8. Discrete Random Variables

Lear	ning Unit	Learning Objective				
Stati	Statistics Area					
Bino	Binomial, Geometric and Poisson Distributions					
12.	Discrete random variables	12.1 recognise the concept of a discrete random variable				
13.	Probability distribution, expectation and variance	 13.1 recognise the concept of discrete probability distribution and its representation in the form of tables, graphs and mathematical formulae 13.2 recognise the concepts of expectation <i>E(X)</i> and variance Var(<i>X</i>) and use them to solve simple problems 				
		13.3 use the formulae $E(aX + b) = aE(X) + b$ and $Var(aX + b) = a^2 Var(X)$ to solve simple problems				

Section A

1. The table below shows the probability distribution of a discrete random variable Y, where m and p are constants:

У	-2	2	m
P(Y=y)	р	0.25	0.5

- (a) Prove that $Var(Y) = 0.25m^2 + 2$.
- (b) If Var(2Y-1) = 8E(2Y-1), find m.

(7 marks) (2018 DSE-MATH-M1 Q4)

DSE Mathematics Module 1

8. Discrete Random Variables

2. The table below shows the probability distribution of a discrete random variable X, where k is a constant:

X	0	2	4	5	8	9
P(X=x)	k^2	0.16	0.18	0.3	k	0.12

Find

- (a) k,
- (b) E(X),
- (c) Var(2-3X).

(6 marks) (2017 DSE-MATH-M1 Q1)

3. The table below shows the probability distribution of a discrete random variable X, where a and b are constants:

х	2	3	5	7	9
P(X = x)	0.08	0.15	а	0.45	ь

It is given that E(X) = 5.64. Find

- (a) a and b,
- (b) $E((6-5X)^2)$ and Var(6-5X).

(6 marks) (2015 DSE-MATH-M1 Q1)

4. Let X be a discrete random variable with probability function as shown in the following table.

х	k	0	4	6
P(X = x)	0.1	0.2	0.3	0.4

It is given that E(X) = 3.4.

- (a) Find the value of k.
- (b) Find Var(3-4X).
- (c) Let G be the event that X < 4 and H be the event that $X \ge -1$. Find $P(G \cap H)$.

(5 marks) (2014 DSE-MATH-M1 Q6)

DSE Mathematics Module 1

8. Discrete Random Variables

 Let X and Y be two independent discrete random variables with their respective probability distributions shown as follows:

X	0	1	3	5	7
P(X = x)	0.2	0.3	0.3	0.1	0.1

	у	1	2	4	m
į	P(Y = y)	0.4	0.3	0.2	0.1

Suppose that E(Y) = 2.4.

- (a) Find the value of m
- (b) Let A be the event that $X + Y \le 2$ and B be the event that X = 0.
 - (i) Find P(A).
 - (ii) Are events A and B independent? Justify your answer.

(5 marks) (2013 DSE-MATH-M1 Q7)

6. Let X be a discrete random variable with probability function shown below:

x	1	3	4	6	9	13
P(X=x)	0.1	а	0.25	0.15	b	0.05

where a and b are constants. It is known that E(X) = 5.5.

- (a) Find the values of a and b
- (b) Let F be the event that $X \ge 4$ and G be the event that X < 8.
 - (i) Find $P(F \cap G)$.
 - (ii) Are F and G independent events? Justify your answer.

(6 marks) (2012 DSE-MATH-M1 Q8)

7. The random variable X has probability distribution P(X = x) for x = 1, 2 and 3 as shown in the following table.

X	1	2	3
P(X=x)	0.1	0.6	0.3

Calculate

- (a) E(X),
- (b) Var(3-2X).

(5 marks) (SAMPLE DSE-MATH-M1 Q7)

8. Discrete Random Variables

NEW

Out of syllabus

DSE Mathematics Module 1 8. Discrete Random Variable

8. Discrete Random Variable

1. (2018 DSE-MATH-M1 Q4)

2. (2017 DSE-MATH-M1 Q1)

(a)	$k^2 + 0.16 + 0.18 + 0.3 + k + 0.12 = 1$ $k^2 + k - 0.24 = 0$ k = 0.2 or $k = -1.2$ (rejected) Thus, we have $k = 0.2$.	IM IA	
(b)	E(X) = 0(0.04) + 2(0.16) + 4(0.18) + 5(0.3) + 8(0.2) + 9(0.12) = 5.22	IM IA	,
(c)	Var(2-3X) = $9Var(X)= 9((0-5.22)^2(0.04) + (2-5.22)^2(0.16) + (4-5.22)^2(0.18) + (5-5.22)^2(0.3) + (8-5.22)^2(0.2) + (9-5.22)^2(0.12))= 56.6244$	1M 1A	
	$Var(2-3X)$ = $9Var(X)$ = $9(E(X^2) - (E(X))^2)$ = $9(33.54 - (5.22)^2)$ = 56.6244	1M 1A	

(a)	Very good. About 98% of the candidates were able to find the value of k by setting up a quadratic equation.
(b)	Very good. Over 90% of the candidates were able to find the value of $E(X)$.
(c)	Very good. Most candidates were able to find the value of $Var(2-3X)$.

