94	-A			
P	V	Å	Na.	S

PAPER I

HONG KONG EXAMINATIONS AUTHORITY
HONG KONG ADVANCED LEVEL EXAMINATION 1994

PURE MATHEMATICS A-LEVEL PAPER

9.00 am-12.00 noon (3 hours)
This paper must be answered in English

- 1. This paper consists of Section A and Section B.
- 2. Answer ALL questions in Section A, using the AL(C1) answer book.
- 3. Answer any FOUR questions in Section B, using the AL(C2) answer book.

©香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1994

94-AL-PURE MATHS I-1

SECTION A (40 marks)

Answer ALL questions in this section.

Write your answers in the AL(C1) answer book.

1. Let
$$A = \begin{pmatrix} 3 & 8 \\ 1 & 5 \end{pmatrix}$$
 and $P = \begin{pmatrix} 2 & -4 \\ 1 & 1 \end{pmatrix}$.

- (a) Find $P^{-1}AP$.
- (b) Find A^n , where n is a positive integer.

(6 marks)

2. Consider the following system of linear equations:

$$(*) \begin{cases} 4x + 3y + z = \lambda x \\ 3x - 4y + 7z = \lambda y \\ x + 7y - 6z = \lambda z \end{cases}.$$

Suppose λ is an integer and (*) has nontrivial solutions.

Find λ and solve (*).

(6 marks)

- 3. (a) If α , β and γ are the roots of $x^3 + px + q = 0$, find a cubic equation whose roots are α^2 , β^2 and γ^2 .
 - (b) Solve the equation $\begin{vmatrix} x & 2 & 3 \\ 2 & x & 3 \\ 2 & 3 & x \end{vmatrix} = 0$.

Hence, or otherwise, solve the equation $x^3 - 38x^2 + 361x - 900 = 0$. (6 marks)

- 4. $\{a_1, a_2, ..., a_n\}$ and $\{b_1, b_2, ..., b_n\}$ are two sequences of real numbers. Define $s_k = a_1 + a_2 + ... + a_k$ for k = 1, 2, ..., n.
 - (a) Prove that $\sum_{k=1}^{n} a_k b_k = s_1(b_1 b_2) + s_2(b_2 b_3) + \dots + s_{n-1}(b_{n-1} b_n) + s_n b_n.$
 - (b) If $b_1 \ge b_2 \ge ... \ge b_n \ge 0$ and there are constants m and M such that $m \le s_k \le M \qquad \text{for } k = 1, 2, ..., n ,$ prove that $mb_1 \le \sum_{k=1}^n a_k b_k \le Mb_1$. (5 marks)
- 5. Let $\{a_n\}$ be a sequence of positive numbers such that

$$a_1 + a_2 + \dots + a_n = \left(\frac{1 + a_n}{2}\right)^2$$

for n = 1, 2, 3, ...

Prove by induction that $a_n = 2n - 1$ for n = 1, 2, 3, ...

(5 marks)

- 6. Let Arg z denote the principal value of the argument of the complex number z $(-\pi < \text{Arg } z \leq \pi)$.
 - (a) If $z \neq 0$ and $z + \overline{z} = 0$, show that $\operatorname{Arg} z = \pm \frac{\pi}{2}$.
 - (b) If z_1 , $z_2 \neq 0$ and $|z_1 + z_2| = |z_1 z_2|$, show that $\frac{z_1}{z_2} + \frac{z_1}{z_2} = 0$ and hence find all possible values of $\operatorname{Arg} \frac{z_1}{z_2}$.

 (5 marks)

7. (a) Let m and n be positive integers. Using the identity

$$(1+x)^n + (1+x)^{n+1} + \dots + (1+x)^{n+m} = \frac{(1+x)^{n+m+1} - (1+x)^n}{x},$$

where $x \neq 0$, show that

$$C_n^n + C_n^{n+1} + \dots + C_n^{n+m} = C_{n+1}^{n+m+1}$$
.

