# HONG KONG EXAMINATIONS AUTHORITY HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 1984

# 附加數學 試卷二 ADDITIONAL MATHEMATICS PAPER II

11.15 am-1.15 pm (2 hours)

This paper must be answered in English

Answer ALL questions in Section A and any THREE questions from Section B.

All working must be clearly shown.

SECTION A (39 marks)
Answer ALL questions in this section.

1. In the expansion of  $(x^2 + \frac{a}{x})^8$ , where  $a \neq 0$ , the coefficient of  $x^r$  is denoted by  $B_r$ . Find the value of a if  $B_7 = 4B_{10}$ .

(5 marks)

2. Prove by mathematical induction that, for all positive integers n,  $4n^3 - n$  is divisible by 3.

(6 marks)

3. The slope at any point (x, y) of a curve is given by

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 4\sin^2 x + 1 \ .$$

If the curve cuts the x-axis at  $x = \frac{\pi}{2}$ , find the equation of the curve.

(6 marks)

4. The area of the triangle bounded by the two lines x + y = 4 and x - y = 2p and the y-axis is 9. Find the two values of p.

(6 marks)

5. Making use of the derivative of  $\tan^3 \theta$ , find

$$\int \tan^2 \theta \sec^2 \theta \, d\theta .$$
Hence evaluate 
$$\int_0^{\frac{\pi}{3}} \tan^4 \theta \, d\theta$$

(8 marks)

- 6. Given the equation  $x^2 + y^2 2kx + 4ky + 6k^2 2 = 0$ .
  - (a) Find the range of values of k so that the equation represents a circle with radius greater than 1.
  - (b) Find the locus of the centre of the circle as k varies within the range in (a).

(8 marks)

## SECTION B (60 marks)

Answer any THREE questions from this section. Each question carries 20 marks.

7. (a) Prove that  $\frac{1}{x^3} + \frac{3}{(2-3x)^2} = \frac{3x^3 + 9x^2 - 12x + 4}{9x^5 - 12x^4 + 4x^3}$ 

Hence find the value of 
$$\int_{1}^{2} \frac{3x^{3} + 9x^{2} - 12x + 4}{9x^{5} - 12x^{4} + 4x^{3}} dx$$
.

(7 marks)

- (b) (i) Using the substitution  $u = \sin \phi$ , find  $\int \frac{\cos \phi}{\sin^4 \phi} d\phi$ .
  - (ii) Using the substitution  $x = \tan \phi$  and the result of (i), evaluate

$$\int_{\frac{1}{\sqrt{3}}}^{1} \frac{3\sqrt{1+x^2}}{x^4} \, \mathrm{d}x \ .$$

(13 marks)

84-CE-ADD MATHS II-3

- 8. If you attempt this question, you should refer to the separate supplementary leaflet provided.
  - (a) Find the general solution of the equation

$$\sin 2\theta + \sin 8\theta = \sin 5\theta$$
.

(6 marks)

(b) Let  $y = \sin x + 2\cos x$ . Complete Table 1 on the separate answer sheet provided and use the data to plot the graph of

$$y = \sin x + 2\cos x .$$

By adding two suitable straight lines to the graph, find the solutions of the equations

- (i)  $5\sin x + 10\cos x = 11$ ,
- (ii)  $\sin x + 2\cos x = \frac{x}{4} + 2$ .

Give your answers correct to the nearest  $\frac{\pi}{200}$ .

(14 marks)

- 9. Given the curve  $C: x^2 + 4y^2 = 4$  and the point P(0, 3).
  - (a) L is a line of variable slope m through P. If L cuts C at two distinct real points, find the possible range of values of m.

If L touches C, what are the possible values of m?

Hence write down the equations of the two tangents from P to C.

(10 marks)

(b)  $Q(2\cos\theta, \sin\theta)$  is a point on C. Find by differentiation the gradient of C at Q and hence show that the equation of the tangent T at Q is

$$x\cos\theta + 2y\sin\theta = 2$$
.

Express the distance from P to the tangent T in terms of  $\theta$ .

Find the distance when

- (i)  $\theta = \frac{3\pi}{2}$ ,
- (ii)  $\sin \theta = \frac{1}{3}$ .

Interpret case (ii) geometrically.

(10 marks)

10. (a) Use the substitution  $x = a\sin\phi$  to show that

$$\int_{-a}^{a} \sqrt{a^2 - x^2} \, dx = \frac{\pi a^2}{2} .$$

(5 marks)

(b) Figure 1 shows two semicircles APB and AQB with a common centre C(0, b) and equal radii  $a \cdot AB$  is parallel to the x-axis.



Figure 1

(i) Show that the equation of APB is

$$y = b + \sqrt{a^2 - x^2}$$

and that of AQB is

$$v = b - \sqrt{a^2 - x^2} \quad .$$

(ii) The region bounded by the two semicircles is revolved about the x-axis to generate a solid (called an anchor-ring). Use the result in (a) to prove that the volume of the anchor-ring is  $2\pi^2a^2b$ .

(8 marks)

84-CE-ADD MATHS II-6

(c) A sweet has the form of an anchor-ring with a=2 mm and b=8 mm. Write down its volume in terms of  $\pi$ .

The sweet is now dropped into water and it dissolves with a rate of change of volume given by

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -32\pi^2 (2-t) \, \mathrm{mm}^3/\mathrm{h} ,$$

where V is the volume in  $\mathrm{mm}^3$ , t is the time in hours.

Find V in terms of t and hence find the time required to dissolve the whole sweet completely. (7 marks)

11. In Figure 2, ABC is a triangle with  $\angle A = \theta$ . P is a point on AB such that  $PA = PB = PC = \ell$ . R and Q are points on AC and BC, respectively, such that  $\angle QPC = \angle RPC = x$ .