3. (2015 DSE-MATH-M1 Q1)

DSE Mathematics Module 1	8. Di	screte Random Variable
(a) $0.08 + 0.15 + a + 0.45 + b = 1$ 2(0.08) + 3(0.15) + 5a + 7(0.45) + 9b = 5.64	1M	either one
Solving, we have $\alpha = 0.25$ and $b = 0.07$.	1A	for both
(b) $E((6-5X)^2)$		
$= E(36 - 60X + 25X^2)$		
$=36-60E(X)+25E(X^2)$	1M	
=36-60(5.64)+25(35.64)		
= 588.6	1A	
Var(6-5X)		
$= E((6-5X)^2) - (E(6-5X))^2$		
$= E((6-5X)^2) - (6-5E(X))^2$	1M	accept $(-5)^2 \operatorname{Var}(X)$

 $=588.6-(6-5(5.64))^2$

= 95.76

(a)	Very good. Most candidates were able to find the values of a and b by setting up two equations involving them.
(b)	Good. Many candidates were able to find the value of $Var(6-5X)$ while some candidates wrought found the value of $(R(6-5X))^2$ instead of $R(6-5X)^2$.

1A

8 Discrete Random Variable DSE Mathematics Module 1 4. (2014 DSE-MATH-M1 Q6) 1M (a) 0.1k + 0.2(0) + 0.3(4) + 0.4(6) = 3.41 A k = -21M (b) Var(3-4X) = 16Var(X) $=16[E(X^2)-E(X)^2]$ $= 16 \left[0.1(-2)^2 + 0.2(0)^2 + 0.3(4)^2 + 0.4(6)^2 - 3.4^2 \right]$ Alternative Solution 1M -13 -21 3 - 4x11 P(X=x)0.2 0.4 0.1 OR 3-4(3.4) E(3-4X) = 0.1(11) + 0.2(3) + 0.3(-13) + 0.4(-21) $Var(3-4X) = 0.1(11+10.6)^{2} + 0.2(3+10.6)^{2} + 0.3(-13+10.6)^{2} + 0.4(-21+10.6)^{2}$ 1A =128.64(c) $P(G \cap H) = P(-1 \le X < 4)$ = P(X = 0)= 0.21A

(a)	Excellent.
	Very good.
	Some candidates equated $Var(3-4X)$ to $3^2Var(X)$ or $3-4Var(X)$.
(c)	Good.

(5)

1A

(5)

For both

- (2013 DSE-MATH-M1 O7)
- (a) $E(Y) = 1 \times 0.4 + 2 \times 0.3 + 4 \times 0.2 + m \times 0.1 = 2.4$ m = 61.4 (b) (i) P(A) = P(X = 0, Y = 1) + P(X = 0, Y = 2) + P(X = 1, Y = 1) $= 0.2 \times 0.4 + 0.2 \times 0.3 + 0.3 \times 0.4$ IM = 0.26
 - (ii) $P(A \cap B) = P(X = 0, Y = 1) + P(X = 0, Y = 2)$ $= 0.2 \times 0.4 + 0.2 \times 0.3$ = 0.14IA $P(A)P(B) = 0.26 \times 0.2$ = 0.052

Alternative Solution	
P(A B) = P(Y=1) + P(Y=2)	
= 0.4 + 0.3	
= 0.7	IA
$\neq P(A)$ by (i)	
	P(A B) = P(Y=1) + P(Y=2) = 0.4 + 0.3 = 0.7

Thus, A and B are not independent.

 $\neq P(A \cap B)$

IA Follow through

Excellent. Good. Mistakes were occasionally found in computations. (i) Good. Mistakes were occasionally found in computations.
 (ii) Fair. A lot of candidates thought that the independence of two events A and B could be verified by checking $P(A \cap B) = 0$. Among those who found correct values of related probabilities, some did not mention $P(A \cap B) \neq P(A) \cdot P(B)$ as the reason to make conclusion, while some made a wrong conclusion that 'A and B are independent'.

(2012 DSE-MATH-M1 Q8)

DSE Mathematics Module 1

- (a) $P(X=1) + P(X=3) + \cdots + P(X=13) = 1$ 0.1 + a + 0.25 + 0.15 + b + 0.05 = 11M a+b=0.45E(X) = 5.5 $1 \times 0.1 + 3a + 4 \times 0.25 + 6 \times 0.15 + 9b + 13 \times 0.05 = 5.5$ 1M a+3b=0.95Solving (1) and (2), we get a = 0.2 and b = 0.25. 1A
- (b) (i) $P(F \cap G) = 0.25 + 0.15$ = 0.41A
 - (ii) $P(F) \times P(G) = (0.25 + 0.15 + 0.25 + 0.05)(0.1 + 0.2 + 0.25 + 0.15)$ = 0.491A $\neq P(F \cap G)$

Alternative Solution 1 $P(F G) = \frac{P(F \cap G)}{P(G)}$		
$P(G) = \frac{P(G)}{P(G)}$		
0.4		
0.1 + 0.2 + 0.25 + 0.15		
≈ 0.571428571	1A	
P(F) = 0.25 + 0.15 + 0.25 + 0.05		
= 0.7		
$\neq P(F \mid G)$		

Alternative Solution 2 $P(G \mid F) = \frac{P(F \cap G)}{P(F)}$	
$= \frac{0.4}{0.25 + 0.15 + 0.25 + 0.05}$ ≈ 0.571428571	7.4
P(G) = 0.1 + 0.2 + 0.25 + 0.15	1A
$= 0.7$ $\neq P(G \mid F)$	

Hence, F and G are not independent.

(a) Excellent.

mutually exclusive events.

Satisfactory. Quite a number of candidates did not understand the concept of independence some calculated $P(F \cap G)$ using $P(F) \times P(G)$ and some mixed up independent events with

1 (6)

lom Variab
1A
1M
1A
1M
1A
1M
1A
1M .

1A (5)

=1.44