13. (a) In Figure 3, the points P, H and K represent respectively the complex number z = x + iy and the real numbers h and k.

If P lies on the circle with HK as diameter, show that the real part of $\left(\frac{z-h}{z-k}\right)$ is 0.

- (b) z_1 and z_2 are the roots of $x^2 2x + 2 = 0$, where $-\pi < \arg z_2 < \arg z_1 < \pi$. α and β are the roots of $x^2 + 2tx 4 = 0$, where t is a real number.
 - (i) Find z_1 and z_2 .
 - (ii) Show that α and β are real and distinct and that they have opposite signs.
 - (iii) Show that $\frac{z_1 \alpha}{z_1 \beta} = \frac{(1 \alpha)(1 \beta) + 1 + (\alpha \beta)i}{(1 \beta)^2 + 1}$ and obtain a similar expression for $\frac{z_2 \alpha}{z_2 \beta}$.
 - (iv) Suppose $\alpha > \beta$ and α , β , z_1 , z_2 are represented respectively by the points A, B, C, D on the Argand plane. In addition, C and D lie on the circle with AB as diameter.

Show that $(1-\alpha)(1-\beta)+1=0$, and hence find the value of t.

END OF PAPER

11.15 am-1.15 pm (2 hours)

This paper must be answered in English

Answer ALL questions in Section A and any THREE questions from Section B.

All working must be clearly shown.

Unless otherwise specified in a question, it is sufficient for numerical answers to be given correct to three significant figures.

SECTION A (42 marks)
Answer ALL questions in this section.

- 1. Find the constant term in the expansion of $(1+x)^{10} (1-\frac{2}{x})^3$. (5 marks)
- 2. Prove, by mathematical induction, that

$$1 \times 2 \times 3 + 2 \times 3 \times 4 + \ldots + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

for all positive integers n.

(5 marks)

28

- 3. Using the substitution $u = 2x^2 + 1$, evaluate $\int_0^2 \frac{8x^3}{\sqrt{2x^2 + 1}} dx$. (5 marks)
- 4. (a) Find $\int \cos^2 2x \, dx$. (b) Using the result in (a), find $\int \sin^2 2x \, dx$. (5 marks)
- 5. Let $y = 5 \sin \theta 12 \cos \theta + 7$.
 - (a) Express y in the form $r \sin (\theta \alpha) + p$ where r, α and p are constants and $0^{\circ} \le \alpha \le 90^{\circ}$.
 - (b) Using the result in (a), find the least value of y. (5 marks)
- 6. Find the general solution of $2\cos 2\theta + 5\sin \theta 3 = 0$. (5 marks)

- 7. A straight line $L_1: y = mx + c$, where m and c are constants, makes an angle of 45° with the line $L_2: 17x 7y + 14 = 0$.
 - (a) Find the two values of m.
 - (b) If the distance from the point (1, 2) to L_1 is 5, and m takes the greater of the two values obtained in (a), find the two values of c.

 (6 marks)

8.

Figure 1

Figure 1 shows the graph of $y = \sin x$ for $0 \le x \le \pi$.

- (a) Copy Figure 1 into your answer book and sketch the graph of $y = \sin 2x$ for $0 \le x \le \pi$ on the same figure.
 - Calculate the x-coordinates of the intersecting points of the two curves for $0 \le x \le \pi$.
- (b) Find the area bounded by the two curves for $0 \le x \le \pi$. (6 marks)

SECTION B (48 marks)

Answer any THREE questions from this section.

Each question carries 16 marks.

- 9. Let n be an integer greater than 1.
 - (a) Using the substitution $x = \tan \theta$, evaluate $\int_0^1 \frac{dx}{1 + x^2}$.

