- 11. (a) Let |z| and \overline{z} denote, respectively, the modulus and conjugate of the complex number z. Show that
 - (i) $|z|^2 = z \overline{z}$,
 - (ii) the imaginary part of $z = -\frac{1}{2}i(z \overline{z})$.

(5 marks)

- (b) Let p and q be non-zero, distinct complex numbers such that |p-q|=|p+q|.
 - (i) Using the results in (a), or otherwise, show that $p\overline{q} + \overline{p}q = 0$ and the imaginary part of $\frac{ip}{a} = 0$.
 - (ii) Let O, P and Q be three points on the Argand plane representing the complex numbers 0, p and q, respectively. By considering the argument of $\frac{p}{q}$, or otherwise, show that $OP \perp OQ$.
- 12. Let λ_1 and λ_2 be the roots of the quadratic equation $t^2 (b + 1)t + (b 1) = 0 \qquad (*)$ where b is a real number.
 - (a) (i) Show that λ_1 and λ_2 are real and distinct.
 - (ii) By proving $(1 \lambda_1)(1 \lambda_2) < 0$, deduce that either $\lambda_1 < 1 < \lambda_2$ or $\lambda_2 < 1 < \lambda_1$.

(7 marks)

- (b) Let λ be one of the roots of (*). Find b in terms of λ and hence express $\lambda = \lambda 1$ $(1 - \lambda)[(x^2 + 2x + b) - \lambda(x^2 + 1)]$ as a perfect square. $\lambda = \lambda - 1$ $= \{ \lambda(1 - \lambda) + 1 \}^2$ (5 marks)
- (c) Using the results of (a) and (b), show that if $\lambda_1 < \lambda_2$, then $\lambda_1 < \frac{x^2 + 2x + b}{x^2 + 1} < \lambda_2$ for all real values of x.

(8 marks)

END OF PAPER

香港考試局

HONG KONG EXAMINATIONS AUTHORITY

一 九 八 二 年 香 港 中 學 會 考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 1982

附加數學 試卷二

二小時完卷:

上午十一時十五分至下午一時十五分

本試卷必須用英文作答

ADDITIONAL MATHEMATICS PAPER II

Two hours

11.15 a.m.—1.15 p.m.

This paper must be answered in English

Answer ALL questions in Section A and any THREE questions from Section B.

All working must be clearly shown.

©香港考試局 保留版權 Hong Kong Examinations Authority Provided by dse.life

SECTION A (40 marks) Answer ALL questions in this section.

1. By using the substitution $u = \sqrt{x+9}$, or otherwise, find the indefinite integral $\int \frac{x}{\sqrt{x+9}} dx$. (5 marks)

2. Find the ratio in which the line segment joining A(3, -1) and B(-1, 1) is divided by the straight line x - y - 1 = 0. (5 marks)

3. Find the general solution of the equation

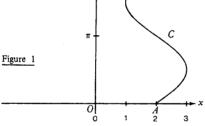
$$\cos 2\theta - \sqrt{3}\cos\theta + 1 = 0$$

(6 marks)

4. Figure 1 shows the curve

 $C: x = 2 + \sin y$, where $0 \le y \le 2\pi$. A vessel is formed by rotating OA and Cabout the y-axis. Find the capacity of the vessel in terms of π .

(6 marks)



5. Given that $\int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\cos x + \sin x} dx = \int_0^{\frac{\pi}{2}} \frac{\cos^3 x}{\cos x + \sin x} dx$. By considering the sum of these integrals, determine their common value in terms of π .

6. A is the point (3, 0). $P(x_1, y_1)$ is a variable point on the circle $x^2 + y^2 = 4$. If AP is divided internally in the ratio 2:3 at Q, find the equation of the locus of Q.

(6 marks)

In Figure 2, P and S are variable points on the line OA while Q and R are variable points on the line OB such that PQ \(\text{I}\) OB, RS \(\text{I}\) OA and OO = OR. \(\theta\) is constant. Let OP = x.

- (a) Find the areas of $\triangle OPQ$ and $\triangle ORS$ in terms of x and θ .
- (b) If the rates of change of area (with respect to x) of the two triangles are equal, find θ .

