AS Mathematics and Statistics

General Marking Instructions

- I. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits all the marks allocated to that part, unless a particular method has been specified in the question. Makers should be patient in marking alternative solutions not specified in the marking scheme.
- In the marking scheme, marks are classified into the following three categories:

'M' marks
'A' marks

awarded for correct methods being used; awarded for the accuracy of the answers;

Marks without 'M' or 'A'

awarded for correctly completing a proof or arriving at

an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- Use of notation different from those in the marking scheme should not be penalized.
- 5. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 6. Marks may be deducted for poor presentation (pp). The symbol (pp-1) should be used to denote 1 mark deducted for pp. At most deducted 1 mark from Section A and 1 mark from Section B for pp. In any case, do not deduct any marks for pp in those steps where candidates could not score any marks.
- 7. Marks may be deducted for numerical answers with inappropriate degree of accuracy (a). The symbol (a-) should be used to denote 1 mark deducted for a. At most deducted 1 mark from Section A and 1 mark from Section B for a. In any case, do not deduct any marks for a in those steps where candidates could not score any marks.
- 8. Marks entered in the Page Total Box should be the NET total scored on that page.

Solution	Marks
$\ln(xy) = \frac{x}{y}$ $\ln x + \ln y = \frac{x}{y}$	
$\frac{1}{x} + \frac{1}{y} \frac{dy}{dx} = \frac{y - x \frac{dy}{dx}}{y^2} \qquad (\text{ or } \frac{x \frac{dy}{dx} + y}{xy} = \frac{y - x \frac{dy}{dx}}{y^2})$	1M differentaition of In x 1M chain rule 1M quotient/product rule
$y^{2} + xy \frac{dy}{dx} = xy - x^{2} \frac{dy}{dx}$ $\frac{dy}{dx} = \frac{xy - y^{2}}{xy + x^{2}}$	1 at least one step
Alternatively, $xy = e^{\frac{x}{r}}$	
$xy = e^{\frac{x}{y}}$ $x\frac{dy}{dx} + y = e^{\frac{x}{y}} \left(\frac{y - x}{y^2} \frac{dy}{dx} \right)$	{\}M differentaition of e '\\ {\}1M chain rule \\ {\}1M quotient rule
$x\frac{\mathrm{d}y}{\mathrm{d}x} + y = xy\left(\frac{y - x\frac{\mathrm{d}y}{\mathrm{d}x}}{y^2}\right)$	·
$xy\frac{dy}{dx} + y^2 = xy - x^2\frac{dy}{dx}$	
$\frac{dy}{dx} = \frac{xy - y^2}{xy + x^2}$	1
	(4)

	只败教師参阅 FUR TEACHERS	USE VILL
	Salution	Marks
2. (a)	$(1+2x)^{\frac{1}{2}} = 1 + \frac{1}{2}(2x) + \frac{\frac{1}{2}(-\frac{1}{2})}{2}(2x)^2 + \frac{\frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})}{3!}(2x)^3 + \cdots$	IM any 3 terms
	$=1+x-\frac{1}{2}x^2+\frac{1}{2}x^3+\cdots$	IA
	$(1+8x^3)^{\frac{1}{2}}=1-\frac{1}{2}(8x^3)+\cdots$	IA
	$=1-4x^3+\cdots$	
(b)	$(1-2x+4x^2)^{-\frac{1}{2}} = \frac{(1+8x^3)^{-\frac{1}{2}}}{(1+2x)^{-\frac{1}{2}}}$	
	•	
	$= (1+8x^3)^{-\frac{1}{2}}(1+2x)^{\frac{1}{2}}$	
	$a (1-4x^3+\cdots)(1+x-\frac{1}{2}x^2+\frac{1}{2}x^3+\cdots)$	iM.
	$=1+x-\frac{1}{2}x^2+\frac{1}{2}x^3-4x^3+\cdots$	
	$= 1 + x - \frac{1}{2}x^2 - \frac{7}{2}x^3 + \cdots$	1A
	Alternatively,	
	$(1-2x+4x^2)^{\frac{-1}{2}} = [1-2x(1-2x)]^{\frac{-1}{2}}$	
	$= 1 + \left(-\frac{1}{2}\right)\left[-2x(1-2x)\right] + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left[-2x(1-2x)\right]^2$	
	$+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{\left[-2x(1-2x)\right]^{3}+\cdots}$	1A
	$= 1 + x(1-2x) + \frac{3}{2}x^{2}(1-2x)^{2} + \frac{5}{2}x^{3}(1-2x)^{3} + \cdots$	
	$=1+x-\frac{1}{2}x^2-\frac{7}{2}x^3+\cdots$	1A
		(pp-1 for extra terms or missing '+···' in all cases)
		•