 (4 marks)
 - (b) By differentiating $\frac{x}{(1+x^2)^{n-1}}$ with respect to x, show that

$$\int \frac{x^2}{(1+x^2)^n} dx = \frac{1}{2(n-1)} \left[\int \frac{dx}{(1+x^2)^{n-1}} - \frac{x}{(1+x^2)^{n-1}} \right].$$
(4 marks)

(c) Using the identity $\frac{1}{(1+x^2)^n} \equiv \frac{1}{(1+x^2)^{n-1}} - \frac{x^2}{(1+x^2)^n}$, show that

$$\int \frac{\mathrm{d}x}{(1+x^2)^n} = \frac{2n-3}{2n-2} \int \frac{\mathrm{d}x}{(1+x^2)^{n-1}} + \frac{1}{2(n-1)} \cdot \frac{x}{(1+x^2)^{n-1}}.$$
(3 marks)

(d) Using the above results or otherwise, evaluate

(i)
$$\int_0^1 \frac{\mathrm{d}x}{(1+x^2)^2} \; ,$$

(ii)
$$\int_0^1 \frac{\mathrm{d}x}{(1+x^2)^3}$$
.

(5 marks)

30

10. Two circles
$$C_1: x^2 + y^2 - 6x - 8y + 21 = 0$$

and $C_2: x^2 + y^2 - 18x - 14y + 105 = 0$

intersect at A and B. C_3 is another circle passing through A, B and the point (5, 6).

- a) Write down the equation of the family of circles passing through A and B.
 Hence find the equation of C₃ and show that its centre lies on the line y = x.
- (b) Find the length and the equations of the two tangents from the origin O to C_3 .
- (c) P is the point (a, b) and M(x', y') is the point dividing OP in the ratio 1:2.
 Express a and b in terms of x' and y'.
 If P is a variable point on C₃, find the equation of the locus of M.
 (4 marks)
- 11. (x_0, y_0) is a point on the parabola $y^2 = 8x$ where $x_0 \neq 0$.
 - (a) Find $\frac{dy}{dx}$.

 Hence show that the equation of the tangent to the parabola at (x_0, y_0) is $y_0y = 4x + 4x_0$. (4 marks)
 - (b) Using the result in (a), show that the equation of the tangent of slope m to the parabola is $y = mx + \frac{2}{m}$. (4 marks)
 - (c) Find the slopes of the two tangents from the point (-4, -2) to the parabola. (2 marks)
 - (d) If the angle between the two tangents from the point (-12, a) to the parabola is 45° , find a. (6 marks)

Figure 2(a)

In Figure 2(a), ABC is a triangular piece of paper. P is the point on AB such that CP bisects $\angle ACB$. $\angle ACP = \theta$, AC = 3 cm, BC = 15 cm and CP = 4 cm.

- (a) By considering the areas of $\triangle ABC$, $\triangle APC$ and $\triangle BPC$, show that $\cos \theta = \frac{4}{5}$. (5 marks)
- (b) $\triangle ABC$ is folded along CP so that the planes APC and BPC are perpendicular as shown in Figure 2(b). A' and B' are respectively the feet of the perpendiculars from A and B to CP and CP produced.

- (i) Find AA', BB' and A'B'.
- (ii) Find the distance between A and B. (6 marks)

12. (c) The paper is further folded along CP until CA lies along CB as shown in Figure 2(c). Find $\angle APB$.

(5 marks)

- 13. The slope, at any point (x, y), of a curve C is given by $\frac{dy}{dx} = -4x + k$, where k is a constant. The curve passes through the origin and the point (5, 10).
 - (a) Find the value of k and the equation of the curve C. (4 marks)
 - (b) Find the area of the region bounded by the curve C and the x-axis.

 (3 marks)
 - (c) In Figure 3, P(a, b) is a point on the curve C. The area of the region bounded by the curve and the chord OP (the shaded region in the figure) is $\frac{1}{8}$ the area obtained in (b).

- (i) Find the value of a.
- (ii) If the shaded region is revolved about the x-axis, find the volume of the solid generated. (9 marks)

