香	港	考	試	局
---	---	---	---	---

HONG KONG EXAMINATIONS AUTHORITY

一九八二年香港中學會考

HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 1982

附加數學 試卷一

二小時完卷

上午八時三十分至十時三十分 本試卷必須用英文作答

ADDITIONAL MATHEMATICS PAPER I

Two hours

8.30 a.m.—10.30 a.m.

This paper must be answered in English

Answer ALL questions in Section A and any THREE questions from Section B.

All working must be clearly shown.

SECTION A (40 marks)
Answer ALL questions in this section.

- 1. If $2^x = 10^{x+1}$, find x, giving your answer correct to 3 significant figures. (5 marks)
- 2. Without using tables or calculators, simplify

$$\frac{\log\sqrt[3]{4} + \log\sqrt[3]{25} - \log\sqrt[3]{9}}{\log 8 + \log 5 - \log 12}.$$

(5 marks)

3. Given that $\theta = \frac{\sin kt}{3 + 2\cos kt}$, where k is a non-zero constant, find the value of $\frac{d\theta}{dt}$ when $t = \frac{3\pi}{2k}$.

(6 marks)

4. Express the two complex numbers -1 - i and 1 - i in polar form. Hence simplify $\frac{-1 - i}{(1 - i)^5}$.

(6 marks)

5. Show that the tangents to the curve $y = x^3 - 9x^2 + 30x + 4$ cannot be parallel to the x-axis.

(6 marks)

Provided by dse.life

©香港考試局 保留版權 Hong Kong Examinations Authority where $x \neq 1$ and n is a positive integer. By differentiating both sides of the above identity with respect to x, find the sum

$$1 + 2x + 3x^2 + ... + (n-1)x^{n-2} + nx^{n-1}$$
.

Hence find the value of $1 + 2(2) + 3(2)^2 + ... + 9(2)^8 + 10(2)^9$.

(6 marks)

7. Let x be a real number satisfying $|x-2| \le 1$. Solve the inequality and hence find the greatest value of $|x^2-6|$.

SECTION B (60 marks)
Answer any THREE questions from this section.
Each question carries 20 marks.

8. A boy sits by the side of a shallow pool and plays with a radio-controlled boat. The boat starts from A in a direction which makes an angle of 45° with the side SS' of the pool, as shown in Figure 1. However, the control is not working properly. As a result, the boat moves in a straight line but with reducing speed given by

$$\frac{ds}{dt} = \sqrt{2} \left(2 - \frac{t}{30} \right) ,$$

where s metres is the distance covered by the boat t seconds after starting. The boat finally stops at B.

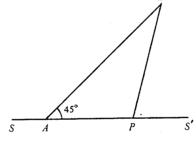


Figure 1

- (a) Find the time taken by the boat to reach B.

 Using integration, show that the distance between A and B is $60\sqrt{2}$ m.

 (8 marks)
- (b) To get the boat back, the boy runs from A along the side of the pool to a point P and then across the pool along PB (see Figure 1). If he can run at 5 m/s on shore and 3 m/s in water, find the least time he needs to reach the point B.
 (12 marks)
- 9. Let $f(x) \equiv x^3 (p+1)x^2 + (p-q)x + q$, where p and q are constants. ABC is a triangle such that $\sin A$, $\sin B$ and $\sin C$ are the three roots of the equation f(x) = 0.
 - (a) By factorising f(x), deduce that $\triangle ABC$ has a right angle, and show that $q \neq 0$.

(7 marks)

(b) Let R_1 and R_2 be the remainders when f(x) is divided by x and (x-p), respectively. If $R_1 - R_2 = \frac{2q}{p}$, find the possible values of p.

Hence show that ABC is an isosceles triangle and find the value of q. (13 marks)

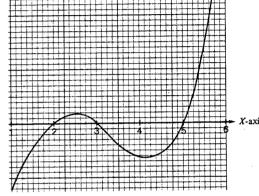
10. (a) Sketch the graph of $f(x) = 2x^3 - 9x^2 + 12x - 5$.

(10 marks)

- (b) The graph of a function Y defined in the interval 1 < X < 6 passes through the points (2, 10), (3, 15) and (5, 0). The graphs of dY/dX and of d2 Y/dX² are shown in Figure 2 and Figure 3, respectively. Without finding the equation of the graph of Y:
 - determine the maximum and minimum points of the graph of Y,
 - (ii) sketch the graph of Y.

(10 marks)

Figure 2



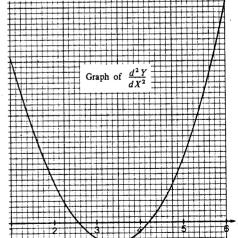


Figure 3

Go on to the next page

- 11. (a) Let |z| and \overline{z} denote, respectively, the modulus and conjugate of the complex number z. Show that
 - (i) $|z|^2 = z \overline{z}$,
 - (ii) the imaginary part of $z = -\frac{1}{2}i(z \overline{z})$.

(5 marks)

- (b) Let p and q be non-zero, distinct complex numbers such that |p-q|=|p+q|.
 - (i) Using the results in (a), or otherwise, show that $p\overline{q} + \overline{p}q = 0$ and the imaginary part of $\frac{ip}{a} = 0$.
 - (ii) Let O, P and Q be three points on the Argand plane representing the complex numbers 0, p and q, respectively. By considering the argument of $\frac{p}{q}$, or otherwise, show that $OP \perp OQ$.
- 12. Let λ_1 and λ_2 be the roots of the quadratic equation $t^2 (b + 1)t + (b 1) = 0 \qquad (*)$ where b is a real number.
 - (a) (i) Show that λ_1 and λ_2 are real and distinct.
 - (ii) By proving $(1 \lambda_1)(1 \lambda_2) < 0$, deduce that either $\lambda_1 < 1 < \lambda_2$ or $\lambda_2 < 1 < \lambda_1$.

(7 marks)

- (b) Let λ be one of the roots of (*). Find b in terms of λ and hence express $\lambda = \lambda 1$ $(1 - \lambda)[(x^2 + 2x + b) - \lambda(x^2 + 1)]$ as a perfect square. $\lambda = \lambda - 1$ $= \{\lambda(1-\lambda)+1\}^2$ (5 marks)
- (c) Using the results of (a) and (b), show that if $\lambda_1 < \lambda_2$, then $\lambda_1 < \frac{x^2 + 2x + b}{x^2 + 1} < \lambda_2$ for all real values of x.

(8 marks)

END OF PAPER

香港考試局

HONG KONG EXAMINATIONS AUTHORITY

一 九 八 二 年 香 港 中 學 會 考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 1982

附加數學 試卷二

二小時完卷:

上午十一時十五分至下午一時十五分

本試卷必須用英文作答

ADDITIONAL MATHEMATICS PAPER II

Two hours

11.15 a.m.—1.15 p.m.

This paper must be answered in English

Answer ALL questions in Section A and any THREE questions from Section B.

All working must be clearly shown.

©香港考試局 保留版權 Hong Kong Examinations Authority Provided by dse.life