FOR TEACHERS' USE ONLY

1996 II

只限教師參閱

GENERAL INSTRUCTIONS TO MARKERS

- It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct alternative solution merits all the marks allocated to that part, unless a particular method is specified in the question.
- 2. In the marking scheme, marks are classified as follows:

'M' marks - awarded for knowing a correct method of solution and attempting to apply it;

'A' marks - awarded for the accuracy of the answer,

Marks without 'M' or 'A' - awarded for correctly completing a proof or arriving at an answer given in the question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answer should NOT be awarded. Unless otherwise specified, no marks in the marking scheme are subdivisible.

- 3. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 4. The symbol pp-1 should be used to denote marks deducted for poor presentation (p.p.). Marks entered in the Page Total Box should be the <u>net</u> total score on that page. Note the following points:
 - (a) At most deduct 1 mark for p.p. in each question, up to a maximum of 3 marks for the whole paper.
 - (b) For similar p.p., deduct only 1 mark for the first time that it occurs, i.e. do not penalise candidates twice in the whole paper for the same p.p.
 - (c) In any case, do not deduct any marks for p.p. in those parts where candidates could not score any marks.
 - Some cases in which marks should be deducted for p.p. are specified in the marking scheme. However the lists are by no means exhaustive. Markers should exercise their professional judgement to give p.p.s in other situations.
- In the Marking Scheme, steps which can be omitted are enclosed by dotted rectangles whereas alternative answers are enclosed by solid rectangles
- Unless otherwise specified in the question, numerical answers not given in exact values should not be accepted.
- Unless otherwise specified in the question, use of notations different from those in the marking scheme should not be penalised.

96-CE-A MATHS II-2 只限教師參閱

				
		Solution	Marks	Remarks
l.	sin 50+ sin	$3\theta = \cos \theta$		
	2 sin 4 <i>θ</i> co	$\cos \theta = \cos \theta$	1M	For using
				$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$
	ana (1 – 0	or sind 0 = 1	1A+1A	
	$\cos \theta = 0$	or $\sin 4\theta = \frac{1}{2}$		
		$4\theta = n\pi + (-1)^n (\frac{\pi}{6})$ n is an integer		
	$\theta = 2n\pi \pm$	$\frac{\pi}{2}$ or $\theta = \frac{n\pi}{4} + (-1)^n (\frac{\pi}{24})$	1A+1A	
	or 360	$n^{\circ}\pm 90^{\circ}$ or $45n^{\circ}+(-1)^{n}7.5^{\circ}$		$2n\pi \pm 90^{\circ} \text{ etc } (pp-1)$
			5	. 2nn ±90 etc (pp - 1)
	4 > 4	$+x+ax^2)^6 = [1+x(1+ax)]^6$	1M	Accept $[(1+x) + ax^2]^6$ etc.
2.	(a) (1-	$+x+ax^{-})^{-}=\{1+x(1+ax)\}$	1101	Accept [(1 + x) + tat] etc.
		$= 1 + 6x(1+ax) + 15x^{2}(1+ax)^{2}$	· · · · · · · · · · · · · · · · · · ·	
		$20x^3(1+ax)^3+\dots$	1A	$\underline{\text{or}} (1+x)^6 + 6(1+x)^5 ax^2 + \dots$
				Accept ${}_6C_r$ notations
		$= 1 + 6x + (6a + 15)x^2 + (30a + 2)$	$0)x^3 +$	(pp-1) for omitting dots
	:.	$k_1 = 6a + 15$	1A	
		$k_2 = 30a + 20$	1A	•
		$+ k_2 = 2k_1$		$\underline{\text{or}} \ k_2 - k_1 = k_1 - 6$
		+ (30a + 20) = 2(6a + 15)	1M	
	а	$=\frac{2}{9}$	<u>1A</u>	- [
			6	-
	(-	$\frac{x^2}{2} + \frac{y^2}{7} = 1$		
3.	(a) {	2 7		
	l	y = mx + c		
	<i>7</i> 2	$c^2 + 2(mx + c)^2 = 14$	1M	For substitution
	(7	$+2m^2)x^2 + 4mcx + (2c^2 - 14) = 0$	1A	
	S	ince the line is a tangent to E ,		
		$4mc)^2 - 4(7 + 2m^2)(2c^2 - 14) = 0$	1M	
	10	$6m^2c^2 - 4(14c^2 - 98 + 4m^2c^2 - 28m^2) = 0$,
	1.	$4c^2 = 98 + 28m^2$		
	c ²	$c^2 = 2m^2 + 7$	1	
				÷
				Ť

	Solution	Marks	Remarks
-	Alternative solution Let (x_0, y_0) be the point of contact of the tangent with	E.	
	The equation of the tangent is $7(xx_0) + 2(yy_0) = 14$	1A	
	Compare with $y = mx + c$,		
	$\frac{7x_0}{m} = \frac{2y_0}{-1} = \frac{-14}{c}$	1M	,
	$\therefore x_0 = \frac{-2m}{c}, y_0 = \frac{7}{c}$		
	Substitute into E ,		
	$7(\frac{-2m}{c})^2 + 2(\frac{7}{c})^2 = 14$	1M	
	$2m^2 + 7 = c^2$	1	
(b)	Substitute (0, 5) into $y = mx + c$, $c = 5$	1A	·
	Put $c = 5$, $25 = 2m^2 + 7$	1M	OR Substituting $y = mx + 5$ into E and set $\Delta = 0$
	$m=\pm 3$.	ŀ	
	The equations of the two tangents are		
	y = 3x + 5 and $y = -3x + 5$.	1A 7	-

