FORMULAS FOR REFERENCE

SPHERE	Surface area	=	$4\pi r^2$
	Volume	=	$\frac{4}{3}\pi r^3$
CYLINDER	Area of curved surface	=	$2\pi rh$
	Volume	=	$\pi r^2 h$
CONE	Area of curved surface	=	$\pi r l$
	Volume	=	$\frac{1}{3}\pi r^2 h$
PRISM	Volume	=	base area × height
PYRAMID	Volume	=	$\frac{1}{3}$ × base area × height

There are 36 questions in Section A and 18 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

$$1. \qquad (2x)^3 \cdot x^3 =$$

A.
$$6x^6$$

B.
$$8x^6$$
.

C.
$$6x^{9}$$

D.
$$8x^{9}$$

2. If
$$2x - 5y = 7$$
, then $y =$

A.
$$\frac{5}{2x-7}$$

$$B. \qquad \frac{5}{2x+7}$$

$$C. \qquad \frac{2x-7}{5}$$

$$D. \qquad \frac{2x+7}{5}$$

3.
$$\frac{1}{x+1} - \frac{1}{x-1} =$$

- $A. \qquad \frac{2}{1-x^2} \ .$
- $B. \qquad \frac{2}{x^2 1} \ .$
- $C. \qquad \frac{2x}{1-x^2} \ .$
- $D. \qquad \frac{2x}{x^2 1}$

4.
$$pr + qr - ps - qs =$$

- A. (p+q)(r-s).
- B. (p+q)(s-r).
- C. (p-q)(r-s).
- D. (p-q)(s-r).

5. If
$$f(x) = \frac{x}{1+x}$$
, then $f(3) f(\frac{1}{3}) =$

- A. $\frac{3}{16}$.
- B. $\frac{1}{2}$
- C. $\frac{3}{4}$
- D. 1.

- I. $x^2 4 = 0$
- II $x^2 4 = (x 2)^2$
- III. $x^2 4 = (x+2)(x-2)$
 - A. II only
 - B. III only
 - C. I and II only
 - D. I and III only

7. The figure shows the graph of
$$y = f(x)$$
. If $f(x)$ is a quadratic function, then $f(x) =$

- A. $\frac{1}{2}(x+1)(x-4)$.
- B. 2(x+1)(x-4).
- C. $\frac{1}{2}(x-1)(x+4)$.
- D. 2(x-1)(x+4).

8. Solve $3x^2 = 21x$.

- A. x = 3
- B. x = 7
- C. x = 0 or x = 3
- D. x = 0 or x = 7

- 9. Find the range of values of k such that the quadratic equation $x^2 + 2x k = 2$ has two distinct real roots.
 - A. k > -3
 - B. $k \ge -3$
 - C. k > -1
 - D. $k \ge -1$

- 10. The marked price of a car is 50% higher than the cost. If the car is sold at a 20% discount on the marked price, then the percentage profit is
 - A. 10%.
 - B. 20%.
 - C. 30%.
 - D. 40%.

- 11. A sum of \$ 14 000 is deposited at 4% per annum for 5 years, compounded yearly. Find the interest correct to the nearest dollar.
 - A. \$ 2378
 - B. \$2800
 - C. \$ 3 033
 - D. \$3034

12. In the figure, the 1st pattern consists of 3 dots. For any positive integer n, the (n+1) th pattern is formed by adding (2n+3) dots to the nth pattern. Find the number of dots in the 6th pattern.

- A. 35
- B. 37
- C. 48
- D. 50
- 13. Let x, y and z be non-zero numbers. If x: y = 1:2 and y: z = 3:1, then (x + y): (y + z) =
 - A. 3:4.
 - B. 4:3.
 - C. 8:9.
 - D. 9:8.
- 14. It is given that x varies directly as y and inversely as z^2 . If y is decreased by 10% and z is increased by 20%, then x is decreased by
 - A. 10%.
 - B. 23.6%.
 - C. 25%.
 - D. 37.5%.

- 15. The scale of a map is $1:8\,000$. If the area of a park on the map is $2\,\text{cm}^2$, then the actual area of the park is
 - A. $4\,000\,\mathrm{m}^2$.
 - B. 6 400 m².
 - C. $12 800 \text{ m}^2$.
 - D. $16\,000\,\mathrm{m}^2$.
- 16. In the figure, PA = QA. If the bearings of P and Q from A are N42°E and S28°E respectively, then the bearing of P from Q is
 - A. N7°E .
 - B. N27°E.
 - C. N35°E.
 - D. N55°E .

- 17. In the figure, the area of the trapezium ABCD is
 - A. 345 cm^2 .
 - B. 349 cm^2 .
 - C. 690 cm^2 .
 - D 698 cm^2 .