3.	Area of the shaded region $=\int_0^8 (1+x^{\frac{1}{3}}-e^{\frac{x}{2}}) dx$
	c . 78

$$= \left[x + \frac{3}{4} x^{\frac{4}{3}} - 8e^{\frac{x}{2}} \right]_{0}^{8}$$

$$\approx 6.2537 \quad \text{(or } 28 - 8e\text{)}$$

Solution

4. (a) The graph of f(x) is concave downward (or convex upward) when 1 < x < 3 (or $1 \le x \le 3$ etc.)

只限教師參閱

(b) The points of inflexion are (1,-16) and (3,0).

(c)

$$\begin{cases} pp-1 \text{ for missing } dx \\ 1A \text{ for } x + \frac{3}{4}x^{\frac{4}{3}} \end{cases}$$

[IA for
$$-8e^{\frac{2}{8}}$$
]
IA $a-1$ for r.t. 6.254

1A

Marks

1A

1A minimum point IA shape and coordinates of points

----(4)

		> Chtt 4 X Hih 2	≫ I3CI		11 11	(O) ILICO	OUL DISCI
		S	olution				Marks
. (a)	Let Q ₁ , Q ₂	, Q_1 be the 1st quart methods $(n = 21)$	ile, media	n and 3rd	quartile re	sp., then	
		n th term	75 kg (5.25th)	84.5 kg (10.5th)	89.5 kg (15.75th)	14.5 kg	
	ii. <i>Q</i> _r = -	7/4 (n+1) th term	75 kg (5.5th)	85 kg (11th)	91 kg (16.5th)	16 kg	
	iii. $Q_r = -$	$\frac{rn+2}{4}$ th term	75 kg (5.75th)	85 kg (11th)	90.5 kg (16.25th)	15.5 kg	IA median IM 1st or 3rd quartile
	iv. <i>Q</i> , =	$\frac{r(n-1)+4}{4}$ th term	75 kg (6th)	85 kg (11th)	90 kg (16th)	15 kg	1 A interquartile range
	1	r and round off to arest 0.5th term	75 kg (5th)	84.5 kg (10.5th)	90 kg (16th)	15 kg	
4.5		method tv only)	L	L	,		(pp-1 for wrong/missing unit)
(c)	Weight (kg)		how indivantial evid the woma	ence for n n weighed man weig	naking the I 60 kg or hed 99 kg	n completion	1A any correct box-and-whisker diagram with scale 1A all correct, same scale

	Sol	ution	Marks
• • •	having no vanilla for $\left(\frac{4}{6}\right)\left(\frac{3}{5}\right)\left(\frac{2}{4}\right)$	-	
$=\frac{1}{5}$	or 0.2)		IA
	or $C_1^3 \left(\frac{2}{6}\right) \left(\frac{4}{5}\right) \left(\frac{4}{5}\right)$	up of vanilla flavour ice-cream $\frac{3}{4}$, $\frac{2 \times 3 \times P_2^4}{P_3^6}$)	1M numerator 1A(5)
7. The probability that t people killed in a traf $= e^{-0.1} \qquad (p \approx 0.904837418)$ The required probabi $= p^5 + 5p^4(1-p)$ ≈ 0.925477591 ≈ 0.9255	ffic accident p) lility	Alternatively, The probability that there is at least 1 people killed in a traffic accident $= 1 - e^{-0.1} \qquad (q)$ ≈ 0.095162582 The required probability $= (1-q)^5 + 5(1-q)^4 q$ ≈ 0.925477591 ≈ 0.9255	2A Simple binomial (at least 2 terms) 1M cases 0 and 1 1A a - 1 for r.t. 0.925 (5)
8. (a) The probability $= 0.3 \left(\frac{5}{9}\right) + 0.7 \left(\frac{5}{6}\right)$ = 0.75		ning a prize in l trial	1A 1A
Then $\frac{5}{9}x + \frac{5}{4}$ and $x + y = \frac{5}{9}x + \frac{5}{4}$	$\frac{5}{6}y = \frac{2}{3}$ $= 1$	generating games ${\cal A}$ and ${\cal B}$ respectively	1M 1M
$x = \frac{3}{5}$ $\therefore \text{ The probabi}$ $\frac{3}{5} \text{ (or 0.6)}$	1A or $y = \frac{2}{5}$, $y = 0.4$ 1A(6)		
2000-AS-M & S-23			

