HONG KONG EXAMINATIONS AUTHORITY HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 1985

附加數學 試卷一 ADDITIONAL MATHEMATICS PAPER I

8.30 am-10.30 am (2 hours)

This paper must be answered in English

Answer ALL questions in Section A and any THREE questions from Section B.

All working must be clearly shown.

Unless otherwise specified in a question, it is sufficient for numerical answers to be given correct to three significant figures. SECTION A (39 marks)

Answer ALL questions in this section.

- 1. Let $f(x) = x\sqrt{1-x^2}$. Find the value of $f'(\frac{1}{2})$. (5 marks)
- 2. Express 1-i in polar form.

 Hence find the cube roots of 1-i (give your answers in polar form).

 (6 marks)
- 3. Solve the inequality $x^2 ax 4 \le 0$, where a is real. If among the possible values of x satisfying the above inequality, the greatest is 4, find the least.

 (6 marks)
- 4. In Figure 1, $\overrightarrow{OA} = \mathbf{i} + 3\mathbf{j}$, $\overrightarrow{OB} = 4\mathbf{i} 3\mathbf{j}$. C is a point on AB such that $\frac{AC}{CB} = r$.

Figure 1

- (a) Express \overrightarrow{OC} in terms of r.
- (b) Find the value of r if OC is perpendicular to AB. Hence find the coordinates of C.

85-CE-ADD MATHS I--2

Figure 2

Figure 2 shows a vessel in the shape of a right circular cone with base radius 4 cm and height 12 cm. Water is poured into the vessel through the apex. Find the volume of the water in the vessel when the depth of the water is h centimetres. If water is poured into the vessel at a rate of π cm³/s, how fast is the water level rising when the depth of the water is 6 cm?

6. Find the two real values of p for which the equation

$$\log_{10} |x^2 + 2px| = 0$$

has a double root.

(8 marks)

SECTION B (60 marks)

Answer any THREE questions from this section. Each question carries 20 marks.

- 7. (a) In the equation $ax^2 + bx + c = 0$, a, b and c are complex numbers and $a \neq 0$.
 - (i) By the method of completing the square, factorize the expression $ax^2 + bx + c$.
 - (ii) Show that if a, b and c are real numbers such that $b^2 4ac < 0$, then the given equation has imaginary roots.
 - (iii) Show that if a = 3i, b = -2 and c = 5i, then $b^2 4ac > 0$, but the equation still has imaginary roots. (9 marks)
 - (b) The equation

$$x^2 - 2\lambda x + (2\lambda^2 - 2\lambda\mu + \mu^2) = 0$$

has real roots. If λ and μ are real, find the relation between them.

(4 marks)

(c) The coefficients of the following equations are real:

$$x^{2} + ax + b = 0$$
(1)
 $x^{2} + cx + d = 0$ (2)
 $2x^{2} + (a + c)x + (b + d) = 0$ (3).

Prove that if the roots of (1) and (2) are imaginary, so are the roots of (3).

(7 marks)

In Figure 3, $\triangle OBA$ is right-angled at B. OB is produced to C such that OB = BC. CD is drawn in the direction of OA such that CD = kOA. P is a point on AD such that $CP \parallel BA$. Let $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{DP} = \lambda \overrightarrow{DA}$.

Figure 3

- Express \overrightarrow{OD} and \overrightarrow{DA} in terms of a, b and k.
 - Find \overrightarrow{BA} in terms of a and b and express \overrightarrow{CP} in terms of a, b, λ and k.

Hence find λ in terms of k.

(9 marks)

- (b) (i) Show that $a \cdot b = OB^2$.
 - (ii) If $OB = \frac{1}{4}OA$, show that $\overrightarrow{OD} \cdot \overrightarrow{DA} = (-16k^2 + 12k 2)OB^2$.

Hence find the values of k and λ if $OD \perp DA$.

(11 marks)

(a) In Figure 4, P(a, b) is a point in the first quadrant. A variable line segment QR passes through P with the end Q on the x-axis and R on the y-axis. Let $\angle RQO = \theta$ and QR = s.

Figure 4

- Express s in terms of a, b and θ .
- Show that s will be least when $\tan \theta = \sqrt[3]{\frac{\overline{b}}{a}}$.
- Figure 5 shows two corridors meeting at right angles. The width of one corridor is 0.8 m and that of the other is 2.7 m. A pipe is to be moved from one corridor into the other.

Figure 5

- If the pipe is to lie completely on the horizontal floor when it is being moved round the corner, what is the greatest possible length of the pipe?
- If the height of the ceiling of each corridor is 3 m, find the length of the longest pipe that can be carried round the (9 marks) corner.

31

- 10. Let z be a complex number not equal to -1 and $w = \frac{z-1}{z+1}$.
 - (a) Let w = p + qi, where p and q are real.

Show that
$$p = \frac{1}{2}(w + \overline{w})$$

and
$$q = \frac{1}{2i} (w - \overline{w})$$
.

Hence show that
$$p = \frac{z\overline{z} - 1}{z\overline{z} + z + \overline{z} + 1}$$

and
$$q = \frac{i(\overline{z} - z)}{z\overline{z} + z + \overline{z} + 1}$$
.

(7 marks)

- In each of the following cases, find the locus of z and interpret the result geometrically:
 - w is real,

19 c

** * 1

- w is purely imaginary,
- |w| = 1. [Hint: You may use $|w|^2 = w\overline{w}$.] (13 marks)

11. In Figure 6, BD is an advertisement painted on a vertical wall BDC of a building. BD = 20 m, DC = 10 m. An observer at A, x metres from the wall, finds the angle subtended by the advertisement at his eye to be θ ,

- (a) Show that $\tan \theta = \frac{20x}{x^2 + 300}$. (3 marks)
- By differentiating both sides of the result in (a) with respect to x, show that $\frac{d\theta}{dx} = \frac{20(300 - x^2)}{x^4 + 1000x^2 + 90000}$

Hence find the value of x for which θ is a maximum. (6 marks)

(c) Find the value of $\frac{d\theta}{dx}$ at x = 50, correct to 4 decimal places. Hence estimate the increase in the distance between the observer and the wall if the angle subtended is to be decreased by 1° from that observed at x = 50 (your answer should be correct to the nearest $\frac{1}{10}$ m).

Sketch the graph of θ against x for $x \ge 0$. (5 marks)

END OF PAPER

85-CE-ADD MATHS I-8

(6 marks)