- 18. In the figure, the solid consists of a hemisphere of radius 3 cm joined to the bottom of a right circular cylinder of height 8 cm and base radius 3 cm. Find the volume of the solid.
 - A. $75\pi \text{ cm}^3$
 - B. $90\pi \text{ cm}^3$
 - C. $93\pi \text{ cm}^3$
 - D. $108\pi \text{ cm}^3$

- 9. In the figure, O is the centre of the circle. B and C are points lying on the circle. If OC = 2 cm and OA = 1 cm, then the area of the shaded region OABC is
 - $A. \qquad \frac{\pi}{2} \, cm^2 \ .$
 - $B. \qquad \frac{2\pi}{3} \, cm^2 \ .$
 - C. $\left(\frac{\sqrt{3}}{2} + \frac{\pi}{3}\right) \text{cm}^2$
 - D. $\left(\sqrt{3} + \frac{2\pi}{3}\right) \text{cm}^2$.

20. In the figure, sector *OXY* is a thin metal sheet. By joining *OX* and *OY* together, which of the following right circular cones can be folded?

A.

В.

C.

D.

- 21. $2\sin(90^{\circ} \theta)\sin 60^{\circ} \cos 0^{\circ}\cos \theta =$
 - A. $\sin \theta$.
 - B. $\sqrt{3} \sin \theta$.
 - C. $\sqrt{3}\cos\theta$.
 - D. $(\sqrt{3}-1)\cos\theta$.

- 22. If $0^{\circ} < \theta < 45^{\circ}$, which of the following must be true?
 - I. $\tan \theta < \cos \theta$
 - II. $\sin \theta < \tan \theta$
 - III. $\sin \theta < \cos \theta$
 - A. I only
 - B. III only
 - C. I and II only
 - D. II and III only
- 23. In the figure, $\sin x =$
 - A. $\frac{3}{7}$.
 - B. $\frac{3}{5}$.
 - C. $\frac{4}{5}$.
 - D. $\frac{4}{3}$

- 24. The figure shows a right prism *ABCDEF* with a right-angled triangle as the cross-section. The angle between *BD* and the plane *CDEF* is
 - A. $\angle BDE$.
 - B. $\angle BDF$.
 - C. $\angle DBE$.
 - D. $\angle DBF$.

25.

If the plane figure above is rotated anticlockwise about the point O through 90°, which of the following is its image?

Α.

В.

C.

D.

26. In the figure, ABC and AED are straight lines. If AB = 8 cm, BC = 4 cm and CD = 9 cm, then BE =

12

- C. 5 cm.
- D. 6 cm.

- 27. If the polar coordinates of the points A and B are $(5, 45^{\circ})$ and $(12, 135^{\circ})$ respectively, then the distance between A and B is
 - A. 3.
 - B. 7.
 - C. 13.
 - D. 17.

28. If k < 0, which of the following may represent the graph of the straight line x - y = k?

A.

B.

C.

D.

- 29. The straight line 4x + y 2 = 0 is perpendicular to the straight line
 - A. 4x + y 9 = 0.
 - B. 4x y + 9 = 0.
 - C. x + 4y 9 = 0.
 - D. x 4y + 9 = 0.

- 30. If the straight line 5x 3y = 30 cuts the x-axis and the y-axis at A and B respectively, then the coordinates of the mid-point of AB are
 - A. (3, -5).
 - B. (-3,5).
 - C. (5, -3).
 - D. (-5,3).

- 31. If the points (0,0), (2,0) and (1,b) are the vertices of an equilateral triangle, then b=
 - A. 1.
 - B. $\sqrt{3}$.
 - C. 1 or -1.
 - D. $\sqrt{3}$ or $-\sqrt{3}$.

- 32. Which of the following could be the probability of an event?
 - A. $\frac{\pi}{3}$
 - B. $\frac{2005}{2006}$
 - C. -0.2006
 - D. 1.2006
- Two fair dice are thrown. Find the probability that the sum of the two numbers thrown is a prime number.
 - A. $\frac{1}{2}$
 - B. $\frac{5}{11}$
 - C. $\frac{5}{12}$
 - D. $\frac{7}{18}$
- 34. $\{x-6, x-3, x+4, x+5\}$ and $\{x-8, x-1, x+2, x+9\}$ are two groups of numbers. Which of the following is/are true?
 - I. The two groups of numbers have the same mean.
 - II. The two groups of numbers have the same median.
 - III. The two groups of numbers have the same range.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

35. The box-and-whisker diagram below shows the distribution of the weights (in kg) of some students. Find the inter-quartile range of their weights.

- A. 5 kg
- B. 10 kg
- C. 15 kg
- D. 30 kg
- 36. The scatter diagram below shows the relation between x and y. Which of the following may represent the relation between x and y?

- A. y varies directly as x^2 .
- B. y decreases when x increases.
- C. x increases when y increases.
- D. x remains unchanged when y increases.

16

Section B

- 37. The figure shows the graph of $y = 4^x$. The coordinates of P are
 - A. (1, 0).
 - B. (0, 1).
 - C. (4,0).
 - D. (0, 4).