· .			A ALEXA VIEW SO DAY	
			Solution	Marks
9.	(a)	(i)	$f(x) = 16 + 4xe^{-0.25x}$ $f'(x) = 4e^{-0.25x}(1 - 0.25x)$ $\begin{cases} > 0 & \text{if } 0 < x < 4 \\ = 0 & \text{if } x = 4 \\ < 0 & \text{if } x > 4 \end{cases}$	{1M attempting to find f' {1A accept considering $f(x) = e^{-0.25\pi}(0.25x - 2)$
		(ii)	$\therefore f(x) \le f(4) \text{for } x > 0 \ .$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	l follow through
			$f(x) = \begin{cases} 16 & 19.1152 \mid 20.8522 \mid 21.6684 \mid 21.8861 \mid 21.7301 \mid 21.3551 \mid (16) & (19.1) \mid (20.9) \mid (21.7) \mid (21.9) \mid (21.7) \mid (21.17) \mid (21.4) \end{cases}$ $\int_{0}^{6} f(x) dx$ $\approx \frac{1}{2} [16 + 21.3551 + 2(19.1152 + 20.8523 + 21.6684 + 21.8861 + 21.7301)]$ ≈ 124 $\therefore \text{ The expected increase in profit is } 124 \text{ hundred thousand dolfars.}$	 1A correct to 1 d.p. 1M 1A α-1 for r.t. 124
	(b)	(i)	$g(x) = 16 + \frac{6x}{\sqrt{1+8x}}$ $g'(x) = \frac{6\sqrt{1+8x} - \frac{6x \cdot 8}{2\sqrt{1+8x}}}{1+8x}$	pp-1 for wrong/missing unit
			$= \frac{6(1+4x)}{\frac{3}{2}}$ $(1+8x)^{\frac{3}{2}}$ > 0 for $x > 0$. $g(x) \text{ is strictly increasing for } x > 0$.	1 .
			$\lim_{x \to \infty} \left(16 + \frac{6x}{\sqrt{1 + 8x}} \right) = \lim_{x \to \infty} \left(16 + \frac{6\sqrt{x}}{\sqrt{\frac{1}{x} + 8}} \right)$ $g(x) \to \infty \text{as} x \to \infty$	1 A

Solution	Marks
Solution (ii) Let $u = \sqrt{1+8x}$, then $u^2 = 1+8x$, $2udu = 8dx$ $\int_0^8 g(x)dx = \int_0^6 \left(16 + \frac{6x}{\sqrt{1+8x}}\right) dx \qquad (\text{or } \int_0^6 16dx + \int_0^6 \frac{6x}{\sqrt{1+8x}} dx)$ $= \int_1^7 \left(16 + \frac{6(u^2 - 1)}{8u}\right) \frac{1}{4} udu \qquad (\text{or } \left[16x\right]_0^6 + \int_1^7 \frac{6(u^2 - 1)}{8u} \frac{1}{4} udu$ $= \int_1^7 \left(\frac{3}{16}u^2 + 4u - \frac{3}{16}\right) du \qquad (\text{or } 96 + \int_1^7 \left(\frac{3}{16}u^2 - \frac{3}{16}\right) du$ $= \left[\frac{1}{16}u^3 + 2u^2 - \frac{3}{16}u\right]_1^7 \qquad (\text{or } 96 + \left[\frac{1}{16}u^3 - \frac{3}{16}u\right]_1^7)$ $= 116 \frac{1}{4}$ ≈ 116 $\therefore \text{ The expected increase in profit is 116 hundred thousand dollars.}$ (c) From (a)(i), $f(x) \le f(4)$ (= 21.8861) for $x > 0$. i.e. $f(x)$ is bounded above by $f(4)$. From (b)(i), $g(x)$ increases to infinity as x increases to infinity. $\therefore f(x) > 0 \text{ and } g(x) > 0 \text{ for } x > 0$, the area under the graph of $g(x)$ will be greater than that of $f(x)$ as x increases indefinitely. $\therefore \text{ Plan } G \text{ will eventually result in a bigger profit.}$	du) $\begin{cases} IA & integrand \\ IA & limits \end{cases}$
Alternative graph for 10(a)(ii)	

