評卷參考 * Marking Scheme

香港考試及評核局

Hong Kong Examinations and Assessment Authority

2006年香港中學會考

Hong Kong Certificate of Education Examination 2006

數學 試卷一

Mathematics Paper 1

本文件專爲閱卷員而設,其內容不應視爲標準答案。考生以 及沒有參與評卷工作的教師在詮釋本文件時應小心**謹慎。**

This document was prepared for markers' reference. It should not be regarded as a set of model answers. Candidates and teachers who were not involved in the marking process are advised to interpret its contents with care.

Hong Kong Certificate of Education Examination Mathematics Paper 1

General Marking Instructions

- It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits all the marks allocated to that part, unless a particular method has been specified in the question. Markers should be patient in marking alternative solutions not specified in the marking scheme.
- In the marking scheme, marks are classified into the following three categories:

'M' marks awarded for correct methods being used;
'A' marks awarded for the accuracy of the answers;

Marks without 'M' or 'A' awarded for correctly completing a proof or arriving

at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 4. Use of notation different from those in the marking scheme should not be penalized.
- 5. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 6. Marks may be deducted for wrong units (u) or poor presentation (pp).
 - a. The symbol <u>u-1</u> should be used to denote 1 mark deducted for u. At most deduct 1 mark for u in Section A. Do not deduct any marks for u in Section B.
 - b. The symbol (pp-1) should be used to denote 1 mark deducted for pp. At most deduct 1 mark for pp in each of Section A and Section B. For similar pp, deduct 1 mark for the first time that it occurs. Do not penalize candidates twice in the paper for the same pp.
 - c. At most deduct 1 mark in each question. Deduct the mark for u first if both marks for u and pp may be deducted in the same question.
 - d. In any case, do not deduct any marks for pp or u in those steps where candidates could not score any marks.
- 7. In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to' and 'f.t.' stands for 'follow through'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles. All fractional answers must be simplified.

	Solution	Marks	Remarks
1.	$\frac{(a^3)^5}{a^{-6}}$		
		1M	for $(x^m)^n = x^{mn}$
			for $(x^m)^n = x^{mn}$ for $\frac{x^m}{x^n} = x^{m-n}$ or $x^{-n} = \frac{1}{x^n}$
	$\approx a^{21}$	(3)	
2	$(a) x+1 < \frac{x+25}{6}$		i
	6x + 6 < x + 25 6x - x < 25 - 6 5x < 19	1 M	for putting x on one side
	$x < \frac{19}{5}$	1A	x < 3.8
	(b) The required greatest integer is 3.	1A (3)	
3.	(a) $3b - ab$ $= b(3 - a)$	1A	
	(b) $9-a^2$ = $(3+a)(3-a)$	1A	
	(c) $9-a^2+3b-ab$:	
	= (3+a)(3-a) + b(3-a) = (3-a)(3+a+b)	1A	
		(3)	
4.	The length of \widehat{AB}		150
	$=2\pi (12) \left(\frac{150}{360}\right)$	1M + 1A	1M for $\frac{150}{360}$ + 1A for 2π (12) u-1 for missing unit
	$=10\pi$ cm	1A (3)	

	Solution	Marks	Remarks
5.	$\angle AEB$ = $\angle CBE$ = 70° $\angle ABE$		
	= ∠AEB = 70°	1A	u-1 for missing unit
	$\angle BCD$ = $180^{\circ} - 70^{\circ} - 70^{\circ}$ = 40°	1M 1A	can be absorbed u-1 for missing unit
	∠BAE = 180° - 70° - 70° = 40°	1M	can be absorbed
	∠BCD = ∠BAE = 40°	1A (3)	u~1 for missing unit
6.	(a) Let $x \log x$ be the weight of John. Then, we have $x(1+20\%) = 60$	ım	
	$\frac{6x}{5} = 60$ $x = 50$ Thus, the weight of John is 50 kg.	1A	u-1 for missing unit
	(b) The weight of Susan = $60(1-20\%)$ = $60(0.8)$ = 48 kg	1M	
	≠ 50 kg Thus, Susan and John are not of the same weight.	1A (4)	f.t.
7.	(a) $A' = (7, 2)$	1A	pp-1 for missing '(' or ')'
	B' = (5,5)	1A	pp-1 for missing '(' or ')'
	(b) $A'B'$ = $\sqrt{(7-5)^{5} + (2k-5)^{5}}$ = $\sqrt{13}$	1M	for using distance formula
	$AB = \sqrt{(-5 - (-2))^2 + (5 - 7)^2}.$		
	= $\sqrt{13}$ Thus, the lengths of AB and $A'B'$ are equal.	1A	f.t.
	To obtain B' is the same as rotating B clockwise through 90' So, $A'B'$ can be obtained by rotating AB clockwise through		for reflection the same as rotation
	Thus, the lengths of AB and A'B' are equal.	1A	f.t.