(b) Using (a), or otherwise, show that

$$\sum_{r=5}^{m+4} r(r-1)(r-2)(r-3) = 24(C_5^{m+5}-1).$$

Hence evaluate $\sum_{r=0}^{k} r(r-1)(r-2)(r-3) \text{ for } k \ge 4.$

(7 marks)

SECTION B (60 marks)

Answer any FOUR questions from this section. Each question carries 15 marks. Write your answers in the AL(C2) answer book.

- 8. Let $M = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$, where a, b and c are non-negative real numbers.
 - (a) Show that $\det(M) = \frac{1}{2}(a+b+c)[(a-b)^2 + (b-c)^2 + (c-a)^2]$ and $0 \le \det(M) \le (a+b+c)^3$. (4 marks)
 - (b) Let $M^n = \begin{pmatrix} a_n & b_n & c_n \\ c_n & a_n & b_n \\ b_n & c_n & a_n \end{pmatrix}$ for any positive integer n, show that a_n , b_n and c_n are non-negative real numbers satisfying $a_n + b_n + c_n = (a + b + c)^n$. (4 marks)
 - (c) If a+b+c=1 and at least two of a, b and c are non-zero, show that
 - (i) $\lim_{n\to\infty} \det(M^n) = 0$,
 - (ii) $\lim_{n\to\infty} (a_n b_n) = 0 \text{ and } \lim_{n\to\infty} (a_n c_n) = 0$
 - (iii) $\lim_{n\to\infty} a_n = \frac{1}{3}.$

(7 marks)

9. (a) Consider

(I)
$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = 0 \\ a_{21}x + a_{22}y + a_{23}z = 0 \\ a_{31}x + a_{32}y + a_{33}z = 0 \end{cases}$$

and

(II)
$$\begin{cases} a_{11}x + a_{12}y + a_{13} = 0 \\ a_{21}x + a_{22}y + a_{23} = 0 \\ a_{31}x + a_{32}y + a_{33} = 0 \end{cases}.$$

- (i) Show that if (I) has a unique solution, then (II) has no solution.
- (ii) Show that (u, v) is a solution of (II) if and only if (ut, vt, t) are solutions of (I) for all $t \in \mathbb{R}$.
- (iii) If (II) has no solution and (I) has nontrivial solutions, what can you say about the solutions of (I)?

(5 marks)

(b) Consider

(III)
$$\begin{cases} -(3+k)x + y - z = 0 \\ -7x + (5-k)y - z = 0 \\ -6x + 6y + (k-2)z = 0 \end{cases}$$

and

(IV)
$$\begin{cases} -(3+k)x + y - 1 = 0 \\ -7x + (5-k)y - 1 = 0 \\ -6x + 6y + (k-2) = 0 \end{cases}$$

- (i) Find the values of k for which (III) has non-trivial solutions.
- (ii) Find the values of k for which (IV) is consistent. Solve (IV) for each of these values of k.
- (iii) Solve (III) for each k such that (III) has non-trivial solutions.

(10 marks)

- 10. Let a, b and c be vectors in \mathbb{R}^3 .
 - (a) Show that a, b and c are linearly dependent if and only if

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0 ,$$

where
$$\mathbf{a} = (a_1, a_2, a_3)$$
, $\mathbf{b} = (b_1, b_2, b_3)$ and $\mathbf{c} = (c_1, c_2, c_3)$. (5 marks)

- (b) Suppose a, b and c are linearly independent. Show that for any vector x in \mathbb{R}^3 , there are unique $x_1, x_2, x_3 \in \mathbb{R}$ such that $x = x_1 a + x_2 b + x_3 c$. (4 marks)
- (c) Let $S = \{\alpha a + \beta b + \gamma c : \alpha, \beta, \gamma \in R\}$. Under what conditions on a, b and c will S represent
 - (i) a point?
 - (ii) a line?
 - (iii) a plane?
 - (iv) the whole space?

[Note: You are not required to give reasons.]
(6 marks)

11. A function $f: \mathbb{C} \to \mathbb{C}$ is said to be real linear if

$$f(\alpha z_1 + \beta z_2) = \alpha f(z_1) + \beta f(z_2)$$

for all α , $\beta \in \mathbb{R}$ and $z_1, z_2 \in \mathbb{C}$.

