HONG KONG EXAMINATIONS AUTHORITY HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 1985

附加數學 試卷二 ADDITIONAL MATHEMATICS PAPER II

11.15 am-1.15 pm (2 hours)

This paper must be answered in English

Answer ALL questions in Section A and any THREE questions from Section B.

All working must be clearly shown.

Unless otherwise specified in a question, it is sufficient for numerical answers to be given correct to three significant figures.

SECTION A (39 marks)

Answer ALL questions in this section.

- 1. $(ax + \frac{1}{x^2})^n$ is expanded in descending powers of x, where n is a positive integer and a > 0. If the fourth term of the expansion is independent of x and is equal to $\frac{21}{2}$, find the values of n and a. (5 marks)
- 2. Let $T_n = \frac{n(n+2)}{(n+1)^2}$, where *n* is a positive integer. Prove by mathematical induction that

$$T_1 \times T_2 \times \ldots \times T_n = \frac{n+2}{2(n+1)}$$

for all n.

(5 marks)

- 3. Using the substitution $u = 25 x^2$, evaluate $\int_3^4 \frac{x}{\sqrt{25 x^2}} dx$. (5 marks)
- 4. In Figure 1, the straight line L cuts the x-axis at the point (-1, 0) and the curve $y = 4 x^2$ at the point (1, 3). Find the area of the shaded part.

Figure 1

85-CE-ADD MATHS II-2

The line y = x and the circle $x^2 + y^2 - 2y = 0$ intersect at the points A and B. Write down the equation of the family of circles passing through A and B.

Hence find the equations of the two circles passing through these two points and with radius $\sqrt{5}$

(6 marks)

- 6. Find the equations of the two tangents drawn from the point (-1, 0) to the parabola $y^2 = 4x$. (6 marks)
- 7. In triangle ABC, $\angle A$ and $\angle B$ are acute, $\sin A = \frac{5}{13}$ and $\sin B = \frac{3}{5}$.
 - (a) Show that $\sin C = \sin (A + B)$ and hence find the value of $\sin C$ without using calculators.
 - (b) If the perimeter of the triangle is 12 cm, find the length of the longest side. (7 marks)

SECTION B (60 marks)

Answer any THREE questions from this section. Each question carries 20 marks.

- 8. (a) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^3 t \cos^4 t \, dt$.
 - (b) By using the substitution $t = \frac{\pi}{2} u$, show that

$$\int_{0}^{\frac{\pi}{2}} \cos^{3} t \sin^{4} t \, dt = \int_{0}^{\frac{\pi}{2}} \sin^{3} t \cos^{4} t \, dt.$$
(4 marks)

- (c) Show that $\int_{-\frac{\pi}{2}}^{0} \cos^3 t \sin^4 t \, dt = \int_{0}^{\frac{\pi}{2}} \cos^3 t \sin^4 t \, dt$ and $\int_{-\frac{\pi}{2}}^{0} \sin^3 t \cos^4 t \, dt = -\int_{0}^{\frac{\pi}{2}} \sin^3 t \cos^4 t \, dt.$ (6 marks)
- (d) Using the above results, or otherwise, evaluate

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{8} \sin^3 2t \ (\sin t + \cos t) \ dt \ .$$
 (6 marks)

(4 marks)

1175 1

9. In Figure 2, P and Q are two points on the semi-circle $y = \sqrt{1 - x^2}$. OP and OQ make angles θ and β respectively with the positive x-axis, where $\theta \le \beta$.

Figure 2

(a) The region bounded by OP, OQ and arc PQ is revolved about the x-axis. Show that the volume of the solid generated is $\frac{2\pi}{3} (\cos \theta - \cos \beta). \tag{10 marks}$

- (b) If P and Q move along the semi-circle such that $\beta = 2\theta$, find the maximum volume of the solid. (5 marks)
- (c) If P and Q move along the semi-circle such that $\beta \theta = \frac{\pi}{3}$, find the maximum volume of the solid. (5 marks)

10. A(0, 2), B(-3, 0) and C(1, 0) are the vertices of a triangle. PQRS is a variable rectangle inscribed in the triangle with PQ on the x-axis, R on AC and S on AB, as shown in Figure 3. Let the length of PS be h.

- (a) Find the coordinates of S and R in terms of h. (5 marks)
- (b) Let A_1 be the area of *PQRS* when it is a square, A_2 be the maximum possible area of rectangle *PQRS*, and A_3 be the area of $\triangle ABC$. Find the ratios $A_1:A_2:A_3$.

 (8 marks)
- (c) The centre of PQRS is the point M(x, y). Express x and y in terms of h.
 Hence find the equation of the locus of M.
 Show the locus on a diagram.
 (7 marks)

- 11. The line y = 2x + c cuts the ellipse $x^2 + \frac{y^2}{16} = 1$ at the two points $P(x_1, y_1)$ and $Q(x_2, y_2)$.
 - (a) (i) Show that $PQ = \sqrt{5} |x_1 x_2|$.
 - (ii) Show that x_1 and x_2 are the roots of the equation $20x^2 + 4cx + (c^2 16) = 0$.
 - (iii) Determine the two values of c such that the length of the chord PQ is $2\sqrt{2}$.
 - (b) Let the two chords determined in (a)(iii) be P'Q' and P''Q''. P'Q'Q''P'' is a parallelogram as shown in Figure 4.