Figure 2

(a) Show that 
$$PR = \frac{\ell \sin \theta}{\sin(x + \theta)}$$

(4 marks)

(b) Find  $\angle PCQ$  in terms of  $\theta$  and hence find PQ in terms of  $\ell$ , x and  $\theta$ .

(4 marks)

(c) Show that the area of  $\triangle PQR = \frac{\ell^2 \sin \theta \cos \theta \sin 2x}{2 \sin(x + \theta) \cos(x - \theta)}$ 

and show that it can be expressed as

$$\frac{\ell^2 \sin 2\theta}{2} \left( 1 - \frac{\sin 2\theta}{\sin 2x + \sin 2\theta} \right) \dots (*)$$
(4 marks)

- (d) (i) If  $\theta = \frac{\pi}{8}$ , find the possible range of values of x. Hence use (\*) to deduce the maximum area of  $\triangle PQR$  and express it in terms of  $\ell$ .
  - (ii) If  $\theta = \frac{\pi}{12}$ , what is the possible range of values of x? Express the maximum area of  $\triangle PQR$  in terms of  $\ell$ .

END OF PAPER

(8 marks)

23

HONG KONG EXAMINATIONS AUTHORITY HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 1984

> 附加數學 試卷二(附頁) ADDITIONAL MATHEMATICS PAPER II (SUPPLEMENTARY LEAFLET)

|                  |               |             | Total Marks  |
|------------------|---------------|-------------|--------------|
| Candidate Number | Centre Number | Seat Number | on this page |

8.(b) If you attempt this question, fill in the details in the first three boxes above and tie this sheet into your answer book.

Table 1

| х                      | 0     | $\frac{\pi}{20}$ | <u>2π</u><br>20 | <u>3π</u><br>20 | <u>4π</u><br>20 | <u>5π</u><br>20 |
|------------------------|-------|------------------|-----------------|-----------------|-----------------|-----------------|
| $y = \sin x + 2\cos x$ | 2.000 | 2.132            | 2.211           | 2.236           |                 |                 |



Answers

24

### Additional Mathematics I

1. (a) 
$$-\frac{4}{5}i + \frac{3}{5}j$$

(b) 
$$(3-4m)i + (3m-2)j$$

- 2.  $12 \, \text{cm}^3 / \text{s}$
- (a) 41 + 38i
  - (b)  $\text{Re}(\frac{1}{z}) = \frac{41}{3125}$

$$\operatorname{Re}\left(z+\frac{1}{z}\right)=41$$

(correct to the nearest integer)

- $4. \qquad -\frac{3}{2} \leqslant x \leqslant \frac{3}{2}$
- (b) √7
- $6. \qquad AP = \frac{2}{3}h$
- 7. (a)  $\frac{k-m}{\sqrt{(m^2+2m+2)(k^2+2k+2)}}$ 
  - (b) (i)  $\frac{1+k}{5}$  i +  $\frac{4}{5}$ j
    - (ii) ri + r(1 + m)j(iii)  $r = \frac{2}{5}$
  - (b) (ii) b = -5 $0 < c < \frac{5}{4}$
- 10. (a)  $V = \frac{8}{3}x^2 \sqrt{1-x}$ 
  - (b) (0, 0),  $(\frac{4}{5}, \frac{128}{75\sqrt{5}})$  V = 0,  $V = \frac{128}{75\sqrt{5}}$ , x = 1
- 11. (a)  $N = 2h \sec \theta + (50 h \tan \theta)$ 
  - (c) (ii) Goods should be transported directly from C to A by truck.

#### 1984

#### Additional Mathematics II

- 3.  $y = 3x \sin 2x \frac{3\pi}{2}$
- 4. p = 1 or -5
- $\frac{1}{3} \tan^3 \theta + c$
- (a) -1 < k < 1
  - (b) The locus is a line segment with endpoints (-1, 2) and (1, -2) excluded.
- 7. (a)  $\frac{9}{8}$ 
  - (b) (i)  $-\frac{1}{3\sin^3\phi} + c$ 
    - (ii)  $8 2\sqrt{2}$
- 8. (a)  $\theta = \frac{n\pi}{5}$  or  $\frac{(6n \pm 1)\pi}{9}$ ,
  - n = 0,  $\pm 1$ ,  $\pm 2$ , ... (b)  $x = \frac{4\pi}{20}$ , y = 2.206
  - $x = \frac{5\pi}{20}$  , y = 2.121
    - (i)  $\frac{18\pi}{200}$ ,  $\frac{41\pi}{200}$
    - (ii) 0,  $\frac{44\pi}{200}$
- 9. (a)  $m > \sqrt{2}$  or  $m < -\sqrt{2}$   $m = \pm \sqrt{2}$   $y = \sqrt{2}x + 3$ ,  $y = -\sqrt{2}x + 3$ 
  - (b)  $d = \left| \frac{6\sin\theta 2}{\sqrt{3\sin^2\theta + 1}} \right|$ (i) 4
    - (ii) 0, P lies on the tangent
- 10. (c)  $64\pi^2 \text{ mm}^3$  $V = 16\pi^2 t^2 - 64\pi^2 t + 64\pi^2$ 2 hours

11. (b)  $\angle PCQ = \frac{\pi}{2} - \theta$  $PQ = \frac{1 \cos \theta}{\cos (x - \theta)}$ (d) (i)  $0 < x \le \pi - 2\theta$  and  $0 < x \le \pi - 2\phi$ Maximum area =  $\frac{\ell^2}{2(1+\sqrt{2})}$ (ii)  $0 < x \le \frac{\pi}{6}$ 

Maximum area =  $\frac{g^2 \sqrt{3}}{4(\sqrt{3}+1)}$