	Solution	Marks	Remarks
. (a)	$\frac{2+3+5+8+11+11+12+15+19+k}{10} = 11$ Thus, we have $k = 24$.	1M	
(b)	The required probability	1M + 1A 1A (5)	1M for numerator + 1A for denominator 0.4
(a)	X	1M	for 360°−90°− <i>θ</i>
	= 360°- 90°- 130° - 35°- 40°- 30° = 35°	1A	u-1 for missing unit
(b)	$=1750\left(\frac{360}{35}\right)$	1M	u–1 for missing unit
(c)	= \$ 18 000 Her expenditure on travelling = $1750\left(\frac{35}{35}\right)$ = \$ 1 750	IA	u-1 for missing unit
٠	Her expenditure on travelling $= 18000 \left(\frac{35}{360} \right)$ $= 1750	1A (5)	u-1 for missing unit

	Solution	Marks	Remarks
10 (a)	(i) Note that $f(1) = (1-a)(1-b)(1+1)-3$. f(1) = 1 2(1-a)(1-b)-3=1 (1-a)(1-b)=2 Thus, we have $(a-1)(b-1)=2$. (ii) Since a and b are positive integers and $a < b$, we have	1	
	a-1=1 and $b-1=2$. Thus, we have $a=2$ and $b=3$.	1A + 1A (3)	
(b)	$f(x) - g(x)$ = $(x-2)(x-3)(x+1) - 3 - (x^3 - 6x^2 - 2x + 7)$ = $x^3 - 4x^2 + x + 3 - x^3 + 6x^2 + 2x - 7$	IM	for expanding $f(x)$
	$=2x^2+3x-4$	1M	
	For $f(x) = g(x)$, we have $f(x) - g(x) = 0$. So, we have $2x^2 + 3x - 4 = 0$. Therefore, we have $x = \frac{-3 \pm \sqrt{(3)^2 - 4(2)(-4)}}{2(2)}$. Thus, the exact values of all the roots are $\frac{-3 + \sqrt{41}}{4}$ and $\frac{-3 - \sqrt{41}}{4}$.	IM IA	can be absorbed
	Thus, the exact values of all the roots are $\frac{1}{4}$ and $\frac{1}{4}$.	(4)	Tor Boar correct
		:	

	Solution	Marks	Remarks	
11. (a)	The maximum absolute error is 0.5 cm.	1A (1)	u-1 for missing unit	
(p)	The least possible area of the metal sheet = $(17.5)(11.5) + (14.5)(1.5)$ = 223 cm^2	1M + 1A 1A	1M for sum of several areas + 1A for one of the areas correct u-1 for missing unit	
	The least possible area of the metal sheet = $(14.5)(11.5+1.5) + (11.5)(17.5-14.5)$ = 223 cm^2	1M + 1A 1A	IM for sum of several areas + 1A for one of the areas correct u-1 for missing unit	
	The least possible area of the metal sheet = $(14.5)(11.5) + (14.5)(1.5) + (11.5)(17.5 - 14.5)$ = 223 cm ²	IM + 1A 1A	1M for sum of several areas + 1A for one of the areas correct u-1 for missing unit	
	The least possible area of the metal sheet = $(17.5)(11.5 + 1.5) \sim (1.5)(17.5 - 14.5)$ = 223 cm^2	1M+1A	u-1 for missing unit	
(c	The actual area of the metal sheet <(18.5)(12.5) + (15.5)(2.5) $= 270 \text{ cm}^2$	1A	for either area correct	
	The actual area of the metal sheet $< (15.5)(12.5 + 2.5) + (12.5)(18.5 - 15.5)$ = 270 cm ²	IA 1A	for either area correct	
-	The actual area of the metal sheet < (15.5)(12.5) + (15.5)(2.5) + (12.5)(18.5 - 15.5) $= 270 \text{ cm}^2$	1A 1A	for either area correct	
	The actual area of the metal sheet < (18.5)(12.5 + 2.5) - (2.5)(18.5 - 15.5) $= 270 \text{ cm}^2$	1A 1A	for either area correct	
	Thus, by (b), we have $223 \le x < 270$.	1M + IA	u−1 for having unit	