_	Solution	Marks	Remarks
	For $n = 1$, $2n^3 + n = 3$ which is divisible by 3.	1	
	$\therefore \text{ the statement is true for } n = 1.$		
	Assume $2k^3 + k$ is divisible by 3 for some +ve integer k .	1	
	i.e. $2k^3 + k = 3m$, where m is an integer	ĺ	
	Then $2(k+1)^3 + (k+1) = 2(k^3 + 3k^2 + 3k + 1) + (k+1)$	1	
	$= (2k^3 + k) + (6k^2 + 6k + 3)$) <u> </u>	
	$=3m+3(2k^2+2k+1)$	} 2	
	Since both terms are divisibles by 3,	į	
	$\therefore 2(k+1)^3 + (k+1) \text{ is also divisible by 3.}$	1	
	Alternative solution (1)		
	$Put 2k^3 = 3m - k$		
	$2(k+1)^3 + (k+1) = 2(k^3 + 3k^2 + 3k + 1) + (k+1)$	1	
	$= 3m - k + 6k^2 + 6k + 2 + (k+1)$	1	
	$= 3m + 3(2k^2 + 2k + 1)$	} 2	
	Alternative solution (2) Let $f(k) = 2k^3 + k$		
		_	
	$f(k+1) - f(k) = 2(k^3 + 3k^2 + 3k + 1) + (k+1) - (2k^3 + k)$	1	
	$= 3(2k^2 + 2k + 1)$	} 2	
	$f(k+1) = f(k) + 3(2k^2 + 2k + 1)$		
	Since $f(k)$ is divisible by 3, $\therefore f(k+1)$ is also divisible by 3.]
	\therefore The statement is also true for $n = k + 1$ if it is true for $n = k$.		
	By the principle of mathematical induction,		
	the statement is true for all positive integers n .	1	
		6	
	(a) Area bounded by C and $OA = \int_0^4 (4x - x^2) dx$	1A	(pp-1) for omitting dx
	$= [2x^2 - \frac{x^3}{3}]_0^4$	1A	
	$=\frac{32}{3}$	1A	,
	(b) Area of $\triangle OPA = \frac{1}{2}(4)(3)$		$\underline{\text{or}} = \int_0^1 3x dx + \int_1^4 (-x + 4) dx$
	= 6	1A	$= \frac{3}{2} + \frac{9}{2} = 6$
	\therefore Area of shaded region $=\frac{32}{3}-6$	lM	
	$=\frac{14}{2}$	1A	;
	3	6	-
			-

96-ÇE-A MATHS II-5 只限教師參閱

FOR TEACHERS' USE ONLY

只限教師參閱 FOR TEACHERS' USE ONLY

	Solution	Marks	Remarks
6.	$y = \int \tan^3 x \sec x \mathrm{d}x$	1A	Withhold this mark if " $y =$ " is omitted
	Let $u = \sec x$		
	$du = \sec x \tan x dx$	1A	
	$y = \int (u^2 - 1) du$	1A	Omit 'd <i>u</i> ' (pp–1)
	$=\frac{u^3}{3}-u+c$		
	$= \frac{1}{3} \sec^3 x - \sec x + c \qquad \text{where } c \text{ is a constant}$	1A	no mark if c is omitted
	Alternative solution $y = \int \tan^3 x \sec x dx$	1A	Omit 'dx' (pp–1)
	$= \int \tan^2 x \mathrm{d} \sec x$	1A	·
	$= \int (\sec^2 x - 1) \mathrm{d} \sec x$	1A	
	$= \frac{1}{3} \sec^3 x - \sec x + c \qquad \text{where } c \text{ is a constant}$	1A	
	Since the curve passes through O,		
	$0 = \frac{1}{3} - 1 + c$	1M	
	$c=\frac{2}{3}$		
	The equation of the curve is $y = \frac{1}{3} \sec^3 x - \sec x + \frac{2}{3}$.	1A	
	$or y = \frac{1}{3\cos^3 x} - \frac{1}{\cos x} + \frac{2}{3}$		
		6	
7.	(a) $\sqrt{(x-4)^2 + y^2} = 2 x-1 \text{or } (x-4)^2 + y^2 = 4(x-1)^2$	1A+1A	1A for LHS, 1A for RHS (pp-1) for omitting absolute sign
	$x^{2} - 8x + 16 + y^{2} = 4(x^{2} - 2x + 1)$ $3x^{2} - y^{2} = 12$ or $\frac{x^{2}}{4} - \frac{y^{2}}{12} = 1$, $3x^{2} - y^{2} - 12 = 0$ e	t c. 1A	y
	The locus is a hyperbola.	1A	
	(b) $y = (2)$		
	$\begin{array}{c c} & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$	1M+1A 6	(pp-1) for not labelling the axes.
E-A l	MATHS II-6 只限教師參閱 FOR TEACH	ERS' U	SE ONLY
		1	Provided by dse.

