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1. This paper consists of Section A and Section B.
2. Answer ALL questions in Section A, using the AL(C1) answer book.

3. Answer any FOUR questions in Section B, using the AL(C2) answer book.
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SECTION A (40 marks)
Answer ALL questions in this section.
Write your answers in the AL(C1) answer book.

1.

Evaluate'

@ lim 1o)X
x-1 1_%

(b) lim (secx - tanx) .

xZ .
(4 marks)
Evaluate
(a) f tan’x dx ,
. g) _
(b) X X*2 4x
x{x - 2)2 - |
| (6 marks)

Find the equations of the straight line which satisfies the following two
conditions:

(1) passing through the point (4,2, -3) ,

(i)  parallel to the planes x+y+z-10 = 0 and x+2y = 0 . .
p plan _
| (4 marks)

The equation of a curve C 1n polar coof_dinates 1S
r=1+sin8, 0<6<2n .
(a)  Sketch curve C .
~ (b) Find the area bounded by curve C. |
(5 marks)
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i

For n = 1,2,3,.. and 0 e R, let 5

Using the identity sin’dp = 3 sing - Esﬁ@ , show that

4 4
3  (g) 1.
s, = —Sinf — - —sIng .
4 3| 4 |

Hence, or otherwise, evaluate lim s, .

Lo

Let f:
Show that ['xf(e)dr = [*f(r)de forall x € R
& -J. R .

R — R be a continuous function.

if ['feyde =0 forall xR,
show that f(x) = 0 forall x ¢ B .

Let fx) = ["sin(cost)dr , where x € {o,-g.) n

(a)  Show that f is injective.

(b) If g is the inverse function of £, find g/(0) .

(a) Show that forany e,y e R, e?-¢e® > e®(y-a) .

(b) By taking y =x? ia the inequality in (2), prove that
1

i 2 | s
fe"“dxzaS .

&

(4 marks)

(5 marks)

(6 marks)

(6 marks)




SECTION B (60 marks)
Answer any FOUR questions from this section. Each question carries 15 marks.
Write your answers in the AL(C2) answer book.

9. Given an ellipse
2 2
E): 2 +2 =1
a’ b?
and a point P(h,k) outside (F) .

(a) If y = mx +c¢ 1is a tangent from P to (E), show that

(h? -a>ym? -2hkm +E* -b* = 0 .
(4 marks)

(b) Suppose the two tangents from P to (E) touch (£) at A and
B | .

(1) Find the equation of the line passing through A and B .

(i1)  Find the coordinates of the mid-point of AB .
| (6 marks)

(c) Show that the two tangents from P to (E) are perpendicular if

and only if P lies on the circle x2+y? = a? +b? .
| (5 marks)
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(1) Evaluate f/(x) for x#0 .

(a)
Prove that £(0) does not exist.
(i1)  Determine those values ol_f x for which f/(x)>0 and those
‘values of x for which f(x)<0 . |
(i)  Find the relative extreme points of f(x) : |
(8 marks)
(b) (1) Evaluate f”(x) for x#0 . Hence determine the points of
inflexion of f(x) .
(11)  Find the asymptote of the graph of f(x) .
(4 marks)
(c)  Using the above results, sketch the graph of f(x) .
| (3 marks)
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11. For any non-negative integer n, let | 12. ILet f: R —+R be a continuously differentiable function satisfying the
L following conditions for all x € K ¢
I = f * tan"xdx . |
0
A, f(x) > 0 ;

Al B.  fx+1) = f(x) ;
@ ()  Show that —— [T <I < L (=) el = Hm s
n+l\ 4 - n+l i 4 C. f(}@)f(x+1) = f(x) .
| | 4 4
~ [Note: You may assume without proof that
X < tanx < 4x for x € [9,—3—] . ] Define g(x) = -i—]ﬂf(x) for x € R .
T |

_ (a) Show that forall x ¢ K
(i)  Using (i), or otherwise, evaluate lm 7 |

R0 |
| @  flx+1) = ) ;
1
(1)  Show that I + I , :E for n = 2,3,4,... . G)  gx+l) = g()
| (8 marks)
- 1 +1
(111) Z[g(-:j) +g(= p )] = glx) .
R k4l
(b) For m=12,3,.., let a = Z (2;)1 (8 marks)
k=1 - | |
(i) Usin herwi : £ (b) Let M be a constant such that |g(x)| < M forall x € [0,1] .
sing (a)(111), or otherwise, express. 4, In terms of I, . | |
| (1) Using (a), or otherwise, show that
(ii)  Evaluate lim a, . lg®)| < -%d: forall x e R .
n—oo |
(7 marks) | Hence deduce that

gx) = 0 forall x e R .

(i) Showthat f(x) =1 forall x € R .

(7 marks)
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x B . | | 14. (a) f(x) is a continuously differentiable and strictly increasing function

13, Let L = f_ cos"xdx{ for any positive integer n . on [0,c] such that £f(0)=0 .
E J - _ Let b € [0,f(0)] .

Define g(r) = tb- [ "f()dx , € [0,c] .

j =

(a Showthat L < =" .

(3 marks) (1) Determine the interval on which g(¢) 1s strictly increasing
and the interval on which g(f) 1is strictly decreasing. Hence
| h that
() For m=1,2,3,.., let r. = cos— . _ . e o _
| | Zn . g(t) < g(f (b)) forall ¢t € [0,c] .
Find the values of x in [--—, —] such that cosx > r, . | L
2 2 (i)  Using the substitution y = f(x) and integration by parts,
(1 1 show that | |
Hence show that L > r, (-——)" | b .y -1 |
_ n [T£0)dy = g(t7'@®)) -
(5 marks)
©) Show that - (1) If a € [0,c] , prove the inequality
It ' ' [*f@dx+ ["f'@dx 2 ab .
(1) :f:a n” =1, - | (10 marks)
: (b) If a, b, p, g are positive numbers and ! + 1 1 , prove that
(1) lim Lﬁ = ] | . | P q
Fi— 02
(7 marks)' éap-l-——b@ > ab .

P g
(5 marks)

END OF PAPER
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