	Solution	Marks	Remarks
(a)	The coordinates of M are $(4,4)$.	1A (1)	pp-1 for missing '(' or ')'
(b)	The slope of $AB = \frac{8-0}{12-(-4)} = \frac{1}{2}$ The slope of $CM = \frac{-1}{\frac{1}{2}} = -2$ The equation of CM is	I M	сап be absorbed
	y-4 = -2(x-4) 2x + y - 12 = 0 Putting $y = 0$ in $2x + y - 12 = 0$, we have $x = 6$.	1A	or equivalent
	Thus, the coordinates of C are $(6,0)$.	1A (3)	pp-1 for missing '(' or ')'
(c)	(i) The slope of $BD = \frac{8-0}{12-2} = \frac{4}{5}$ The equation of BD is $y-0 = \frac{4}{5}(x-2)$ $4x-5y-8=0$	iМ	for point-slope form
	(ii) Solving $\begin{cases} 2x + y - 12 = 0 \\ 4x - 5y - 8 = 0 \end{cases}$,	ìМ	
	we have $x = \frac{34}{7}$ and $y = \frac{16}{7}$. So, the coordinates of K are $\left(\frac{34}{7}, \frac{16}{7}\right)$.	1A	pp-1 for missing '(' or ')'
	The required ratio $= \frac{(AC)(4)}{2} : \frac{(AC)\left(\frac{16}{7}\right)}{2}$ $= 4 : \frac{16}{7}$	1M	for y-coordinate of M: y-coordinate of K
	7 = 7:4	1A (5)	accept 1:s and t :1 with s r.t. 0.571 and t r.t. 1.75
	·		

	Solution	Marks	Remarks
a)	In Figure 7(a), let h cm be the height of the smaller cone. Then, we have $\frac{h}{h+8} = \frac{3}{6}$		
	h+8 6 $h=8$	1A	can be absorbed
	The volume of the frustum		
	$=\frac{1}{3}\pi(6^2)(16)-\frac{1}{3}\pi(3^2)(8)$	1M	
	$= 168\pi \text{ cm}^3$	1A	can be absorbed
	The volume of X $\frac{2}{3} = (6^3) + 1687$	1M	
	$= \frac{2}{3}\pi(6^3) + 168\pi$ $= 312\pi \text{ cm}^3$	1A	u-1 for missing unit
	$= 312\pi \text{ cm}$ The volume of Y	17	u-1 for missing diffe
	$=\left(\sqrt{\frac{9}{4}}\right)^3 (312\pi)$	1M	
	$=\left(\frac{27}{8}\right)(312\pi)$		
	$=1053\pi \text{ cm}^3$	1A	u-1 for missing unit
	In Figure 7(a), let h cm be the height of the smaller cone. Then, we have		
	$\frac{h}{h+8} = \frac{3}{6}$		
	h = 8	1A	can be absorbed
	The volume of the frustum The volume of smaller cope = $\frac{2^3 - 1^3}{1^3} = 7$		
	The volume of smaller cone The volume of the frustum The volume of the frustum		
	$=\frac{1}{3}\pi(3^2)(8)(7)$	1M	
	$= 168\pi \text{ cm}^3$ The volume of X	1A	can be absorbed
	$=\frac{2}{3}\pi(6^3)+168\pi$	1M	
	= 312π cm ³ The ratio of a linear measurement of X to the corresponding linear measurement of Y	1A	u-1 for missing unit
	$= \sqrt{4} : \sqrt{9}$ $= 2 : 3$		
	The radius of the top circular surface of $Y = 3(\frac{3}{2}) = 4.5$ cm		
	The radius of the hemisphere part of $Y = 6(\frac{3}{2}) = 9 \text{ cm}$		
	The height of the frustum part of $Y = 8(\frac{3}{2}) = 12$ cm		
	The volume of Y		
	$= \frac{1}{3}\pi(9^2)(24) - \frac{1}{3}\pi(4.5^2)(12) + \frac{2}{3}\pi(9^3)$	lM	
	$= 1053\pi \text{ cm}^3$	1A	u-I for missing unit

