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SECTION A (40 mrks)' | 4, {a,, a,, ..., a } and {b,, b,, ..., b} are two sequences of real
Answer AILL questions in this section.

Write vour answers in the AL{C1) answer book. numbers. Define s, = q; +a, +..+ ak_ for k=1,2,..,n.

(a) Prove that % a,b, = 5,(b,-b) +s,(by,-b;)+...+5, (b, _,-b)+5 b .
| 3 8 g . | _
I. Let 4 = { and P = :

1 3 |
by If by2b,2..2b 20

I 1
(a) Find P 4P . | and there are constants # and M such that
| m<s, <M for £k =1,2,..,n

b Find A" , where n is itive integer. e
(®) 15 8 POSTHVE IRget prove that mb, < Z ab, < Mb, .
k=1

(6 marks)
(5 marks)
2. Consider the following system of linear equations:
| | . | S.  Let {a_} be a sequence of positive numbers such that.
dx+3y+ 7z = Ax | | * 2
(¥) {3x-dy+T7z = Ay . | | o a, +G., +..+a = 1+an
| x+Ty-6z = Az | f | BT T Ty 5
for n =1,2,3,.... '
Suppose A is an integer and (%) has nontrivial solutions. -
Find A and solve (x) . | | | | Prove by induction that ¢, = 2n-1 for n = 1,2,3,... .
. (6 marks) S | (5 marks)
3. (@) If a, B and y are the roots of .xs +px+q = 0, find a cubic | 6. Let Arg z denote the principal value of the argument of the complex
equation whose roots are a? , B2 and 2. | number z ( -m < Argz < m ).
| x 23 | (a) If z#0 and z+z=0, show that .A:rgz = 4
(b)  Solve the equation |2 x 3{=0. | " | | 2
2 3 x 7 'E'
_ | () If z,,2,#0 and |z,+z,| = |z;-z,| , show that ML R 0
Hence, or otherwise, solve the equation x°-38x%+361x-900 = 0. - | 2 g
(6 marks) . Zy
: and hence find all possible values of Arg — .
(5 marks)
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7. (@ Let m and n be positive integers. Using the identity

| +mel B
(1 +x)n+(1 +x)f3+l +'”+(1 +x)ﬂ+m - (1+x R+ (1'#'%) 3

X

where x# 0 , show that

Cﬁ +Cﬁ+1 , +Cﬁ+m _ Cm-mﬂ .'

# R R B+l

(b)  Using (a), or otherwise, show that

m+éd

r(r-D(-2)(r-3) = 24 (C;E +8 E) .

Hence evaluate

Y rr-De-2(-3) for k>4 .
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(7 marks)

SECTION B (60 marks)

Answer any FOUR questions from this section. Each question carries 15 marks.
Write your answers in the AL(C2) answer book.

a b c

8. Let M =1c a b |, where a, b and ¢ are non-negative real

b ¢ a
numbers.

(a)  Show that det(M) = -é—(a +b+c)[(a-b)*+(b-c)+(c-a)P

and 0 < det(M) < (@a+b+¢) .
| (4 marks)

(aﬂ bﬁ Cﬁ\

(b) Let M® = | c, a, b | for any positive integer n , show that

\ bﬂ _Cn a, / _
a,, b, and c_ are non-negative real numbers satisfying
—_ R
a,+b +c =(@a+b+o) . .
(4 marks)

(c) If a+b+c =1 andat least two of a , b and c¢ are non-zero,
show that |

()  Lm det(M") =0,

(i) hm (g -b) =0 and lm (g, -¢) =0,

H—ﬁm n—bm

Giiy lmg =1
pew " 3

(7 marks)
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(2) Consider
Q)X tapy +apz =0
(D)  {Gy* *ayy +ayuz =0
@y X + Gyy + @37 = 0
and
ayx +apy +a, =0
(II) {8,%x +ayy +dy, =0
- ayX + apy + a3 =0
(1) Show that if (I) has a unique solution, then (II) has no
“solution. - | -
(11)  Show that (u,v) 1is a solution of (II) if and only if
(ug, vt, £} are solutionsof (I) forall t € B .
(i) If (II) has no solution and (I) has nontrivial sclutions,
what can you say about the solutions of (I) ?
| (5 marks)
~(b) Consider
 -(B+kx +y -z =0
) < -Tx+ G-y ~z=20
| —6x + 6y + (k~2)z2 =0
and |
(~GB+Bx +y -1 =0
V) < -Tx+S-by -1 =20
=6x + 6y + (k-2) = O
(i)  Find the values of k¥ for which (III) has non-trivial
- solutions.
- (it)  Find the values of k for which (1V) 1s consistent. Solve
(IV) for each of these values of k. | |
(ui1) Solve (III) for each % such that (III) has non-trivial
| solutions. - |
(10 marks)
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10. Let a, b and ¢ be vectors in B3 .