- 38. Let a and b be positive numbers. If $\log \frac{a}{10} = 2 \log b$, then a =
 - A. $10b^2$.
 - B. 20b.
 - C. $b^2 + 10$.
 - D. 2b+10.
- 39. Convert the decimal number $2^{13} + 2^4 + 3$ to a binary number.
 - A. 1000000000111₂
 - B. 1000000001011₂
 - C. 1000000010011₂
 - D. 1000000100011₂

- 40. Let k be a non-zero constant. When $x^3 + kx^2 + 2kx + 3k$ is divided by x + k, the remainder is k. Find k.
 - A. -1
 - B. 1
 - C. -2
 - D. 2
- 41. In the figure, O is the origin. The equation of AB is 2x + y 8 = 0 and the equation of BC is 2x + 3y 12 = 0. If (x, y) is a point lying in the shaded region OABC (including the boundary), then the greatest value of x + 3y + 4 is

- 42. The first negative term in the arithmetic sequence 2006, 1998, 1990, ... is
 - A. -8.
 - B. -6.
 - C. -4.
 - D. -2.

- 43. Let a, b and c be positive integers. If $b = \sqrt{ac}$, which of the following must be true?
 - I. $\log a^2$, $\log b^2$, $\log c^2$ is an arithmetic sequence.
 - II. a^3 , b^3 , c^3 is a geometric sequence.
 - III. 4^a , 4^b , 4^c is a geometric sequence.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 44. For $0^{\circ} < x < 360^{\circ}$, how many roots does the equation $3\cos^2 x 4\cos x + 1 = 0$ have?
 - A. 2
 - B. 3
 - C. 4
 - D. 5
- If the length of a side of a regular tetrahedron is 3 cm, then the height of the tetrahedron is
 - A. 3 cm.
 - B. $\sqrt{3}$ cm.
 - C. $\sqrt{6}$ cm
 - D. $\frac{3\sqrt{3}}{2}$ cm

- 46. In the figure, O is the centre of the circle ABC. If $\angle OBC = 50^{\circ}$ and $\angle ACO = 20^{\circ}$, then $\angle BOA =$
 - A. 50°.
 - B. 60°.
 - C. 70°.
 - D. 80°.

- 47. In the figure, O is the centre of the circle. A and B are points lying on the circle. If AOC is a straight line and BC is a tangent to the circle, then the radius of the circle is
 - A. $\frac{3}{2}$
 - B. $\sqrt{3}$
 - C. $2\sqrt{3}$
 - D. $3\sqrt{3}$.

- 48. Let O be the origin. If the coordinates of the points A and B are (6,0) and (0,6) respectively, then the coordinates of the in-centre of $\triangle ABO$ are
 - A. (0,0).
 - B. (2,2).
 - C. (3,3).
 - D. $(6-3\sqrt{2},6-3\sqrt{2})$.

- 49. In the figure, ABC is an acute-angled triangle, AB = AC and D is a point lying on BC such that AD is perpendicular to BC. Which of the following must be true?
 - I. The circumcentre of $\triangle ABC$ lies on AD.
 - II. The orthocentre of $\triangle ABC$ lies on AD.
 - III. The centroid of $\triangle ABC$ lies on AD.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

20

- 50. Consider the circle $x^2 + y^2 4x + 6y 40 = 0$. Find the slope of the diameter passing through the point (1, 2).
 - A. -5
 - B. -3
 - C. $\frac{-1}{3}$
 - D. $\frac{-1}{5}$
- 51. A circle C cuts the y-axis at A and B. If AB = 8 and the coordinates of the centre of C are (-3,5), then the equation of C is
 - A. $x^2 + y^2 + 6x 10y = 0$.
 - B. $x^2 + y^2 6x + 10y = 0$.
 - C. $x^2 + y^2 + 6x 10y + 9 = 0$.
 - D. $x^2 + y^2 6x + 10y + 9 = 0$.
- 52. One letter is chosen randomly from each of the two words 'FORTY' and 'FIFTY'. Find the probability that the two letters chosen are the same.
 - A. 0.08
 - B. 0.16
 - C. 0.32
 - D. 0.48

- There are two questions in a test. The probability that David answers the first question correctly is $\frac{1}{4}$ and the probability that David answers the second question correctly is $\frac{1}{3}$. Given that David answers at least one question correctly in the test, find the probability that he answers the second question correctly.
 - A. $\frac{1}{2}$
 - B. $\frac{2}{3}$
 - C. $\frac{3}{5}$
 - D. $\frac{4}{5}$
- 54. The standard deviation of the five numbers 10a+1, 10a+3, 10a+5, 10a+7 and 10a+9 is
 - A. 8.
 - B. $\frac{12}{5}$.
 - C. $\sqrt{10}$.
 - D. $2\sqrt{2}$.