		Solution	Marks	Pomod
8.	(a)	The equation of F is	IVAGINS	Remarks
		2x-y-4+k(x-2y+4)=0 where k is real		
		Substitute $(0, 0)$ into the equation,	1A	or x - 2y + 4 + k(2x - y - 4) = 0
		-4 + 4k = 0		
		k = 1	1M	
		$\therefore \text{ The equation of } L \text{ is } 2x - y - 4 + (x - 2y + 4) = 0$	1A	
		i.e. $y-x=0$.		
			1A	
		Alternative solution		
		$\begin{cases} x - 2y + 4 = 0 \\ 2x - y - 4 = 0 \end{cases}$		
		$\int_{0}^{1} 2x - y - 4 = 0$		
		Solving the two equations, $x = 4$, $y = 4$.		
		The coordinates of the point of intersection of L_1 and L_2 are $(4, 4)$.		
		Let m be the slope of a line passing through (4, 4).		
		The equation of F is		
		y-4		
		$\frac{3}{x-4}=m$		
		y=mx-4m+4.	1A	·
		Substitute (0, 0) into the equation,	1M	
		m=1	1A	
		\therefore The equation of L is $y = x$.	1A	
	ł			
			4	
	(b)	(i) $m_{L_1} = 2, m_{L_2} = \frac{1}{2}, m_L = 1$	lA	Awarded if at least two are correct.
		$\tan \angle CAB = \frac{m_{L_1} - m_L}{1 + m_L m_{L_1}}$		$Accept \begin{vmatrix} m_L - m_{L_1} \\ 1 + m_L m_{L_1} \end{vmatrix}$
		$=\frac{2-1}{1+2}$	13.6	$ 1 + m_L m_{L1} $
			lM	
		$=\frac{1}{3}$	I	
		$\lim_{L \to \infty} \frac{m_L - m_{L_2}}{m_L - m_{L_2}}$,
		$\tan \angle CAD = \frac{m_L - m_{L_2}}{1 + m_{L_2} m_L}$		
		$\frac{1-\frac{1}{2}}{}$		
		$= \frac{1 - \frac{1}{2}}{1 + \frac{1}{2}}$		
		$=\frac{1}{3}$	_	; ;
		$-\frac{1}{3}$	1	ţ
		I I		

96-CE-A MATHS II-7 只限教師參閱 FOR TEACHERS' USE ONLY

只限教師參閱 FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
(ii) (1) Let $BC = x$		or Let CD = x
$\tan \angle CAB = \frac{BC}{AB} = \frac{1}{3}$		
$AB = 3x$ $\therefore AB = 3x$	1A	AD = 3x
Area of $\triangle CBA = \frac{1}{2}(BC)(AB)$		Area = $\frac{1}{2}(CD)(AD)$
$=\frac{3x^2}{2}$	1A	
Since $\triangle CBA$ and $\triangle CDA$ are congruent,		(can be omitted)
$\frac{3x^2}{2} = \frac{240}{2}$	1M	
$x = 4\sqrt{5} \qquad \text{or } = \sqrt{80}$	1A	
(2) Let the coordinates of C be (h, h) .	1A	
$BC = \frac{ 2h - h - 4 }{\sqrt{5}}$	1M	For distance formula
Since $BC = 4\sqrt{5}$, $\left \frac{2h - h - 4}{\sqrt{5}} \right = 4\sqrt{5}$	1A	Accept $\frac{h-4}{\sqrt{5}} = -4\sqrt{5}$ $(pp-1)$ for $\frac{h-4}{\sqrt{5}} = 4\sqrt{5}$
h-4 =20		(pp-1) for $\frac{h-4}{\sqrt{5}} = 4\sqrt{5}$
h = 24 (rejected) or -16		
h = -16		
\therefore The coordinates of C are $(-16, -16)$.	1A	
$\underline{\text{or }} CD = \left \frac{h - 2h + 4}{\sqrt{5}} \right $	1M	For distance formula
Since $CD = 4\sqrt{5}$, $\left \frac{h - 2h + 4}{\sqrt{5}} \right = 4\sqrt{5}$	1A	Accept $\frac{4-h}{\sqrt{5}} = 4\sqrt{5}$
4-h =20		Accept $\frac{4-h}{\sqrt{5}} = 4\sqrt{5}$ $(pp-1) \text{ for } \frac{h-4}{\sqrt{5}} = 4\sqrt{5}$
h = 24 (rejected) or -16		√5
h = -16		
\therefore The coordinates of C are $(-16, -16)$.	1A	
<u></u>		