Solution	Marks	Remarks
The volume of X'		
$=312\pi + \frac{4}{3}\pi(1^3)$		
$=\frac{940\pi}{3} \text{ cm}^3$		
$\frac{1}{3}$ The volume of Y'	Î	
$= 1053\pi + \frac{4}{3}\pi(2^3)$		
$=\frac{3191\pi}{3}\mathrm{cm}^3$		
The volume of X'		
The volume of Y'		
$=\frac{940}{3191}$		
$\neq \frac{8}{27}$	1M	·
Thus, X' and Y' are not similar.	1 A	f.t.
The ratio of a linear measurement of X to the corresponding linear	1	
measurement of Y		
$=\sqrt{4}:\sqrt{9}$		
= 2:3 But the ratio of the radius of the sphere fixed onto X to the radius of		
the sphere fixed onto Y is $1:2$, which is not equal to $2:3$. Thus, X' and Y' are not similar.	1M 1A	f.t.
Thus, A and I are not similar.	771	
The volume of the sphere fixed on X		
The volume of the sphere fixed on Y		
$=\left(\frac{1}{2}\right)^3$		
1		
$=\frac{8}{8}$		
$\neq \frac{8}{27}$	1M	
Thus, X' and Y' are not similar.	1.A	f.t.
The surface area of the sphere fixed on X		
The surface area of the sphere fixed on Y		
$=\left(\frac{1}{2}\right)^2$		
$=\left(\frac{1}{2}\right)$		
$=\frac{\dot{-}}{4}$		
	1 M	
Thus, X' and Y' are not similar.	1 A	f.t
	(2)	

			Sc	lution		Marks	Remarks
14.	(a)	(i)	Some statistics are tabul	ated as follows:			
				Class A	Class B		
			The lower quartile	18 marks	11 marks	1A	for either row or either onlymn
			The upper quartile	39 marks	25 marks		for either row or either column
			of class A = 39-18 = 21 marks	ge of the score distribut		1M 1A	for either one for both correct
			== 14 marks				i
		(ii)	By (a)(i), the inter-quart students of class B is le Thus, the score distribut dispersed than class A .	ess than that of class A		} 1M	
	(b)	(i)	The required probabi	lity			$\begin{cases} 1M \text{ for } (\frac{p}{q})(\frac{p-1}{q-1})(\frac{50-p}{q-2}), \\ p < q + 1M \text{ for the 3 cases} \end{cases}$
			$=(\frac{28}{50})(\frac{27}{49})(\frac{22}{48})(3)$			1M + 1M	$\left \left\langle \left\langle \left\langle q \right\rangle q - 1 \right\rangle q - 2 \right\rangle \right $
			$=\frac{297}{700}$			1A	r.t. 0.424
		(ii)	The required probabi = $\left(\frac{18}{50}\right)\left(\frac{17}{49}\right)\left(\frac{22}{48}\right) + \left(\frac{10}{50}\right)$ = $\frac{1089}{4900}$			1M 1A	$\begin{cases} \text{for } (\frac{p}{q})(\frac{p-1}{q-1})(\frac{r}{q-2}), \\ p < q \text{ and } r < q - 2 \end{cases}$ r.t. 0.222
		(iii)	The required probabi	lity			
			$=\frac{\frac{1089}{4900}}{\frac{297}{700}}$			1M	for $\frac{(b)(ii)}{(b)(i)}$
			$=\frac{11}{21}$			1A	r.t. 0.524
·			The required probab $= \frac{(18)(17)(22) + (10)(9)}{(28)(27)(22)}$ 11			1M	for denominator = (28)(27)(22) or denominator = (28)(27) r.t. 0.524
			$={21}$				1.6. 0.067
						(7)	

