Section A (42 marks)

Answer ALL questions in this section.

1. Let $f(x) = x^2 + (1 - m)x + 2m - 5$, where m is a constant. Find the discriminant of the equation f(x) = 0.

Hence find the range of values of m so that f(x) > 0 for all real values of x.

(5 marks)

2. Let $z = -1 + \sqrt{3}i$. Express z in polar form.

Hence find $z^5 + \bar{z}^5$.

(5 marks)

3. Using the information in the following table, sketch the graph of y = f(x), where f(x) is a polynomial.

	x < 0	x = 0	0 < x < 1	x = 1	1 < x < 2	x = 2	x > 2
f(x)		1.		2		1	
f'(x)	< 0	0	> 0	0	< 0	0	> 0

(5 marks)

4. By considering the two cases x > 0 and x < 0, or otherwise, solve the inequality

$$x - \frac{5}{x} > 4. \tag{6 marks}$$

5. In the same Argand diagram, sketch the locus of the point representing the complex number z in each of the following cases:

(a)
$$|z-(3+i)|=3$$
,

(b)
$$|z| = |z - 8i|$$
.

Hence, or otherwise, find the complex number(s) represented by the point(s) of intersection of the two loci.

(6 marks)

- 6. P(4, 1) is a point on the curve $y^2 + y\sqrt{x} = 3$, where x > 0.
 - (a) Find the value of $\frac{dy}{dx}$ at P.
 - (b) Find the equation of the normal to the curve at P. (7 marks)
- 7. Let $\overrightarrow{OP} = 2\mathbf{i} + 3\mathbf{j}$ and $\overrightarrow{OQ} = -6\mathbf{i} + 4\mathbf{j}$. Let R be a point on PQ such that PR : RQ = k : 1, where k > 0.
 - (a) Express \overrightarrow{OR} in terms of k, i and j.
 - (b) Express $\overrightarrow{OP} \cdot \overrightarrow{OR}$ and $\overrightarrow{OQ} \cdot \overrightarrow{OR}$ in terms of k.
 - (c) Find the value of k such that OR bisects $\angle POQ$. (8 marks)

Section B (48 marks)

Answer any THREE questions in this section. Each question carries 16 marks.

8.

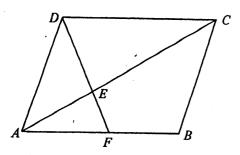


Figure 1

In Figure 1, ABCD is a parallelogram and F is a point on AB. DF meets AC at a point E such that $DE : EF = \lambda : 1$, where λ is a positive number. Let $\overrightarrow{AB} = \mathbf{p}$, $\overrightarrow{AD} = \mathbf{q}$ and $\overrightarrow{AE} = h\overrightarrow{AC}$, $\overrightarrow{AF} = k\overrightarrow{AB}$, where h, k are positive numbers.

- (a) (i) Express \overrightarrow{AE} in terms of h, p and q.
 - (ii) Express \overrightarrow{AE} in terms of λ , k, p and q.

 Hence show that $\lambda = \frac{1}{k}$. (5 marks)
- (b) It is given that |p| = 3, |q| = 2, $\angle DAB = \frac{\pi}{3}$.
 - (i) Find $\mathbf{p} \cdot \mathbf{q}$.
 - (ii) Suppose DF is perpendicular to AC.
 - (1) By expressing \overrightarrow{DF} in terms of k, p and q, find the value of k.
 - (2) Using (a), or otherwise, find the length of AE.
 (11 marks)

9.

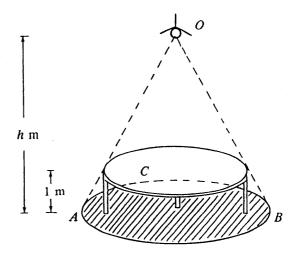


Figure 2

A small lamp O is placed h m above the ground, where $1 < h \le 5$. Vertically below the lamp is the centre of a round table of radius 2 m and height 1 m. The lamp casts a shadow ABC of the table on the ground (see Figure 2). Let S m² be the area of the shadow.

(a) Show that
$$S = \frac{4\pi h^2}{(h-1)^2}$$
. (3 marks)

- (b) If the lamp is lowered vertically at a constant rate of $\frac{1}{8}$ m s⁻¹, find the rate of change of S with respect to time when h = 2. (5 marks)
- (c) Let $V \text{ m}^3$ be the volume of the cone OABC.

(i) Show that
$$V = \frac{4\pi h^3}{3(h-1)^2}$$
.

(ii) Find the minimum value of V as h varies.

Does S attain a minimum when V attains its minimum? Explain your answer. (8 marks)

95-CE-A MATHS I-4

10. Let
$$f(x) = 12x^2 + 2px - q$$

and
$$g(x) = 12x^2 + 2qx - p$$
,

where p, q are distinct real numbers. α , β are the roots of the equation f(x) = 0 and α , γ are the roots of the equation g(x) = 0.

(a) Using the fact that $f(\alpha) = g(\alpha)$, find the value of α .

Hence show that p + q = 3.

(3 marks)

(b) Express β and γ in terms of p.

(4 marks)

(c) Suppose
$$\left|\beta^3 + \gamma^3\right| < \frac{7}{24}$$
.

- (i) Find the range of possible values of p.
- (ii) Furthermore, if p > q, write down the possible integral values of p and q.

(9 marks)

11. (a) Let α , β be the roots of the equation

$$x^2 - x + 1 = 0 \dots (*),$$

where $-\pi < \arg \beta < \arg \alpha < \pi$.

Express α and β in polar form.

(3 marks)

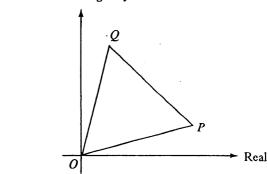


Figure 3

Figure 3 shows an Argand diagram in which OPQ is an equilateral triangle. The complex numbers represented by O, P and Q are 0, z_1 and z_2 respectively.

- (i) Find the values of $\left|\frac{z_2}{z_1}\right|$ and $\arg\left(\frac{z_2}{z_1}\right)$.

 Hence show that $\frac{z_2}{z_1}$ is a root of the equation (*) in (a).
- (ii) Using (i), or otherwise, show that

$$z_1^2 + z_2^2 = z_1 z_2.$$

- (iii) It is given that $|z_1| = 2$. Find
 - $(1) \qquad |z_1+z_2|,$
 - (2) $|z_1^2 + z_2^2|$.

(13 marks)

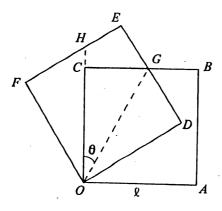


Figure 4

In Figure 4, *OABC* is the position of a square of side ℓ . The square is rotated anticlockwise about O to a new position *ODEF*. BC cuts DE at G and OC produced cuts EF at H. Let $\angle COG = \theta$, where $\frac{\pi}{8} < \theta < \frac{\pi}{4}$.

(a) Name a triangle which is congruent to $\triangle OCG$.

Hence show that the area of $\triangle OFH$ is $\frac{\ell^2}{2\tan 2\theta}$. (3 marks)

- (b) Let S be the sum of the areas of $\triangle OFH$ and the quadrilateral ODGC.
 - (i) Show that $S = \frac{\ell^2}{2} \left(\frac{2 \cos 2\theta}{\sin 2\theta} \right)$
 - (ii) Find the range of values of θ for which S is
 - (1) increasing,
 - (2) decreasing.

Hence find the minimum value of S. (11 marks)

(c) Find the maximum value of the area of the quadrilateral CGEH. (2 marks)

END OF PAPER