1M	
	$=\frac{\pi x^3}{V}$			
	,			
	$=\frac{\pi}{V}(\frac{V}{2\pi k})$			
		Se tr		
	$=\frac{1}{2k}$			
			6	
			1	Ī

只限教師參閱 FOR TEAC	HERS' (JSE ONLY
Solution	Marks	Remarks
(c) (i) From (b), $x^3 = (\frac{V}{2\pi k})$		
$=(\frac{256\pi}{2\pi(2)})$	1M	For substitution
= 64 $x = 4$	1A	
Since $\frac{x}{h} = \frac{1}{2k}$, $\frac{4}{h} = \frac{1}{2(2)}$		
<i>h</i> = 16	1A	
(ii) Since $x^3 = \frac{V}{2\pi k}$, so x decreases when k increases.	1A	·
As $h = \frac{V}{\pi x^2}$, so h increases when x decreases.	1A	
the base radius of the can decreases and the height of the can increases.		
, and the second	5	
(d) The costs of the curved and plane surfaces remain unchanged.		
From (b), the ratio $\frac{x}{h} = \frac{1}{2k}$ is independent of the		
volume of the can.	1	
$\therefore \text{ the ratio } \frac{\text{base radius}}{\text{height}} \text{ of the bigger can should remain}$	l.	
identical to that of the smaller can OR need not be twice that of the smaller can	1	'Incorrect' without explanation - no mark
in order to minimise the cost. So the worker is		
incorrect.		