2000-AS-M & S-25

大阪教師参阅 Toll Tendificito	
Solution	Marks
The total number, in thousands, of bacteria after 15 days of cultivation $= \int_0^{15} [20 - pe^{-qt}] dt + 100$ $= \left[20t + \frac{p}{q} e^{-qt} \right]_0^{15} + 100$	[1M definite integral] [1M adding 100] [1M for integration]
$= 300 + \frac{p}{q}e^{-15q} - \frac{p}{q} + 100$	ats
≈ 260 + 100 ≈ 360	1A $\int_0^{15} [20 - \rho e^{-ip}] dt \in [255, 263]$ 1A Ans. $\in [355, 363]$ $\rho \rho - 1$ for wrong/missing unit
Alternatively, Let N(t) thousand be the total number of bacteria after t days of cultivation. Then	
$N(t) = \int [20 - pe^{-qt}] dt$	1M
$=20t+\frac{p}{q}e^{-qt}+c$	1M for integration
$N(0) = 100$ $100 = \frac{p}{q} + c$	
$c = 100 - \frac{p}{q} \approx 60.04$	1A c∈ [55.02, 63.46]
Hence the total number, in thousands, of bacteria after 15 days of cultivation is	iM+lA N(15) ∈ [355, 363]
$N(15) = 20 \times 15 + \frac{P}{q} e^{-15q} + c = 360$	1,77

	只限教師參阅	FOR II	EACHERS'	บอ	E UNLI
	Solution			Mar	ks
	$55 = a - e^{1-2k}$ $98 = a - e^{1-4k}$ Initiating a, we have $e^{1-4k} - e^{1-2k} + \ln 98 - \ln 55 = 0$ $e^{-4k} - e^{-2k} + \frac{1}{e} \ln \frac{98}{55} = 0$			ī	
	$e 55$ $(e^{-2k})^2 - e^{-2k} + \frac{1}{e} \ln \frac{98}{55} = 0$ $e^{-2k} = \frac{1 \pm \sqrt{1 - \frac{4}{e} \ln \frac{98}{55}}}{2}$			1M	quadratic equation
	≈ 0.30635 or 0.69365 ≈ 0.306 or 0.694 $\begin{cases} k \approx 0.5915 & k \approx 0.1829 \\ a \approx 4.8401 & a \approx 5.8929 \end{cases}$ $\begin{cases} k \approx 0.59 & k \approx 0.18 \\ a \approx 4.84 & a \approx 5.89 \text{ (or 5.90)} \end{cases}$			IA	r.t. 0.306, 0.694
	$\begin{cases} k = 0.59 \\ a \approx 4.84 \end{cases} \text{ or } \begin{cases} k \approx 0.18 \\ a = 5.89 \text{ (or 5.90)} \end{cases}$	(2 d.p.)		1 A	a-1 for more than 2 d.p.
(b) Usi	$ \operatorname{ng} \begin{cases} k \approx 0.59 \\ a \approx 4.84 \end{cases}, \ln N(7) = 4.80. $			lM	r.t. 4.80
Usi	$N(7) \approx 121$. $ng\begin{cases} k \approx 0.18 \\ a \approx 5.89 \end{cases}$, $lnN(7) = 5.12$,				r.t. 121 r.t. 5.12 - 5.14
	•		170 ≈ 5.1358)	IA	r.t. 167 – 170 follow through
Ų	$N(t) = e^{\ln N(t)} \approx e^{5.89 - e^{1-6.16t}}$			1 M	
	$N(t) \rightarrow e^{5.89} \approx 361$ as $t \rightarrow \infty$; total possible catch of coral fish in that area; thousand tonnes.	since Januar	y 1, 1992 is	1 A	r.t. 361 ~ 365· pp-1 for wrong/missing unit
			;		