Figure 4

109.4

种种:

- (i) By finding the distance between the chords P'Q' and P''Q'', or otherwise, calculate the area of the parallelogram.
- (ii) By finding the relation between the coordinates of P'' and the coordinates of Q', or otherwise, calculate the length of the side P'P''.

12. In Figure 5, ABCDE is a regular pentagon of side 1 cm inscribed in a circle with centre O. H is the foot of the perpendicular drawn from C to the diagonal BE.

Figure 5

(a) Find $\angle ABE$ and $\angle CBE$.

By expressing the length of *BE* in two different forms, prove that $\cos 36^{\circ} - \cos 72^{\circ} = \frac{1}{2}$.

Hence find the value of cos 36° in surd form.

(9 marks)

- (b) Show that the radius of the circle is $\frac{2}{\sqrt{10-2\sqrt{5}}}$ cm. (5 marks)
- (c) Let AP be one side of a regular decagon (10-sided polygon) inscribed in the same circle. Find $\angle PAO$, and hence show that

$$AP = \frac{2}{\sqrt{10 + 2\sqrt{5}}}$$
 cm. (6 marks)

END OF PAPER

Additional Mathematics I

- 1. $\frac{1}{\sqrt{3}}$
- 2. $\sqrt{2} \left(\cos -\frac{\pi}{4} + i \sin -\frac{\pi}{4}\right)$ $\sqrt[4]{2} \left(\cos \frac{(8k-1)\pi}{12} + i \sin \frac{(8k-1)\pi}{12}\right)$,
- k = 0, 1, 23. $\frac{a \sqrt{a^2 + 16}}{2} \le x \le \frac{a + \sqrt{a^2 + 16}}{2}$

-1

- 4. (a) $\frac{1}{1+r} \left[(1+4r)\mathbf{i} + (3-3r)\mathbf{j} \right]$
 - (b) $r = \frac{1}{2}$
 - C = (2, 1)
- 5. $\frac{\pi}{27} (432h 36h^2 + h^3) \text{ cm}^3$ $\frac{1}{4} \text{ cm/s}$
- 6. ±
- 7. (a) (i) $a\left(x + \frac{b \sqrt{b^2 4ac}}{2a}\right) \left(x + \frac{b + \sqrt{b^2 4ac}}{2a}\right)$
 - (iii) The roots are $\frac{5}{3i}$ and $\frac{-1}{i}$
 - (b) $\lambda = \mu$
- 8. (a) (i) $\overrightarrow{OD} = 2b + ka$ $\overrightarrow{DA} = (1 - k)a - 2b$
 - (ii) $\overrightarrow{BA} = \mathbf{a} \mathbf{b}$ $\overrightarrow{CP} = [k + \lambda (1 - k)] \mathbf{a} - 2\lambda b$ $\lambda = \frac{k}{1 + k}$
 - (b) (ii) $k = \frac{1}{4}$ or $\frac{1}{2}$ $\lambda = \frac{1}{5}$ or $\frac{1}{3}$

1985

Additional Mathematics I

- 9. (a) (i) $s = a \sec \theta + b \csc \theta$ $(0 < \theta < \frac{\pi}{2})$
 - (b) (i) 4.69 m
 - (ii) 5.57 m
- 10. (b) (i) $z \overline{z} = 0$ The locus of z is the real axis, excluding z = -1.
 - (ii) z z 1 = 0
 The locus of z is the circle, centre O, radius 1, excluding the points z = ± 1.
 - (iii) $z + \overline{z} = 0$ The locus of z is the imaginary axis.
- 11. (b) $\sqrt{300}$
 - (c) ~0.0050

3.5

1985

Additional Mathematics II

 $1. \quad n=9$

$$a = \frac{1}{\sqrt{2}}$$

- 3. 1
- 4. $4\frac{2}{3}$
- 5. $x^2 + y^2 2y + k(x y) = 0$ $x^2 + y^2 + 2x - 4y = 0$
 - $x^2 + y^2 4x + 2y = 0$
- 6. x y + 1 = 0x + y + t = 0
- 7. (a) $\frac{56}{65}$
 - (b) 5.6 cm
- 8. (a) $\frac{2}{35}$
 - (d) $\frac{4}{35}$
- 9. (b) $\frac{3}{4}\pi$
 - (c) $\frac{2\pi}{3}$
- 10. (a) $S = (\frac{3h}{2} 3, h)$ $R = (1 - \frac{h}{2}, h)$
 - (b) 8:9:18
 - (c) $x = \frac{1}{2}(h-2)$ $y = \frac{h}{2}$
 - x y = -1

- 11. (a) (iii) $\pm \sqrt{10}$
 - (b) (i) 8 (sq. units)
 - (ii) $\sqrt{26}$
- 12. (a) $\angle ABE = 36^{\circ}$

$$\angle CBE = 72^{\circ}$$

$$\frac{1 + \sqrt{5}}{4}$$

(c) $\angle PAO = 72^{\circ}$