(a)

(b)
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Show that a , b and ¢ are linearly dependent if and only 1f

a bl.el

a, b, ¢;1 =0,

a; by ¢

where a = (c:él, a,,as), b = (b, b,, b,) and ¢ = (¢;,¢,, Y
| (5 marks)

Suppose & , b and ¢ are linearly independent. Show that for

any vector X in R’ , there are unique X, X,, X, € R such that

X = Xx;a + xzh + X,C .
(4 marks)

et §={aa +PBb +vye:a, B,y € R} .

Under what conditionson a , b and ¢ will § represent

(i) . a point ?
(1) aline?

(i11)  a plane

(iv)  the whole space ?

[Note: ~ You are not required to give reasons. ]
| (6 marks)




11. A function f: C — C is said to be real linear if

f(azl'"b' ﬁzz) = f(Zl) +p f(zz)

forall «, p € R and z,2 € C.

(a)

(b)

()

Suppose f.1s a real linear function. Show that

() if z=0 whenever f(z) =0 , then fis injective;

() if (@) =if(1) and f(i)=0 , then f is bijective.

(4 marks)
Suppose A, p € C and
. g(z) = A.z+g.12 forall z € C .
Show that
(1) g is real linear;
(11) g is injective if and only if | Al=lp].
| (8 marks)
If f1s a real linear function, find a, b € C such that
f(z) =az+bz forall z € C
| (3 marks)
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Let p(x) = x

4 3 2
tax”+ax“+ax+a, , where a,a,a,a, € R .

Suppose. z; = c0s@, +isin@, and z, = cos6, +isinfB, are two roots of
p(x) =0, where- 0 <8, <0, <m .

(a)

(b)

()
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[Hint: = — +

Show that
(1) | p(x) = (x? fzxcos 6, s D (x? - 2xcos0, +1) ,

. ¥ ( x = cos, x ~cosl, \
(1)  p'(x) = 2px) — +
sz -2xcosB, +1  x* -2xcos6, + 1

(5 marks)

Suppose p(w) = 0 , by considering p(x) -p(w) , show that

p(x)

X~ W

= x> + Wra)x? + W2raw+a)x

2

+ (W rawt+raw+a,) .

(3 marks)

Let & = zf + Zﬁ +7, + gﬁ , using (a)(i1) and (b), show that

H

PO = 4x% + (s, +4a)x? + (s, + a5, +4a)x

+ (5; +5,a, +5,a, +4a;) .

2(x - cosf) y {

x*-2xcos6 +1 X~z x-gz

Hence show that

s, tas,  +v..+a s +na =0 for n= 1,2, 3,% ,

(7 marks)




13. Let Z, be the set of all positive integers and m,n € Z, .
Let A@,n) =0-x™A-x"YH.. . (1 -xmrh
Bm) = (1-00-x)...(1-x7 .

(a)  Show that A(m+1,n+1) - A(m,n+1) is divisible by

(1-x"HYAm+1,n) .
(2 marks)

{b) Suppose P(m, n) denote the statement
" A@m, n) is divisible by B@) | ¢
(1) Show that P(1,n) and P(@m, 1) are true.

(1)  Using (a), or otherwise, show that if P(m,n+1) and
-~ P(@m+1,n) are true, then P(m+1,n+1) is also true.

(1) Let & be a fixed positive integer such that P(m, k) is true
forall m € Z, . Show by induction that P(m, k+1) is

true forall m € Z, .
(10 marks)

(¢) Using (b), or otherwise, show that P(m, n) is true ‘E’Qr all
m,n €Z,_ . |
(3 marks)

END OF PAPER
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