Solution	Marks	Remarks
(a) Let $C = aA + \frac{bA^2}{n}$ where a and b are non-zero constants. When $A = 50$ and $n = 500$, $C = 350$, we have	1 A	pp-1 for writing $C \propto aA + \frac{bA^2}{n}$
when $A = 50$ and $n = 500$, $C = 530$, we have $50a + \frac{(50^2)b}{500} = 350$ $10a + b = 70$ When $A = 20$ and $n = 400$, $C = 100$, we have	1 M	for substitutions (either one)
$20a + \frac{(20^2)b}{400} = 100$ $20a + b = 100$ (2)		·
Solving (1) and (2), we have $a = 3$ and $b = 40$. Thus, we have $C = 3A + \frac{40A^2}{n}$.	1A	for both correct
n n	(3)	
(b) (i) Note that $P = 8A - \left(3A + \frac{40A^2}{n}\right)$.		
Thus, we have $P = 5A - \frac{40A^2}{n}$.	1M	for $P = 8A - (a)$ and simplified
(ii) When $P: n = 5:32$, $\frac{5n}{32} = 5A - \frac{40A^2}{n}$		
$256A^2 - 32An + n^2 = 0$	1 M	for $\alpha A^2 + \beta A n + \gamma n^2 = 0$ or equivalent
$(16A - n)^2 = 0$ Thus, we have $A: n = 1:16$.	1A	accept 0.0625
(iii) When $n = 500$ and $P = 100$, we have $5A - \frac{40A^2}{500} = 100$.		
So, we have $2A^2 - 125A + 2500 = 0$. $\Delta = (-125)^2 - 4(2)(2500)$ $= -4375$	1M	accept attempting to solve the quadratic equation or find the greatest value of P
<0 Thus, it is impossible to make a profit of \$ 100.	1 A	f.t.
(iv) When $n = 400$, $P = 5A - \frac{40A^2}{400}$		
$= 5A - \frac{A^2}{10}$ $= \frac{-1}{10}(A^2 - 50A)$		
$= \frac{-1}{10}(A^2 - 50A + 25^2 - 25^2)$ $= \frac{-1}{10}(A - 25)^2 + \frac{125}{2}$	1M 1A	for completing the square
$= \frac{10}{10} (A - 25) + \frac{1}{2}$ Thus, the greatest profit is \$ 62.5.	1A (8)	