Solution	Marks	Remarks
Alternative Solution for (2)		
$AC^2 = BC^2 + AB^2$		$\underline{or} = CD^2 + DA^2$
$= (4\sqrt{5})^2 + (12\sqrt{5})^2$		
$AC = \sqrt{800}$		* '
Let the coordinates of C be (h, h) .	1A	
Coordinates of A are (4, 4).		
$\sqrt{(h-4)^2 + (h-4)^2} = \sqrt{800}$ $(h-4)^2 = 400$	1M+1A	,
$(h-4)^2=400$		
$(h-4)^2 = 400$ $h = 24 \text{ (rejected) or } -16$ $\therefore h = -16$		
$\therefore h = -16$		
\therefore The coordinates of C are $(-16, -16)$.	1A	
Alternative Solution for (ii)		7
(1)&(2) Let the coordinates of C be (h, h) .	1A	
$BC = \frac{ 2h - h - 4 }{\sqrt{5}} \boxed{\underline{\text{or}}} = -(\frac{2h - h - 4}{\sqrt{5}})$	1M	For distance formula $2h-h-4$
$=\frac{ h-4 }{\sqrt{5}}$		$(pp-1) \text{ for } \frac{2h-h-4}{\sqrt{5}}$
Since $\tan \angle CAB = \frac{BC}{AB} = \frac{1}{3}$		
$AB = 3 \frac{ h-4 }{\sqrt{5}} \qquad \underline{\text{or}} = 3(\frac{4-h}{\sqrt{5}})$	1A	
Area of $\triangle CBA = \frac{1}{2}(BC)(AB)$		
$=\frac{3}{10}(h-4)^2$	1A	
$ \frac{\text{or } CD = \left \frac{h - 2h + 4}{\sqrt{5}} \right }{\left \frac{\text{or}}{\sqrt{5}} \right } = \frac{\left \frac{4 - h}{\sqrt{5}} \right }{\left \frac{\sqrt{5}}{\sqrt{5}} \right } $	1M	For distance formula $ (pp-1) \text{for} - (\frac{h-2h+4}{\sqrt{5}}) $
Since $\tan \angle CAD = \frac{CD}{AD} = \frac{1}{3}$		
$\therefore AD = 3 \frac{ 4-h }{\sqrt{5}} \boxed{\underline{\text{or}} = 3(\frac{4-h}{\sqrt{5}})}$	1A	
Area of $\triangle CDA = \frac{1}{2}(CD)(AD)$,
$=\frac{3}{10}(4-h)^2$	1A	
<u> </u>		
LATTIC II O		

96-CE-A MATHS II-9 只限教師參閱 FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
Since $\triangle CBA$ and $\triangle CDA$ are congruent, $\frac{3}{10}(h-4)^2 = \frac{240}{2}$ $(h-4)^2 = 400$	1M+1A	
$(h-4)^2 = 400$ $h = 24 \text{ (rejected) or } -16$ $\therefore h = -16$ $\therefore \text{ The coordinates of } C \text{ are } (-16, -16)$ $\text{Put } h = -16$ $BC = \frac{\left -16-4\right }{\sqrt{5}}$ $= 4\sqrt{5}.$	1A	
	1A	

1A+1A 1A for integrand, 1A for limits 1A For the primitive function 1A 2A 1A For the primitive function 1A 1A IA IA for integrand, 1A for limits	Let $t = \cos x$, $dt = -\sin x dx$ $\int_0^{\pi} \sin^5 x dx = \int_1^{-1} -(1 - t^2)^2 dt$ $= \int_{-1}^{1} (1 - 2t^2 + t^4) dt$ $= \left[t - \frac{2t^3}{3} + \frac{t^5}{5}\right]_{-1}^{1}$ $= \frac{16}{15}$ Alternative solution $\int_0^{\pi} \sin^5 x dx = \int_0^{\pi} -\sin^4 x d\cos x$ $= \int_0^{\pi} -(1 - \cos^2 x)^2 d\cos x$ $= \int_0^{\pi} -(1 - 2\cos^2 x + \cos^4 x) d\cos x$
1A For the primitive function 1A 2A 1A 1A 1A 4	$\int_0^{\pi} \sin^5 x dx = \int_1^{-1} - (1 - t^2)^2 dt$ $= \int_{-1}^1 (1 - 2t^2 + t^4) dt$ $= \left[t - \frac{2t^3}{3} + \frac{t^5}{5}\right]_{-1}^1$ $= \frac{16}{15}$ Alternative solution $\int_0^{\pi} \sin^5 x dx = \int_0^{\pi} -\sin^4 x d\cos x$ $= \int_0^{\pi} -(1 - \cos^2 x)^2 d\cos x$ $= \int_0^{\pi} -(1 - 2\cos^2 x + \cos^4 x) d\cos x$
2A 1A 1A 1A 1A 4	$= \left[t - \frac{2t^3}{3} + \frac{t^5}{5}\right]_{-1}^{1}$ $= \frac{16}{15}$ Alternative solution $\int_0^{\pi} \sin^5 x dx = \int_0^{\pi} -\sin^4 x d\cos x$ $= \int_0^{\pi} -(1 - \cos^2 x)^2 d\cos x$ $= \int_0^{\pi} -(1 - 2\cos^2 x + \cos^4 x) d\cos x$
2A 1A 1A 1A 1A 4	$= \frac{16}{15}$ Alternative solution $\int_0^{\pi} \sin^5 x dx = \int_0^{\pi} -\sin^4 x d\cos x$ $= \int_0^{\pi} -(1 - \cos^2 x)^2 d\cos x$ $= \int_0^{\pi} -(1 - 2\cos^2 x + \cos^4 x) d\cos x$
2A 1A 1A 4	Alternative solution $\int_0^{\pi} \sin^5 x dx = \int_0^{\pi} -\sin^4 x d\cos x$ $= \int_0^{\pi} -(1 - \cos^2 x)^2 d\cos x$ $= \int_0^{\pi} -(1 - 2\cos^2 x + \cos^4 x) d\cos x$
1A For the primitive function 1A 4	$\int_0^{\pi} \sin^5 x dx = \int_0^{\pi} -\sin^4 x d\cos x$ $= \int_0^{\pi} -(1 - \cos^2 x)^2 d\cos x$ $= \int_0^{\pi} -(1 - 2\cos^2 x + \cos^4 x) d\cos x$
1A For the primitive function 1A 4	$= \int_0^{\pi} -(1 - \cos^2 x)^2 d\cos x$ $= \int_0^{\pi} -(1 - 2\cos^2 x + \cos^4 x) d\cos x$
1A For the primitive function 1A 4	$= \int_0^{\pi} -(1 - 2\cos^2 x + \cos^4 x) d\cos x$
1A	•
1A	, , , , , , , , , , , , , , , , , , , ,
4	$= -\left[\cos x - \frac{2\cos^3 x}{3} + \frac{\cos^5 x}{5}\right]_0^{\pi}$
	$=\frac{16}{15}$
1A+1A 1A for integrand, 1A for limits	
1A+1A lA for integrand, 1A for limits	$u = \pi - x, du = -dx$
1	$\int_0^{\pi} x \sin^5 x dx = \int_{\pi}^0 (\pi - u) \sin^5 (\pi - u) (-du)$
	$=\int_0^\pi (\pi-u)\sin^5 u\mathrm{d}u$
	$=\pi\int_0^\pi\sin^5u\mathrm{d}u-\int_0^\pi u\sin^5u\mathrm{d}u$
1M (can be omitted)	$\therefore \int_0^{\pi} x \sin^5 x \mathrm{d} x = \int_0^{\pi} u \sin^5 u \mathrm{d} u$
1A	$\therefore 2 \int_0^{\pi} x \sin^5 x dx = \pi \int_0^{\pi} \sin^5 u du$
1A	
	15
	$\int_0^{\pi} x \sin^5 x dx = \frac{\pi}{2} \left(\frac{16}{15} \right)$ $= \frac{8\pi}{15}.$