- (a) Suppose f is a real linear function. Show that
 - (i) if z = 0 whenever f(z) = 0, then f is injective;
 - (ii) if f(i) = i f(1) and $f(i) \neq 0$, then f is bijective.

(4 marks)

(b) Suppose λ , $\mu \in \mathbb{C}$ and

$$g(z) = \lambda z + \mu \overline{z}$$
 for all $z \in \mathbb{C}$.

Show that

94-AL-PURE MATHS 1-8

- (i) g is real linear;
- (ii) g is injective if and only if $|\lambda| \neq |\mu|$.

(8 marks)

(c) If f is a real linear function, find $a, b \in \mathbb{C}$ such that

$$f(z) = az + b\overline{z}$$
 for all $z \in \mathbb{C}$.

(3 marks)

- 12. Let $p(x) = x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4$, where $a_1, a_2, a_3, a_4 \in \mathbb{R}$. Suppose $z_1 = \cos \theta_1 + i \sin \theta_1$ and $z_2 = \cos \theta_2 + i \sin \theta_2$ are two roots of p(x) = 0, where $0 < \theta_1 < \theta_2 < \pi$.
 - (a) Show that

(i)
$$p(x) = (x^2 - 2x\cos\theta_1 + 1)(x^2 - 2x\cos\theta_2 + 1)$$
,

(ii)
$$p'(x) = 2p(x) \left(\frac{x - \cos \theta_1}{x^2 - 2x \cos \theta_1 + 1} + \frac{x - \cos \theta_2}{x^2 - 2x \cos \theta_2 + 1} \right)$$
 (5 marks)

(b) Suppose p(w) = 0, by considering p(x) - p(w), show that

$$\frac{p(x)}{x-w} = x^3 + (w+a_1)x^2 + (w^2 + a_1w + a_2)x + (w^3 + a_1w^2 + a_2w + a_3).$$
(3 marks)

(c) Let $s_n = z_1^n + \overline{z_1}^n + z_2^n + \overline{z_2}^n$, using (a)(ii) and (b), show that

$$p'(x) = 4x^{3} + (s_{1} + 4a_{1})x^{2} + (s_{2} + a_{1}s_{1} + 4a_{2})x + (s_{3} + s_{2}a_{1} + s_{1}a_{2} + 4a_{3}).$$

[Hint:
$$\frac{2(x - \cos \theta_r)}{x^2 - 2x \cos \theta_r + 1} = \frac{1}{x - z_r} + \frac{1}{x - z_r}, \quad r = 1, 2.$$
]

Hence show that

$$s_n + a_1 s_{n-1} + ... + a_{n-1} s_1 + n a_n = 0$$
 for $n = 1, 2, 3, 4$.

(7 marks)

13. Let \mathbb{Z}_{+} be the set of all positive integers and $m, n \in \mathbb{Z}_{+}$.

Let
$$A(m, n) = (1 - x^m)(1 - x^{m+1})...(1 - x^{m+n-1})$$
,
 $B(n) = (1 - x)(1 - x^2)...(1 - x^n)$.

(a) Show that A(m+1, n+1) - A(m, n+1) is divisible by $(1-x^{n+1}) A(m+1, n)$.

(2 marks)

- (b) Suppose P(m, n) denote the statement

 " A(m, n) is divisible by B(n)."
 - (i) Show that P(1, n) and P(m, 1) are true.
 - (ii) Using (a), or otherwise, show that if P(m, n+1) and P(m+1, n) are true, then P(m+1, n+1) is also true.
 - (iii) Let k be a fixed positive integer such that P(m, k) is true for all $m \in \mathbb{Z}_+$. Show by induction that P(m, k+1) is true for all $m \in \mathbb{Z}_+$.

(10 marks)

(c) Using (b), or otherwise, show that P(m, n) is true for all $m, n \in \mathbb{Z}_+$.

(3 marks)

END OF PAPER