(6 marks)

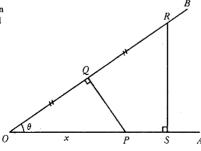


Figure 2

SECTION B (60 marks)

Answer any THREE questions from this section.

Each question carries 20 marks.

- 8. M is the point (5, 6), L is the line 5x + 12y = 32 and C is the circle with M as centre and touching L.
 - (a) Find the equation of C.

(4 marks)

(b) Show that C also touches the y-axis.

(2 marks)

(c) Find the equation of the tangent (other than the y-axis) to C from the origin.

marks)

(d) P(2, 2) is a point on C. Q is another point on C such that PQ is a diameter. Find the equation of the line PQ and write down the equation of the family of circles passing through P and Q.

Hence, or otherwise, find the equation of the circle which passes through P, Q and the origin.

(8 marks)

- 9. $P(s^2, 2s)$ and $Q(t^2, 2t)$ are distinct points on the parabola $y^2 = 4x$, where s and t are non-zero. The tangents at P and Q meet at R.
 - (a) Find the equations of PR and QR and hence find the coordinates of R in terms of s and t.
 (6 marks)
 - (b) If s and t vary such that the sum of the slopes of PR and QR is always equal to 2, show that R must lie on a straight line and find the equation of this line L.

(4 marks) (6 marks)

- (c) Find the area of the region bounded by L and the parabola.
- (d) If the region in (c) is rotated about the x-axis, find the volume generated. (4 marks)
- 10. (a) The lines 3x 2y 8 = 0 and x y 2 = 0 meet at a point P. L_1 and L_2 are lines passing through P and having slopes $\frac{1}{2}$ and 2, respectively. Find their equations.
 - (b) A line L through the point Q(2, 0) intersects L_1 and L_2 at two distinct points A and B, respectively. If the slope of L is m, show that the area of $\triangle PAB$ is

$$\frac{6(m-1)^2}{(m-2)(2m-1)}$$

As m varies, find the equation of L such that the area of $\triangle PAB$ is a minimum.

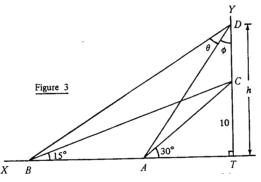
(14 marks)

- 11. (a) Using the substitution $u = \cos\theta$, or otherwise, evaluate $\int_0^{\frac{\pi}{2}} \sin^3\theta \cos^2\theta \ d\theta$. (6 marks)
 - (b) Given the curve $C: y = x^3 \sqrt{1 x^2}$.
 - (i) Write down the range of values of x for which y is real.
 - (ii) Find the points where C meets the x-axis.
 - (iii) Find the coordinates of those points on C at which the tangents are parallel to the x-axis. (6 marks)
 -

(4 marks)

- (c) Using the results in (b), sketch the curve C. (3 marks)
- (d) Using the substitution $x = \sin \theta$ and the result in (a), find the total area bounded by the curve C and the x-axis. (5 marks)
- 12. (a) Express $\tan 2\theta$ in terms of $\tan \theta$. Hence find an expression for $\tan 15^\circ$ in surd form. $2 - \sqrt{2}$
 - (b) In Figure 3, XT is the horizontal ground and TY is a tower, perpendicular to XT. A and B are flower pots on the ground between X and T. A man ascends the tower.

 When he reaches a point C, at height 10 metres from the ground, he observes the angles of depression of A and B to be 30° and 15° respectively.



- (i) Find the distance between A and B. $\frac{10}{\tan 35} = \frac{10}{\tan 30}$
- (ii) If the man continues to climb up the tower until he reaches a point D, at height h metres, such that $LADB = \theta$ and $LADT = \phi$, express $\tan \phi$ in terms of h and hence show that $\tan \theta = \frac{20 h}{h^2 + 100(3 + 2\sqrt{3})}.$
- (iii) Find the value of h so that AB subtends equal angles at D and C.

 What is the value of h when the angle subtended by AB at D is a maximum?

END OF PAPER