Solution	Marks	Remarks
$(c) y = x^2 \sin^5 x$		
$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\sin^5 x + 5x^2\sin^4 x\cos x$	1M+1A	1M for product rule
Integrating with respect to x from 0 to π ,		
$[x^2 \sin^5 x]_0^{\pi} = \int_0^{\pi} (2x \sin^5 x + 5x^2 \sin^4 x \cos x) dx$	1M	(pp-1) for omitting the limits in the L.H.
$0 = 2 \int_0^{\pi} x \sin^5 x dx + 5 \int_0^{\pi} x^2 \sin^4 x \cos x dx$	1A	For LHS = 0
$\int_0^{\pi} x^2 \sin^4 x \cos x dx = -\frac{2}{5} \int_0^{\pi} x \sin^5 x dx$		
$=-\frac{2}{5}\left(\frac{8\pi}{15}\right)$		
$=-\frac{16\pi}{75}.$	1A 5	-
(d) I_2 is equal to I_1 because		
$ x = x$ for $0 < x < \pi$.	2A	
$\underline{\text{or}} \cos x = \cos x$ for all values of x.		
		-

	Solution	Marks	Remarks
(a)	(i) $x^2 + y^2 - 8ky - 6ky + 25(k^2 - 1) = 0$		
	The centre is $(4 k, 3 k)$	1A	
	Since $3x-4y=3(4k)-4(3k)=0$,	1	
	\therefore the centre always lies on the line $3x-4y=0$.		
	(ii) $(x-4k)^2 + (y-3k)^2 = -25(k^2-1) + 25k^2$		or $r = \sqrt{(\frac{-8k}{2})^2 + (\frac{-6k}{2})^2 - 25(k^2 - 1)}$
	= 25		= 5
	∴ All circles in F have the same radius 5.	<u>1</u> 3	
(b)	Slopes of the common tangents $=\frac{3}{4}$.	1A	
	Let the equation of the tangents by $y = \frac{3}{4}x + c$.	1M	$\underline{\text{or }} 3x - 4y + c = 0$
	Distance between centre $(4k,3k)$ and the tangents = 5.		or $(4, 3)$ or any point on the line $3x-4y=0$
	$\frac{\left \frac{3}{4}(4k) - (3k) + c\right }{\sqrt{\left(\frac{3}{4}\right)^2 + (-1)^2}} = 5$	2M	(pp-1) for omitting absolute sign
	$c=\pm\frac{25}{4}$		
	∴ The equations of the two tangents are $y = \frac{3}{4}x + \frac{25}{4}$ and $y = \frac{3}{4}x - \frac{25}{4}$	lA+1A	3x-4y+25=0 and $3x-4y-25=0$
	Alternative Solution (1)		
	Slope of the common tangents = $\frac{3}{4}$.	lA	
	Let the equation of the tangent be $y = \frac{3}{4}x + c$.	1M	
	Substitute into F, $x^{2} + (\frac{3}{4}x + c)^{2} - 8kx - 6k(\frac{3}{4}x + c) + 25(k^{2} - 1) = 0$	1M	·
	$\frac{25}{16}x^2 + (\frac{3c}{2} - \frac{25k}{2})x + (c^2 - 6kc + 25k^2 - 25) = 0$		
	Discriminant = $(\frac{3c}{2} - \frac{25k}{2})^2 - 4(\frac{25}{16})(c^2 - 6kc + 25k^2 - 25) = 0$	1M	
	$\frac{9c^2}{4} - \frac{625k^2}{4} - \frac{75}{2}kc - \frac{25}{4}c^2 + \frac{75}{2}kc - \frac{625}{4}k^2 + \frac{625}{4} = 0$		
	$16c^2 = 625$ $c = \pm \frac{25}{4}$,
	∴ The equations for the tangents are		
	$y = \frac{3}{4}x + \frac{25}{4}$ and $y = \frac{3}{4}x - \frac{25}{4}$.	lA+lA	-

