香港考試局

HONG KONG EXAMINATIONS AUTHORITY

一九八〇年香港中學會考

HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 1980

附加數學 試卷一

二小時完卷 上午八時三十分至十時三十分 本試卷必須用英文作答

ADDITIONAL MATHEMATICS PAPER I

Two hours 8.30 a.m.—10.30 a.m. This paper must be answered in English

Answer ALL questions in Section A and any THREE questions from Section B.

All working must be clearly shown.

Find the range of values of k for which the equation

$$2x^2 + x + 5 = k(x + 1)^2$$

has no real roots.

(5 marks)

2. Find $\lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{2x+3+2\Delta x}{x+4+\Delta x} - \frac{2x+3}{x+4} \right]$

(5 marks)

3. A triangle is formed by the three straight lines

$$L_1: 6x + y + 3 = 0$$
,

$$L_2: x + 2y + 1 = 0$$
,

$$L_3: 10x + 6y - 9 = 0.$$

Find the equation of the altitude of the triangle which is perpendicular to L_3 .

(6 marks)

4. Find $\int \frac{2}{\cot \frac{x}{2} + \tan \frac{x}{2}} dx$.

(6 marks)

5. Given that $\frac{\sin^2 A}{1 + 2\cos^2 A} = \frac{3}{19}$, where $90^\circ < A < 180^\circ$,

find the value of $\frac{\sin A}{1 + 2\cos A}$.

(6 marks)

Solve the inequality

$$x^2-|x|-x<0.$$

(6 marks)

Find the general solution of

$$\tan 7\theta + \cot 2\theta = 0$$
.

(6 marks)

SECTION B (60 marks)

Answer any THREE questions from this section. Each question carries 20 marks.

- A solid right circular cone of volume V cubic metres and base radius r metres has a total surface area of π square metres.
 - (a) Express V^2 in terms of r.
 - (b) Using differentiation, find the value of r for which V^2 is a maximum. Hence, or otherwise, find the maximum value of V.
 - (c) Sketch the graph of V^2 against r.
- 9. (a) Given that $\tan(A + B) = \frac{\tan A + \tan B}{1 \tan A \tan B}$, show that $\tan 3\theta = \frac{\tan^3 \theta 3 \tan \theta}{3 \tan^2 \theta 1}$.
 - (b) Let $f(x) = 3x^3 + mx^2 9x + n$, where m and n are integers.

When f(x) is divided by x - 1, the remainder is -8.

When f(x) is divided by x - 2, the remainder is -5.

- i) Show that m = -3 and n = 1.
- (ii) By putting $x = \tan \theta$ and using the result in (a), or otherwise; solve the equation f(x) = 0.

 (Correct your answer to 2 decimal places.)
- 10. Given: z = x + yi, where x and y are real numbers and $i^2 = -1$.
 - (a) Find a relation between x and y if the modulus of [z (3 + 4i)] is 4.
 - (b) Find a relation between x and y if the amplitude of $\frac{z-1}{z+1}$ is $\frac{\pi}{2}$.
 - Find the complex number z_1 which satisfies both the conditions given in (a) and (b). Furthermore, if $z_1 = (p + qi)^2$, where p and q are real numbers, find the value of the product pq.

- O, A, B are the points (0, 0), (10, 4), (5, 10) respectively. C is a point on OB such that OC: CB = 1: r and
 - D is a point on OA such that OD: DA = r : 1, where r > 0.
 - Express the coordinates of C and D in terms of r. (a)
 - Express the area of $\triangle ODC$ in terms of r. (b)
 - If the area of $\triangle ODC$ is k times the area of $\triangle OAB$, express r in terms of k. (c) Hence, or otherwise, show that $k \le \frac{1}{4}$.
 - Using the result in (c), or otherwise, find the maximum area of $\triangle ODC$. (d)
- The figure shows a path AXD on the inclined plane ABCD. AX and XD are straight lines. The inclined plane is at 45° to the horizontal plane ABEF. Let AB = AF = s, BX = ks, and α be the angle between AX and the horizontal.
 - Express the length of AX in terms of s and k. (a)
 - Express $\sin \alpha$ in terms of k. (b)
 - If the inclination of AX to the horizontal is not to exceed 30° , find the range of (c) values of k.

Hence, or otherwise, determine the range of values of k so that each of the inclinations of AX and XD to the horizontal does not exceed 30°.

END OF PAPER

HONG KONG EXAMINATIONS AUTHORITY

一九八〇年香港中學

HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 1980

附加數學 試卷二

二小時完卷

上午十一時十五分至下午一時十五分

本試卷必須用英文作答

ADDITIONAL MATHEMATICS PAPER II

Two hours

11.15 a.m.—1.15 p.m.

This paper must be answered in English

Answer ALL questions in Section A and any THREE questions from Section B.

All working must be clearly shown.

SECTION A (40 marks)

Answer ALL questions in this section.

Expand $(1+2x)^3 (1+3x)^4$ in ascending powers of x as far as the term containing x^2 .

(5 marks)

(5 marks)

Using the substitution u = x - 1, find the indefinite integral $(x + 2)\sqrt{x - 1} dx$.

Find the slope of the tangent to the curve

$$2x^2y + x^2 + y^2 - 4 = 0$$

at the point (2, 0).

(6 marks)

4. If $y = \cos(\sin x)$, find $\frac{d^2y}{dx^2}$.

(6 marks)

Provided by dse.life