16. (a) (i) $\angle BAS = \angle BCS = 90^{\circ}$ (\angle in semi-circle) Produce CH to meet AB at K . $\angle BKC = \angle BOA = 90^{\circ}$ (orthocentre of Δ) Hence, $\angle BAS = 90^{\circ} = \angle BKC$ and $\angle BCS = 90^{\circ} = \angle BOA$. So, $AS // HC$ and $SC // AH$. (corr. \angle s equal) Thus, $AHCS$ is a parallelogram.		[半圓上的圓周角] [Δ垂心] [同位角等] [同側(旁)內角互補] (int. ∠s supp.) [(內)錯角等] (alt. ∠s equal) [半圓上的圓周角] [Δ垂心] [同位角等] [同側(旁)內角互補]
Produce CH to meet AB at K . $\angle BKC = \angle BOA = 90^{\circ}$ (orthocentre of Δ) Hence, $\angle BAS = 90^{\circ} = \angle BKC$ and $\angle BCS = 90^{\circ} = \angle BOA$. So, $AS / / HC$ and $SC / / AH$. (corr. $\angle s$ equal) Thus, $AHCS$ is a parallelogram. $\angle BAS = \angle BCS = 90^{\circ}$ (\angle in semi-circle) So, $SA \perp AB$ and $SC \perp BC$. $CH \perp AB$ and $AH \perp BC$ (orthocentre of Δ) So, $AS / / HC$ and $SC / / AH$. (corr. $\angle s$ equal) Thus, $AHCS$ is a parallelogram.		[同位角等] [同側(旁)內角互補] (int. ∠s supp.) [(內)錯角等] (alt. ∠s equal) [半圓上的圓周角] [△垂心] [同位角等] [同側(旁)內角互補]
Hence, $\angle BAS = 90^{\circ} = \angle BKC$ and $\angle BCS = 90^{\circ} = \angle BOA$. So, $AS \parallel HC$ and $SC \parallel AH$. (corr. \angle s equal) Thus, $AHCS$ is a parallelogram. $\angle BAS = \angle BCS = 90^{\circ} \qquad (\angle \text{ in semi-circle})$ So, $SA \perp AB$ and $SC \perp BC$. $CH \perp AB$ and $AH \perp BC$ (orthocentre of Δ) So, $AS \parallel HC$ and $SC \parallel AH$. (corr. \angle s equal) Thus, $AHCS$ is a parallelogram.		[同位角等] [同側(旁)內角互補] (int. ∠s supp.) [(內)錯角等] (alt. ∠s equal) [半圓上的圓周角] [△垂心] [同位角等] [同側(旁)內角互補]
and $\angle BCS = 90^\circ = \angle BOA$. So, $AS \parallel HC$ and $SC \parallel AH$. (corr. \angle s equal) Thus, $AHCS$ is a parallelogram. $\angle BAS = \angle BCS = 90^\circ \qquad (\angle \text{ in semi-circle})$ So, $SA \perp AB$ and $SC \perp BC$. $CH \perp AB \text{ and } AH \perp BC \qquad (\text{orthocentre of } \Delta)$ So, $AS \parallel HC$ and $SC \parallel AH$. (corr. \angle s equal) Thus, $AHCS$ is a parallelogram.		(int. ∠s supp.) [(內)錯角等] (alt. ∠s equal) [半圓上的圓周角] [△垂心] [同位角等] [同側(旁)內角互補]
So, $AS // HC$ and $SC // AH$. (corr. \angle s equal) Thus, $AHCS$ is a parallelogram. $ \angle BAS = \angle BCS = 90^{\circ} \qquad (\angle \text{ in semi-circle}) $ So, $SA \perp AB$ and $SC \perp BC$. $CH \perp AB \text{ and } AH \perp BC \qquad (\text{ orthocentre of } \Delta) $ So, $AS // HC$ and $SC // AH$. (corr. \angle s equal) Thus, $AHCS$ is a parallelogram.		(int. ∠s supp.) [(內)錯角等] (alt. ∠s equal) [半圓上的圓周角] [△垂心] [同位角等] [同側(旁)內角互補]
Thus, $AHCS$ is a parallelogram. $ \angle BAS = \angle BCS = 90^{\circ} \qquad (\angle \text{ in semi-circle}) $ So, $SA \perp AB$ and $SC \perp BC$. $ CH \perp AB \text{ and } AH \perp BC \qquad (\text{ orthocentre of } \Delta) $ So, $AS \parallel HC$ and $SC \parallel AH$. $(\text{corr. } \angle \text{s equal })$ Thus, $AHCS$ is a parallelogram.		(int. ∠s supp.) [(內)錯角等] (alt. ∠s equal) [半圓上的圓周角] [△垂心] [同位角等] [同側(旁)內角互補]
$\angle BAS = \angle BCS = 90^{\circ}$ (\angle in semi-circle) So, $SA \perp AB$ and $SC \perp BC$. $CH \perp AB$ and $AH \perp BC$ (orthocentre of Δ) So, $AS \parallel HC$ and $SC \parallel AH$. (corr. \angle s equal) Thus, $AHCS$ is a parallelogram.		[半圓上的圓周角] [Δ垂心] [同位角等][同側(旁)內角互補]
So, $SA \perp AB$ and $SC \perp BC$. $CH \perp AB$ and $AH \perp BC$ (orthocentre of Δ) So, $AS \parallel HC$ and $SC \parallel AH$. (corr. \angle s equal) Thus, $AHCS$ is a parallelogram.		[Δ垂心] [同位角等] [同側(旁)內角互補]
So, $SA \perp AB$ and $SC \perp BC$. $CH \perp AB$ and $AH \perp BC$ (orthocentre of Δ) So, $AS \parallel HC$ and $SC \parallel AH$. (corr. \angle s equal) Thus, $AHCS$ is a parallelogram.		[同位角等] [同側(旁)內角互補]
So, AS // HC and SC // AH. (corr. ∠s equal) Thus, AHCS is a parallelogram.		[同位角等] [同側(旁)內角互補]
Thus, AHCS is a parallelogram.		
		The second secon
		(int. ∠s supp.) [(內)錯角等] (alt. ∠s equal)
Marking Scheme:		
Case 1 Any correct proof with correct reasons.	3	
Case 2 Any correct proof without reasons. Case 3 Incomplete proof with any one correct step and one correct reason.	2	
Case 3 Incomplete proof with any one correct step and one correct reason.	1	
(ii) : AHCS is a parallelogram. (by(a)(i)		
$\therefore AH = SC \qquad (opp. sides, // gram)$		[//四邊形對邊]
$GR \perp BC$		
$\therefore BR = RC \qquad \text{(line from centre } \bot \text{ chord bisects chord)}$		[圓心至弦的垂線平分弦] [通過圓心垂直於弦的線平分弦]
Note that $BG = GS$.		
Hence, we have $SC = 2GR$. (mid-point thm.)		[中點定理]
Thus, we have $AH = 2GR$.		
: AHCS is a parallelogram. (by(a)(i)		
$\therefore AH = SC \qquad (opp. sides, // gram)$		[//四邊形對邊]
$\angle BRG = 90^{\circ} = \angle BCS$		
$\angle GBR = \angle SBC$ (common \angle)		[公共角]
$\angle BGR = 180^{\circ} - \angle BRG - \angle GBR \qquad (\angle sum \text{ of } \Delta)$		[Δ内角和]
$=180^{\circ} - \angle BCS - \angle SBC$		
$= \angle BSC \qquad (\angle sum of \Delta)$		[Δ内角和]
Hence, $\triangle BGR \sim \triangle BSC$. (AAA)		[等角] (AA) (equiangular)
So, we have $\frac{BG}{GR} = \frac{BS}{SC}$.		
So, we have $\frac{1}{GR} = \frac{1}{SC}$.		
Note that $BG = GS$.		
Therefore, we have $BS = 2BG$.		
Hence, we have $SC = 2GR$.		
Thus, we have $AH = 2GR$.		
Marking Scheme:		
Case 1 Any correct proof with correct reasons.	2	
Case 2 Any correct proof without reasons.	1	
	(5)	