Solution	Marks	Remarks
Alternative Soluition (2)	1A	
Slope of the common tangents = $\frac{3}{4}$.	-	
Let the equation of the tangent be $y = \frac{3}{4}x + c$.	lM	or using other circles in F
Substitute into the circle $x^2 + y^2 - 25 = 0$,		
$x^2 + (\frac{3}{4}x + c)^2 - 25 = 0$	1M	
$25x^{2} + 24cx + 16(c^{2} - 25) = 0$ Discriminant = $(24c)^{2} - 4(25)(16)(c^{2} - 25) = 0$ $16c^{2} = 625$ $c = \pm \frac{25}{4}$	lM	
The equations for the tangents are $y = \frac{3}{4}x + \frac{25}{4} \text{ and } y = \frac{3}{4}x - \frac{25}{4}.$	1A+1A	
Alternative Solution (3)		
Slope of the common tangents = $\frac{3}{4}$. Equation of the line through O and perpendicular to the	lA	
common tangents is $y = -\frac{4}{3}x$.		
Putting $k = 0$, equation of circle in F with O as centre is	1M	
$x^2 + y^2 = 25.$	1M	
$\int x^2 + y^2 = 25$		
$\begin{cases} x^2 + y^2 = 25 \\ y = -\frac{4}{3}x \end{cases}$ $x^2 + (\frac{-4}{3}x)^2 = 25$	lM	
$x^2 + (\frac{-4}{3}x)^2 = 25$		
$x = \pm 3$ When $x = 3$, $y = -4$		
When $x = -3$, $y = 4$		
:. Equations of the common tangents are	·	
$\frac{y+4}{x-3} = \frac{3}{4}$ and $\frac{y-4}{x+3} = \frac{3}{4}$		
3x - 4y - 25 = 0 and $3x - 4y + 25 = 0$.	1A+1A	
	6	

Solution	Marks	D-
(c) Since the coordinates of the centre are $(4k, 3k)$,	TATALKS	Remarks
distance from centre to x-axis		·
$= 3 k $ or = $\begin{cases} 3k & \text{if } k \ge 0 \\ -3k & k < 0 \end{cases}$	2A	Withhold 1 mark if absolute sign was omitted.
Let M be the mid-point of AB and C be the centre.		
Since $AB = 8$, $AM = 4$	1A	(can be omitted)
AC = 5		
$\therefore CM = \sqrt{5^2 - 4^2} = 3$	1A	
∴ 3 k = 3	1M	
$k = \pm 1$		
The equations of the two circles are		
$x^2 + y^2 - 8x - 6y = 0$ and $x^2 + y^2 + 8x + 6y = 0$.		
3x - 6y - 0 and x + y - 8x + 6y = 0.	lA+1A	$(x-4)^2 + (y-3)^2 = 25,$ $(x+4)^2 + (y+3)^2 = 25$
Alternative Solution (1)		$(x+4)^2 + (y+3)^2 = 25$
Since $AB = 8$, $AM = 4$.		
Coordinates of A are $(4k-4,0)$.	lA	(can be omitted)
	1A	$\underbrace{\text{or } B(4k+4,0)}$
Substitute $A(4k-4,0)$ into F ,		
$(4k-4)^2 - 8k(4k-4) + 25k^2 - 25 = 0$	1M	
$9k^2 - 9 = 0$		
$k = \pm 1$		
The equations of the two circles are		
$x^2 + y^2 - 8x - 6y = 0$ and $x^2 + y^2 + 8x + 6y = 0$.	1A+1A	
Alternative solution (2)		
Since $AB = 8$, $AM = 4$.	1A	(can be omitted)
Coordinates of A are $(4k-4, 0)$.	1A	$\frac{\text{or } B(4k+4,0)}{\text{or } B(4k+4,0)}$
Distance between A (or B) and the centre is 5.		·
$\therefore \sqrt{(4k-4-4k)^2 + (0-3k)^2} = 5$	1M	•
$9k^2 + 16 = 25$		
$k = \pm 1$		
: The equation of the circles are		
$x^2 + y^2 - 8x - 6y = 0$ and $x^2 + y^2 + 8x + 6y = 0$.	1 11	