END OF PAPER

89-CE-A MATHS II-7

Additional Mathematics I

- 1. $\sin 5x + 5x \cos 5x$ $10 \cos 5x - 25x \sin 5x$ $10 \cos 5x$
- 2. (a) $\frac{1}{k+1}[(4k+1)i+(3-k)j]$
 - (b) $\frac{9}{16}$
- 3. $(\frac{1}{2}, \frac{1}{8})$, $(-\frac{1}{2}, -\frac{1}{8})$ 3x - 4y - 1 = 03x - 4y + 1 = 0
- 4. (a) $y = \frac{\tan x}{1 + 2 \tan^2 x}$
 - (b) 0.615
- 5. $(r-1)x^2 (r+5)x + (r-1) = 0$ 7 > r > -1
- 6. p = 5, q = -2 p = -5, q = 25 - 2i, -5 + 2i
- 8. -4, 8
- 9. (a) (i) $\overrightarrow{OM} \approx \frac{1}{2}(\mathbf{a} + \mathbf{b})$ $\overrightarrow{OD} \approx \frac{1}{3}\mathbf{a}$
 - (ii) $\overrightarrow{OK} = \frac{1}{3}\lambda \mathbf{a} + (1 \lambda)\mathbf{b}$
 - $\lambda = \frac{3}{4} , \quad \mu = \frac{1}{2}$
 - (b) (i) $\overrightarrow{OM} = 7i + 4j$ $\overrightarrow{DB} = -2i + 8j$
 - (ii) 18 , 74.3°

- 9. (b) (iii) $\overrightarrow{AP} = \frac{2}{3}(-17i + 4j)$
 - $\overrightarrow{AK} = \frac{1}{2}(-17i + 4j)$
- 10. (a) $\frac{8}{27\pi}$ m³
 - (b) (i) $S = (2\pi 4\pi^2)r^2 + 4\pi r$
 - (ii) $r = \frac{1}{2\pi 1}$
 - (iii) (1) $0.15 < r < \frac{1}{2\pi 1}$
 - (2) $\frac{1}{2\pi 1} < r < 0.25$

Smallest value of S = 1.07

- 11. (a) (i) $p^2 2q$
 - (ii) $-p(p^2 3q)$
 - (iii) $q^2 3(p-1)q + (p-1)^2(p+1)$
 - (c) $p < \frac{5}{4}$
 - (d) $\frac{3}{2}$
- 12. (a) (i) $T = k\sqrt{a^2 + x^2} + (3a x)$
 - (ii) $(\sqrt{3} + 3)a$
 - (iii) $1 < k < \frac{\sqrt{10}}{3}$ $1 < k \le \frac{\sqrt{10}}{3}$
 - (b) (i) $(2 + \sqrt{3})a$
 - (ii) $\sqrt{5}a$
- 13. (b) (i) $z_1 = 1 + i$ $z_2 = 1 - i$
 - (iii) $\frac{\left[\left(1-\alpha\right)\left(1-\beta\right)+1\right]+\left(\beta-\alpha\right)i}{\left(1-\beta\right)^{2}+1}$
 - (iv) t = 1

1989

Additional Mathematics II

1. -479

11. (a) $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{y}$

3. $\frac{40}{3}$

(c) 1, $-\frac{1}{2}$

4. (a) $\frac{1}{2}x + \frac{1}{8}\sin 4x + c$

(d) ± 2

(b) $\frac{1}{2}x - \frac{1}{8}\sin 4x + c'$

- 12. (b) (i) $\frac{9}{5}$ cm , 9 cm , $\frac{48}{5}$ cm
- 5. (a) $y = 13 \sin (\theta 67.4^{\circ}) + 7$

(ii) 13.3 cm

(b) ~6

6. $180k^{\circ} + (-1)^{k} 14.5^{\circ}$

13. (a) 12

(c) 83.3°

 $180k^{\circ} + (-1)^{k} 90^{\circ}$

 $y = -2x^2 + 12x$

(ii) 194.4π

7. (a) $\frac{5}{12}$, $-\frac{12}{5}$

(b) 72

(b) $7 - \frac{23}{6}$

(c) (i) 3

8. (a) 0, π , $\frac{\pi}{3}$

- (b) $2\frac{1}{2}$
- 9. (a) $\frac{\pi}{4}$
 - (d) (i) $\frac{1}{8}(\pi + 2)$
 - (ii) $\frac{1}{32}(3\pi + 8)$
- 10. (a) $x^2 + y^2 6x 8y + 21 + k(x^2 + y^2 18x 14y + 105) = 0$
 - $x^2 + y^2 10x 10y + 49 = 0$
 - (b) 7
 - $y = \frac{3}{4}x , \quad y = \frac{4}{3}x$
 - (c) a = 3x', b = 3y'
 - $9x^2 + 9y^2 30x 30y + 49 = 0$