	0.1.4	T	
	Solution	Marks	Remarks
(b)	: the coordinates of B and C are $(-6,0)$ and $(4,0)$ respectively.		
	$ \vdots \begin{cases} (-6)^2 + (0)^2 + D(-6) + E(0) + F = 0 \\ (4)^2 + (0)^2 + D(4) + E(0) + F = 0 \end{cases} $. IM	
	So, we have $D=2$ and $F=-24$. \therefore the coordinates of A are $(0,12)$.	1A	for both correct for either one
	$\therefore (0)^2 + (12)^2 + D(0) + E(12) + F = 0$ So, we have $E = -10$. Thus, the equation of the circle is $x^2 + y^2 + 2x - 10y - 24 = 0$.	1 A	$(x+1)^2 + (y-5)^2 = 50$
	So, the coordinates of G are $(-1,5)$. So, the coordinates of R are $(-1,0)$. Then, we have $GR = 5$. By (a)(ii), we have $AH = 10$. Thus, the coordinates of the H are $(0,2)$.	1 A	
(ii) The slope of $GH = \frac{5-2}{-1-0} = -3$ The slope of $BG = \frac{5-0}{-1-(-6)} = 1$		
	∴ (the slope of GH) (the slope of BG) = $-3 \neq -1$ ∴ $\angle BGH \neq 90^{\circ}$	iΜ	for testing whether $GH \perp BG$
	Note that $\angle BOH = 90^{\circ}$. So, we have $\angle BGH + \angle BOH \neq 180^{\circ}$. Thus, B , O , H and G are not concyclic.	1.A	f.t.
	For the equation of the circle which passes through B , H and O , $\therefore \angle BOH = 90^{\circ}$. The centre of the circle is the mid-point of BH . So, the coordinates of the centre are $(-3,1)$.		
	The radius = $\sqrt{(-3-0)^2 + (1-2)^2} = \sqrt{10}$ So, the equation of the circle which passes through B, H and O is $(x+3)^2 + (y-1)^2 = 10$.		
	Note that $(-1+3)^2 + (5-1)^2 = 20 \neq 10$. G does not lie on the circle which passes through B, H and O.	1M	for testing whether the fourth point lies on the circle
	Thus, B, O, H and G are not concyclic.	1A	f.t.
	Let the equation of the circle which passes through B, H and O be $x^2 + y^2 + Dx + Ey + F = 0$.		
	Since the coordinates of O are $(0,0)$, we have $F=0$.		
	: the coordinates of B and H are $(-6, 0)$ and $(0, 2)$ respectively.		
	$\therefore (-6)^2 + (0)^2 + D(-6) + E(0) = 0 , (0)^2 + (2)^2 + D(0) + E(2) = 0 .$ Hence, we have $D = 6$ and $E = -2$.		
	So, the equation of the circle which passes through B, H and O is $x^2 + y^2 + 6x - 2y = 0$.		
	Note that $(-1)^2 + 5^2 + 6(-1) - 2(5) = 10 \neq 0$. G does not lie on the circle which passes through B, H and O.	íМ	for testing whether the fourth point lies on the circle
	Thus, B , O , H and G are not concyclic.	1A	f.t.
		(6)	