96-CE-A MATHS II-15 只限教師參閱 FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
Solution		1
Alternative Solution (3)	į	
Put $y=0$, $x^2 - 8kx + 25(k^2 - 1) = 0$		
$x = \frac{8k \pm \sqrt{64k^2 - 100(k^2 - 1)}}{2}$		
$=4k\pm\sqrt{25-9k^2}$	1A	
$AB = (4k + \sqrt{25 - 9k^2}) - (4k - \sqrt{25 - 9k^2})$	1A	
$=2\sqrt{25-9k^2}$		
$\therefore 2\sqrt{25-9k^2}=8$	1M	
$25 - 9k^2 = 16$		
$k = \pm 1$		
The equations of the two circles are $x^2 + y^2 - 8x - 6y = 0 \text{and} x^2 + y^2 + 8x + 6y = 0$	1A+1A	
	7	

	Solution	Marks	
(a)	The coordinates of B are $(3, 4)$.		Remarks
	(0, 4).	<u>IA</u>	_
(b)	(")		-
	$(x-3)^2=4-y$		
	$x-3=-\sqrt{4-y} \because \ x < 3$		
	$x = 3 - \sqrt{4 - y}$	1	
	(ii) The equation of BC is $x = 3 + \sqrt{4 - y}$.	lA	
	a b	2	- -
(c)	(i) Volume = $\pi \int_0^h [(3 + \sqrt{4 - y})^2 - (3 - \sqrt{4 - y})^2] dy$	1M+1A+1	A lM for $V = \pi \int_a^b x^2 dy$,
	$=12\pi\int_0^h\sqrt{4-y}\mathrm{d}y$		1A for integrand, 1A for limits
	$=12\pi\left[-\frac{2}{3}(4-y)^{\frac{3}{2}}\right]_0^h$	1A	For the primitive function
	0.10.44.3		<u> </u>
	$= 8\pi[8 - (4 - h)^{\frac{1}{2}}]$	1	$\frac{\text{or}}{u} = -12\pi \left[\frac{2}{3}u^{\frac{3}{2}}\right]_{4}^{4-h} \qquad (u = 4-y)$
	Alternative Solution		1
	Volume formed by revolving lower part of curve BC		
	$V_1 = \pi \int_0^h (3 + \sqrt{4 - y})^2 dy$	IM+1A	
	l	IMTIA	$\int_{a}^{b} 1M \text{ for } V = \pi \int_{a}^{b} x^2 dy$
	$= \pi \int_0^h (13 - y + 6\sqrt{4 - y}) \mathrm{d}y$		Ja
	$= \pi \left[13y - \frac{y^2}{2} - 4(4 - y)^{\frac{3}{2}}\right]_0^h$		
	$= \pi[13h - \frac{1}{2}h^2 - 4(4-h)^{\frac{3}{2}} + 32]$	1A	
	Volume formed by revolving lower part of curve AR		
	$V_2 = \pi \int_0^h (3 - \sqrt{4 - y})^2] \mathrm{d}y$		
	$= \pi \int_0^h (13 - y - 6\sqrt{4 - y}) \mathrm{d}y$		
	$= \pi \left[13y - \frac{1}{2}y^2 + 4(4-y)^{\frac{3}{2}}\right]_0^h$		
	$= \pi[13h - \frac{1}{2}h^2 + 4(4-h)^{\frac{3}{2}} - 32]$		
		1A	
	Volume of lower layer of jelly ring		
	$=V_1-V_2$		
	$= V_1 - V_2$ $= 64\pi - 8\pi(4 - h)^{\frac{3}{2}}$ $= 8\pi[8 - (4 - h)^{\frac{3}{2}}]$		
	$=8\pi[8-(4-h)^{\frac{3}{2}}]$	1	,
	(ii) Volume of jelly ring		1
	$=8\pi[8-(4-4)^{\frac{3}{2}}]$	1M	For putting h = 4
	= 64 π	1	For putting $h = 4$
	· · · · · · · · · · · · · · · · · · ·	lA	

Solution	Marks	Remarks
If the two layers have equal volumes, $8\pi[8 - (4 - h)^{\frac{3}{2}}] = \frac{1}{2}(64\pi)$	1M	•
$(4-h)^{\frac{3}{2}} = 4$ h = 1.48 (correct to 3 sig. figures)	1A	
	9	<u> </u>
Alternative solution for (ii) Volume of upper layer		
$= \pi \int_{h}^{4} \left[(3 + \sqrt{4 - y})^{2} - (3 - \sqrt{4 - y})^{2} \right] dy$	1 M	
$=12\pi\int_{h}^{4}\sqrt{4-y}\mathrm{d}y$		
$=12\pi\left[-\frac{2}{3}(4-y)^{\frac{3}{2}}\right]_{h}^{4}$		
$=8\pi(4-h)^{\frac{3}{2}}$	1A	
If the two layers have equal volumes,		
$=8\pi(4-h)^{\frac{3}{2}}=8\pi[8-(4-h)^{\frac{1}{2}}]$	1M	
$(4-h)^{\frac{3}{2}}=4$		
h = 1.48 (correct to 3 sig. figures)	1A	
Volume of milk		
$= \pi \int_0^4 (3 - \sqrt{4 - y})^2 \mathrm{d}y$	1A+1M	1 A for integrand, 1M for limits
$= \pi \int_0^4 (13 - y - 6\sqrt{4 - y}) \mathrm{d}y$		
$= \pi \left[13y - \frac{1}{2}y^2 + 4(4-y)^{\frac{3}{2}}\right]_0^4$	1A	For the primitive function
$= \pi[52 - 8 - 32] = 12\pi$	1A	
Alternative Solution (1)		
Substitute $h = 4$ in v_2 in the alternative solution (c) (i),		
Volume of milk = $\pi [13(4) - \frac{1}{2}(4)^2 + 4(4-4)^{\frac{3}{2}} - 32]$	2M+1A	
$=\pi (52 - 8 - 32)$		
$=12\pi$	1A	

