90-CE A MATHS

PAPER I

HONG KONG EXAMINATIONS AUTHORITY
HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 1990

ADDITIONAL MATHEMATICS PAPER I

8.30 am-10.30 am (2 hours)
This paper must be answered in English

Answer ALL questions in Section A and any THREE questions from Section B.

All working must be clearly shown.

Unless otherwise specified in a question, it is sufficient for numerical answers to be given correct to three significant figures.

SECTION A (42 marks)

Answer ALL questions in this section.

1. Let $f(x) = \sqrt{x^2 + k} \sin 2x$, where k is a constant.

If f'(0) = 1, find the value of k.

(5 marks)

- 2. Given $\overrightarrow{OA} = 5\mathbf{j}$, $\overrightarrow{OB} = -\mathbf{i} + 7\mathbf{j}$. P is a point such that $\overrightarrow{AP} = t\overrightarrow{AB}$.
 - (a) Express \overrightarrow{OP} in terms of t.
 - (b) If OP is perpendicular to AB, find
 - (i) the value of t,
 - (ii) \overrightarrow{OP} .

(6 marks)

- 3. (a) Express $\frac{1+i\tan\theta}{1-i\tan\theta}$ in polar form.
 - (b) Hence, or otherwise, find the three cube roots of $\frac{1+\sqrt{3}i}{1-\sqrt{3}i}$. (Give your answers in polar form.)
- 4. α , β are the roots of the quadratic equation $x^2 (k+2)x + k = 0$.
 - (a) Find $\alpha + \beta$ and $\alpha\beta$ in terms of k.
 - (b) If $(\alpha + 1)(\beta + 2) = 4$, show that $\alpha = -2k$. Hence find the two values of k.

(6 marks)

- 5. In the same Argand diagram, sketch the locus of the point representing the complex number z in each of the following cases:
 - (a) |z-3|=1;
 - (b) |z| = |z 2i|.

Hence, or otherwise, find the complex number represented by the point of intersection of the two loci.

(6 marks)

6. Solve $(x+2)^2 - 8|x+2| + 15 \ge 0$.

(6 marks)

7. Given the curve $C: x^2 + 4xy + 5y^2 = 1$, find $\frac{dy}{dx}$.

Hence find the equations of the two tangents to C which are parallel to the line $y = -\frac{1}{2}x$. (7 marks)

SECTION B (48 marks)
Answer any THREE questions from this section.
Each question carries 16 marks.

8.

Figure 1(a)

- (a) In Figure 1(a), x and y are unit vectors, each of which makes an angle θ with z, where $0 < \theta < \frac{\pi}{2}$.
 - (i) Show that $x \cdot z = y \cdot z$.
 - (ii) Let z = mx + ny.

By expressing $\mathbf{x} \cdot \mathbf{z}$ and $\mathbf{y} \cdot \mathbf{z}$ in terms of m, n and θ , show that m = n. (8 marks)

- (b) In Figure 1(b), $\overrightarrow{OA} = a\mathbf{u}$, $\overrightarrow{OB} = b\mathbf{v}$, where \mathbf{u} , \mathbf{v} are unit vectors, a > 0 and b > 0. C is a point on AB such that $AC : CB = \lambda : 1$, where $\lambda > 0$.
 - i) Express \overrightarrow{OC} in terms of λ , a, b, \mathbf{u} and \mathbf{v} .
 - (ii) If OC bisects $\angle AOB$, using the result of (a) (ii), show that $\lambda = \frac{a}{b}$.
 - (iii) Suppose $\overrightarrow{OA} = 3\mathbf{i} + 4\mathbf{j}$, $\overrightarrow{OB} = \frac{25}{3}\mathbf{i}$, and OC bisects $\angle AOB$. Using the result of (b) (ii), find AC : CB. Hence find \overrightarrow{OC} .