	Solution	Marks
c) (i) ·	$\ln N(t) = a - e^{1-kt}$	
,	$\frac{N'(t)}{N(t)} = ke^{1-kt}$	
	• • • • • • • • • • • • • • • • • • • •	
	$N'(t) = k N(t)e^{1-kt}$	1
A	Iternatively,	
1	$N(t) = e^{a-e^{1-at}}$	
L	$N'(t) = -e^{1-kt}(-k)e^{u-e^{1-kt}} = ke^{1-kt} N(t)$	l l
(ii) N	$N(t) = k[N'(t)e^{1-kt} - k N(t)e^{1-kt}]$	
	$= k^2 N(t)e^{1-kt} (e^{1-kt} - 1)$	1A
	$\begin{cases} > 0 & \text{when } t < \frac{1}{k} \\ = 0 & \text{when } t = \frac{1}{k} \\ < 0 & \text{when } t > \frac{1}{k} \end{cases}$	
	$= 0$ when $t = \frac{1}{t}$	ім
	of when the	
	$N'(t)$ is maximum at $t = \frac{1}{k}$	1A
	≈ 5.56 The maximum rate of change of the total catch of coral fish	<i>t</i> ∈ {5.47, 5.56}
•	in that area since January 1, 1992 occurred in 1997.	1A
	1 51/25 4 68 51/25 149 2	In N(6) ∈ [4.97, 4.99]
	$\ln N(6) \approx 4.97$, $N(6) = 143.6$	$N(6) \in [143.6, 146.3]$
	$\ln N(5) \approx 4.78$, $N(5) = 119.7$	$\ln N(5) \in [4.78, 4.80]$ $N(5) \in [119.7, 122.0]$
<i>:</i> -	The volume of fish caught in 1997	
	= [N(6) - N(5)] thousand tonnes	IM
	≈ 24 thousand tonnes	1A ρp-1 for wrong/missing unit
	:	

	只阪教師参阅 FUN TEACHERS	USE ONE!
	Solution	Marks
l2. (a) Let	$X \sim N(20, 5^2)$ and $Z \sim N(0, 1)$.	
(i)	P(risky but not hazardous A) = $P(12 < X < 27)$	IA.
	$= P(\frac{12-20}{5} < Z < \frac{27-20}{5})$	
	≈ P(-1.6 < Z < 1.4) ≈ 0.4452 + 0.4192	1M
	€ 0.8644	lA a-1 for r.t. 0.864
(ii)	$P(risky \mid A) = P(X > 12)$	
	= P(Z > -1.6) = 0.4452 + 0.5	IA
	≈ 0.4452 + 0.5 ≈ 0.9452	TA .
	$P(\text{hazardous} \mid A) = P(X > 27)$	
	= P(Z > 1.4)	
	≈ 0.5 – 0.4192	1A
	≈ 0.0808	
	∴ P (a risky bottle is hazardous A) $\approx \frac{0.0808}{0.9452} \approx 0.0855$	IM
(b) (i)	P(risky) = 0.6 P(risky A) + 0.4 P(risky B)	
	$\approx 0.6(0.9452) + 0.4(0.058)$	IM
	≈ 0.59032 • 0.5003 (¬)	IA a-1 for r.t. 0.590
	≈ 0.5903 (p)	1A a-1 10F F.U. 0.390
	$P(B \text{ and risky} \text{risky}) = \frac{P(\text{risky} B)P(B)}{P(\text{risky})}$	
	≈ (0.058)(0.4) ≈ 0.59032	IA numerator IM Bayes' theorem
	·	(Lat. Dayes ittedieni
	≈ 0.0393	
(ii)	$P(B \text{ and hazardous} risky) = \frac{P(hazardous B)P(B)}{P(risky)}$	
	≈ (0.004)(0.4) 0.59032	{IA numerator
		[1M Bayes'theorem
	≈ 0.00271 ≈ 0.0027	
	~ V.0027	(1) (binamin)
····	P(license suspended) = $1 - (1 - p)^5 - 5p(1 - p)^4$	[IM binomial
(111)	$P(\text{scense suspended}) = 1 - (1 - p)^{n} - 3p(1 - p)^{n}$	1M complement of cases 0 & 1
		[IM p from b(i)
	$\approx 1 - (1 - 0.59032)^5 - 5(0.59032)(1 - 0.59032)^4$	
	= 0.9053	