只限教師參閱 FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
Alternative Solution (2) Volume formed by revolving curve BC $= \pi \int_0^4 (3 + \sqrt{4 - y})^2 dy$ $= \pi \int_0^4 (13 - y + 6\sqrt{4 - y}) dy$ $= \pi [13y - \frac{y^2}{2} - 4(4 - y)^{\frac{1}{2}}]_0^4$	1M	or putting $h = 4$ in V_1 in the alt. soln. in (c) (i)
$=76\pi$	1A	
Volume of milk		
= 76π – Volume of jelly ring	1M	
$= 76\pi - 64\pi$		
$= 12\pi$	1A	
	4	

96-CE-A MATHS II-19 只限教師參閱 FOR TEACHERS' USE ONLY

		Solution	Marks	Remarks
12.	(a)	By Sine Law,		
		$\frac{AB}{\sin 30^{\circ}} = \frac{2}{\sin 45^{\circ}}$		
		$AB = \sqrt{2}$	1A	
		$BD = \sqrt{2}\cos 45^\circ = 1$	1A	
		$DC = 2\cos 30^\circ = \sqrt{3}$	1A 3	
	(b)	(i) θ is $\angle DCE$.	1A	(can be omitted)
		$DE = \sin 45^{\circ} = \frac{\sqrt{2}}{2}$	1A	<u>13</u> <u>2</u>
		In $\triangle CDE$, $\sin \theta = \frac{DE}{CD}$		c 2 E
		$=\frac{\sqrt{2}/2}{\sqrt{3}}$	1M	
		$\sin\theta = \frac{\sqrt{6}}{6}$	1	
		(ii) $CE = \sqrt{(CD)^2 - (DE)^2}$ $= \sqrt{(\sqrt{3})^2 - (\frac{\sqrt{2}}{2})^2}$ $= \sqrt{3}(\frac{\sqrt{30}}{6})$ $\sqrt{10}$	1M	
		$CE = \sqrt{(CD)^2 - (DE)^2}$ $= \sqrt{(\sqrt{3})^2 - (\frac{\sqrt{2}}{2})^2}$ $= \frac{\sqrt{10}}{2} \text{ (or } \sqrt{\frac{5}{2}})$ $= \frac{\sqrt{10}}{2}$	1A	
		$AE = \frac{1}{2}AB = \frac{\sqrt{2}}{2}$	1A	
		In ∆ EAC, by Cosine Law		A
		$\cos \angle EAC = \frac{(AE)^2 + (AC)^2 - (CE)^2}{2(AE)(AC)}$	1M	2 / 5
		$=\frac{(\frac{\sqrt{2}}{2})^2+2^2-(\frac{\sqrt{10}}{2})^2}{2(\frac{\sqrt{2}}{2})(2)}$		Jīc 2
		$=\frac{1}{\sqrt{2}}$		
		$\therefore \angle EAC = 45^{\circ}$	1	
				,
		÷		

96-CE-A MATHS II-20 只限教師參閱 FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
(iii) $\angle BDC$ represents the angle between the 2 planes. $BC^{2} = AB^{2} + AC^{2} - 2(AB)(AC)\cos 45^{\circ}$ $= (\sqrt{2})^{2} + 2^{2} - 2(\sqrt{2})(2)\cos 45^{\circ}$ $= 2$	1A	(can be omitted) A 45° B
$\therefore BC = \sqrt{2}$	1A	(
In $\triangle BDC$, by Cosine Law,		
$\cos \angle BDC = \frac{(BD)^2 + (CD)^2 - (BC)^2}{2(BD)(CD)}$	1M	13 D
$=\frac{1^2+(\sqrt{3})^2-(\sqrt{2})^2}{2(1)(\sqrt{3})}=\frac{1}{\sqrt{3}}$		CB
$\therefore \angle BDC = 55^{\circ}$ (correct to the nearest degree)	1A	(Do not accept radian)
or Since $BC^2 + BD^2 = CD^2$, $\therefore \angle CBD = 90^\circ$		
$\sin \angle BDC = \frac{BC}{CD}$ $= \frac{\sqrt{2}}{\sqrt{3}}$		
\	lM	
$\angle BDC = 55^{\circ}$ (correct to the nearest degree)	1A	#
	13	