9. Let $f(x) = x^2 + 4x + 1$. The curve $C_1 : y = f(x)$ cuts the x-axis at two points P and Q (See Figure 2).

- (a) (i) Write f(x) in the form $(x+a)^2 + b$. Hence find the coordinates of the vertex of C_1 .
 - (ii) Find the length of PQ. (Leave your answer in surd form.) (5 marks)
- (b) C_1 is shifted vertically downwards by m units to form the curve C_2 : y = g(x). C_2 cuts the x-axis at two points P' and Q' (See Figure 2).
 - (i) Find the coordinates of the vertex of C_2 in terms of m. Hence, or otherwise, find g(x).
 - (ii) Find the length of P'Q' in terms of m.
 - (iii) If P'Q' = 2PQ, find the value of m. (6 marks)
- (c) C_1 is shifted horizontally towards the right by n units to form the curve C_3 : y = h(x).
 - (i) Find the coordinates of the vertex of C_3 in terms of n. Hence find h(x).
 - (ii) Find the two values of n such that C_3 passes through the origin.

(5 marks)

10. (a) C_1 is the curve $y = \frac{2x+1}{x^2+2}$.

Find

- (i) the range of values of x for which the slope of C_1 is negative;
- (ii) the turning points of C_1 ; and for each point, state whether it is a maximum or a minimum point. (Testing for maximum/minimum is not required.)

(8 marks)

- (b) In Figure 3, sketch the curve C_1 for $-3 \le x \le 3$. (4 marks
- (c) C_2 is the curve $y = 1 \frac{2x+1}{x^2+2}$.

Using the result of (b) or otherwise, sketch the curve C_2 for $-3 \le x \le 3$ in Figure 3. (4 marks)

90-CE-A MATHS I--6

90-CE-A MATHS 1-5

10. If you attempt Question 10, fill in the details in the first three boxes above and tie this sheet into your answer book.

Figure 3

11.

In Figure 4, POQ is a rail where OQ is horizontal and $\angle POQ = \frac{2\pi}{3}$. AB is a rod of length 3 m which is free to slide on the rail with end A on OP and end B on OQ. End A is initially at point O and end B is pushed towards O at a constant speed of $\frac{\sqrt{3}}{3}$ ms⁻¹. After t seconds, B is x metres from O and the rod makes an angle θ with the horizontal.

- (a) Express x in terms of θ .
- (b) Let $S \text{ m}^2$ be the area of $\triangle AOB$. Show that $\frac{dS}{d\theta} = 3\sqrt{3}\sin(\frac{\pi}{3} - 2\theta)$.

Hence find the maximum value of S.

(8 marks)

(2 marks)

- (c) (i) Show that $\frac{d\theta}{dt} = \frac{1}{6\cos(\frac{\pi}{3} \theta)}$.
 - (ii) Find the range of the possible values of $\cos{(\frac{\pi}{3}-\theta)}$. Hence determine the greatest and least values of $\frac{d\theta}{dt}$. (6 marks)

40

12. (a) Let \overline{z} and Re(z) denote the conjugate and the real part of a complex number z respectively.

Show that

(i) $z\overline{z}$ is real,

(ii) $z + \overline{z} = 2 \operatorname{Re}(z)$.

(2 marks)

(b)

Figure 5

A, B and C are three points in the Argand diagram representing three distinct non-zero complex numbers p, q and r respectively, as shown in Figure 5. Let $p\overline{r} + \overline{p}r = 0$ and OABC be a parallelogram.

- (i) Show that $\operatorname{Re}(p\overline{r}) = 0$ and $\operatorname{Re}(\frac{p}{r}) = 0$.
- (ii) Show that OABC is a rectangle.
- (iii) Let $\frac{p}{r} = 2i$.

Find $\frac{p-r}{p+r}$ in standard form.

Hence find the value of $\tan \theta$, where θ is the angle between the diagonals of OABC, as shown in Figure 5.

(14 marks)

END OF PAPER

42

90-CE A MATHS

PAPER II

HONG KONG EXAMINATIONS AUTHORITY
HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 1990

ADDITIONAL MATHEMATICS PAPER II

11.15 am-1.15 pm (2 hours)
This paper must be answered in English

Answer ALL questions in Section A and any THREE questions from Section B.

All working must be clearly shown.

Unless otherwise specified in a question, it is sufficient for numerical answers to be given correct to three significant figures.