	大阪学文師多阅 1011 TEXOTIEN	
	Solution	Marks
13. (a)	Possible teams: $B_1 G_1$, $B_1 G_2$, $B_2 G_1$ and $B_2 G_2$.	1A
	The probability that $B_1 G_1$ can enter the second round of the contest = 0.9×0.8 = 0.72	1A
(c)	Probability required = $\frac{1}{4}$ (0.9×0.8+0.9×0.6+0.7×0.8+0.7×0.6) = 0.56	IM 4 cases
(b)	Suppose $B_1 G_1$ and $B_2 G_2$ are formed to represent the school.	
	(i) The probability that exactly one team can enter the second round $= (0.9 \times 0.8)(1 - 0.7 \times 0.6) + (0.7 \times 0.6)(1 - 0.9 \times 0.8)$ $\text{or } 1 - (0.9 \times 0.8)(0.7 \times 0.6) - (1 - 0.9 \times 0.8)(1 - 0.7 \times 0.6)$ $= 0.5352$	
	(ii) The probability that at least one team can enter the second round = $0.5352 + 0.9 \times 0.8 \times 0.7 \times 0.6$ or $1 - (1 - 0.9 \times 0.8)(1 - 0.7 \times 0.6)$ or $0.9 \times 0.8 + 0.7 \times 0.6 - 0.9 \times 0.8 \times 0.7 \times 0.6$ ≈ 0.8376	IM IA
(e)	(i) If the two teams are formed randomly, the probability that exactly one team can enter the second round $= \frac{1}{2} \times 0.5352 + \frac{1}{2} \left[(0.9 \times 0.6) (1 - 0.7 \times 0.8) + (0.7 \times 0.8) (1 - 0.9 \times 0.6) \right]$ $= \frac{1}{2} (0.5352 + 0.4952)$ $= 0.5152$	$ \begin{cases} 1M & \text{the combination } B_1G_2 \text{ , } B_2G_1 \\ 1M & \text{multiplying by } \frac{1}{2} \end{cases} $
	(ii) If B_1 G_2 and B_2 G_4 are formed to represent the school, the probability that at least one team can enter the second round $\approx 0.4952 + 0.9 \times 0.8 \times 0.7 \times 0.6$ or $1 - (1 - 0.9 \times 0.6)(1 - 0.7 \times 0.8)$ or $0.9 \times 0.6 + 0.7 \times 0.8 - 0.9 \times 0.6 \times 0.7 \times 0.8$ $= 0.7976$ From (d)(ii), the combination B_1 G_1 and B_2 G_2 will have a better	IM IA
	chance of having at least one team that can enter the second round of the contest.	1M

	只限教師參閱 FUR TEACHERS	USE UNLY
	Solution	Marks
14. (a)	Poisson distribution Binomial distribution frequency: $100 \cdot \frac{e^{-1}}{x!}$ $100 \cdot C_x^6 \left(\frac{1}{6}\right)^x \left(\frac{5}{6}\right)^{6-x}$ missing values: 36.79 20.09 (or 20.09 20.10 6.13 0.80 0.81 0.80	IA+IA 1A+1A
(b)	The binomial distribution is better.	IA awarded only if (a) is correct
(c)	(i) The probability of getting at least 1 stamp in a box of the Chips $= 1 - \left(1 - \frac{1}{6}\right)^{6}$ $\boxed{\text{br } 1 - 0.3349}$ ≈ 0.6651020233 $\approx 0.6651 (\rho_1)$ $\boxed{\text{br } 0.6650}$!M read from table 1A a-1 for r.t. 0.665
	(ii) The probability of getting at least 1 stamp in buying not more than 3 boxes $= p_1 + (1 - p_1)p_1 + (1 - p_1)^2 p_1$ $\approx (0.665102)[1 + (1 - 0.665102) + (1 - 0.665102)^2]$ ≈ 0.9624389632 ≈ 0.9624	Sim Cases 1, 2 and 3 Sim Geometric (p) Sim Sim
	(iii) The probability of getting exactly 5 stamps in 2 boxes with stamps $= 2 \left[C_1^6 \left(\frac{1}{6} \right) \left(\frac{5}{6} \right)^5 C_4^6 \left(\frac{1}{6} \right)^4 \left(\frac{5}{6} \right)^2 + C_2^6 \left(\frac{1}{6} \right)^2 \left(\frac{5}{6} \right)^4 C_3^6 \left(\frac{1}{6} \right)^3 \left(\frac{5}{6} \right)^3 \right]$ $= \frac{1}{2} \left[C_1^6 C_4^6 \left(\frac{1}{6} \right)^5 \left(\frac{5}{6} \right)^7 + C_2^6 C_3^6 \left(\frac{1}{6} \right)^5 \left(\frac{5}{6} \right)^7 \right]$ $= \frac{2 \times 5^7 (6 \times 15 + 15 \times 20)}{6^{12}}$ $\approx 0.027994301 (P_2)$	1M combinations (1, 4) and (2, 3) 1M multiplying by 2 1M binomial distribution read from table
	The probability of getting stamps in both boxes in buying two boxes = $p_1^2 \approx 0.442360701 \ (p_3)$	1M
	The required conditional probability = $\frac{P_2}{p_3}$ $\approx \frac{0.027994301}{0.442360701}$ ≈ 0.0633	1M 0.0632 if using figures in table

只限教師參閱