93-CE
A MATHS
PAPER I

HONG KONG EXAMINATIONS AUTHORITY
HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 1993

ADDITIONAL MATHEMATICS PAPER I

8.30 am-10.30 am (2 hours)
This paper must be answered in English

Answer ALL questions in Section A and any THREE questions in Section B.

All working must be clearly shown.

Unless otherwise specified in a question, the exact values of numerical answers must be given.

In this paper, vectors may be represented by bold-type letters such as \mathbf{u} , but candidates are expected to use appropriate symbols such as $\overrightarrow{\mathbf{u}}$ in their working.

Section A (42 marks)

Answer ALL questions in this section.

- 1. (a) Simplify $(\sqrt{2(x + \Delta x)} \sqrt{2x}) (\sqrt{2(x + \Delta x)} + \sqrt{2x})$.
 - (b) Find $\frac{d}{dx}(\sqrt{2x})$ from first principles.

(5 marks)

- 2. (a) Express $\frac{50}{4+3i}$ in standard form.
 - (b) By putting z = a + bi, where a, b are real numbers, solve the equation $5z + 3\overline{z} = \frac{50}{4 + 3i}$.

(5 marks)

72

3. α , β are the roots of the equation $x^2 + px + q = 0$ and $\alpha + 3$, $\beta + 3$ are the roots of the equation $x^2 + qx + p = 0$. Find the values of p and q. (6 marks)

4. Express $\sin \frac{2\pi}{3} + i \cos \frac{2\pi}{3}$ in polar form.

Hence find the three cube roots of $\sin \frac{2\pi}{3} + i\cos \frac{2\pi}{3}$, giving your answers in polar form. (6 marks)

5. Solve $\left| -x^2 + 2x + 3 \right| \ge 5$ for real values of x.

(6 marks)

- 6. Given $\overrightarrow{OA} = 3\mathbf{i} 2\mathbf{j}$, $\overrightarrow{OB} = \mathbf{i} + \mathbf{j}$. C is a point such that $\angle ABC$ is a right angle.
 - (a) Find \overrightarrow{AB} .
 - (b) Find $\overrightarrow{AB} \cdot \overrightarrow{AB}$ and $\overrightarrow{AB} \cdot \overrightarrow{BC}$.

 Hence find $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

 (7 marks)

- 7. Given the curve $C: x^2 2xy^2 + y^3 + 1 = 0$.
 - (a) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.
 - (b) Find the equation of the tangent to C at the point (2, -1). (7 marks)

Section B (48 marks)

Answer any THREE questions in this section. Each question carries 16 marks.

8.

Figure 1

In Figure 1, OAB is a triangle. $P \cdot Q$ are two points on AB such that AP : PB = PQ : QB = r : 1, where r > 0. T is a point on OB such that OT : TB = 1 : r. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

- (a) Express \overrightarrow{OP} and \overrightarrow{OQ} in terms of r, a and b. (3 marks)
- (b) Express \overrightarrow{OT} in terms of r and \mathbf{b} .

 Hence show that $\overrightarrow{TQ} = \frac{\mathbf{a} + (r^2 + r 1)\mathbf{b}}{(r+1)^2}$.
- (c) Find the value(s) of r such that \overrightarrow{OA} is parallel to \overrightarrow{TQ} . (3 marks)
- (d) Suppose OA = 2, OB = 16 and $\angle AOB = \frac{\pi}{3}$.
 - (i) Find $\mathbf{a} \cdot \mathbf{a}$ and $\mathbf{a} \cdot \mathbf{b}$.
 - (ii) Find the value(s) of r such that \overrightarrow{OA} is perpendicular to \overrightarrow{TQ} .

(7 marks)

(3 marks)

9.

Figure 2

Figure 2 shows a straight rod AB of length 8 m resting on a vertical wall CD of height 1 m. The end B is free to slide along a horizontal rail such that AB is vertically above the rail. Let E be the projection of A on the rail, DE = s m and BD = x m, where $0 < x < 3\sqrt{7}$.

(a) Show that $s = \frac{8x}{\sqrt{1 + x^2}} - x$.

(3 marks)

(b) Find the maximum value of s.

(7 marks)

- (c) Let $P \text{ m}^2$ be the area of the trapezium CAED.
 - (i) Show that $P = \frac{32x}{1+x^2} \frac{x}{2}$.
 - (ii) Does P attain a maximum when s attains its maximum? Explain your answer.

 (6 marks)

93-CE-A MATHS I-5

- 10. C is the curve $y = \frac{1}{k+1}[2x^2 + (k+7)x + 4]$, where k is a real number not equal to -1.
 - (a) If C cuts the x-axis at two points P and Q and PQ = 1, find the value(s) of k.

 (6 marks)
 - (b) Find the range of values of k such that C does not cut the x-axis. (4 marks)
 - (c) Show that C always passes through two fixed points for all values of k not equal to -1. What are the coordinates of the two points?

 (6 marks)
- 11. Let $f(x) = \sqrt{3} \sin 3x \cos 3x$, where $-\frac{\pi}{3} \le x \le \frac{\pi}{3}$.
 - (a) Find the x- and y-intercepts of the curve y = f(x). (4 marks)
 - (b) Find f'(x) and f''(x). (2 marks)
 - (c) Find the turning point(s) of the curve y = f(x). For each point, test whether it is a maximum or a minimum point.

 (6 marks)
 - (d) In Figure 3, sketch the curve y = f(x). (4 marks)

If you attempt Question 11, fill in the details in the first three boxes above and tie this sheet into your answer book.

- 12. Let C be the locus of the point in an Argand diagram representing the complex number $z = (\cos \theta 1) + i \sin \theta$, where $0 \le \theta < 2\pi$.
 - (a) Show that |z+1| = 1. Hence sketch C in an Argand diagram. (5 marks)
 - (b) Let P_1 be the point on C representing the complex number $z_1=(\cos\theta_1-1)+i\sin\theta_1$, such that $\arg z_1=2\theta_1$, and $0<\theta_1<\frac{\pi}{2}$. Find the value of θ_1 and express z_1 in standard form. (7 marks)
 - (c) Let P_2 be the point on C which is farthest away from the point P_1 in (b). Find the complex number represented by P_2 in standard form. (4 marks)

END OF PAPER

11.15 am-1.15 pm (2 hours)

This paper must be answered in English

Answer ALL questions in Section A and any THREE questions in Section B.

All working must be clearly shown.

Unless otherwise specified in a question, the exact values of numerical answers must be given.