	Solution	Marks	Remarks
cos	cosine formula, we have $8 \angle BAD = \frac{AC^2 + AB^2 - BC^2}{2(AC)(AB)}$ $90^2 + 40^2 - 60^2$	1 M	accept using Pythagoras' theorem tw
COS	$s \angle BAD = \frac{90^2 + 40^2 - 60^2}{2(90)(40)}$ $s \angle BAD = \frac{61}{72}$ $BAD \approx 32.08918386^{\circ}$ AD $40 \cos \angle BAD$ $40(\frac{61}{72})$ $\frac{305}{9} \text{ cm}$ $(1) \qquad CD$ $= CA - AD$ $= 90 - \frac{305}{9}$	1A (2)	r.t. 33.9 cm, AD ≈ 33.88888889 cm
	$= \frac{505}{9} \text{ cm}$ $= \frac{505}{9} \text{ cm}$ By sine formula, we have $\frac{CD}{\sin \angle DAC} = \frac{AD}{\sin \angle DCA}$ $\frac{505}{9\sin 62^{\circ}} = \frac{305}{9\sin \angle DCA}$ $\angle DCA \approx 32.22634992^{\circ}$ $\angle ADC$ $\approx 180^{\circ} - 32.22634992^{\circ} - 62^{\circ}$ $\approx 85.77365008^{\circ}$	1M	for either one
	By sine formula, we have $ \frac{AC}{\sin \angle ADC} = \frac{CD}{\sin \angle DAC} $ $ \frac{AC}{\sin 85.77365008^{\circ}} \approx \frac{56.11111111}{\sin 62^{\circ}} $ $ AC \approx 63.37695244 \text{ cm} $ Thus, the required distance is 63.4 cm.	1A	r.t. 63.4 cm
	By cosine formula, we have $CD^{2} = AD^{2} + AC^{2} - 2(AD)(AC)\cos \angle DAC$ $(\frac{505}{9})^{2} = (\frac{305}{9})^{2} + AC^{2} - 2(\frac{305}{9})(AC)\cos 62^{\circ}$ $AC^{2} - 2(15.90986963)(AC) - 2000 \approx 0$ $AC \approx 63.37695244 \text{ cm}$ Thus, the required distance is 63.4 cm.	1M	r.t. 63,4 cm

Solution	Moul	D
	Marks	Remarks
(2) s		
$=\frac{1}{2}(AB+BC+AC)$		
$\approx \frac{1}{2}(40 + 60 + 63.37695244)$		
≈ 81.6884762 cm	ļ.	
TI		
The area of $\triangle ABC$		1
$= \sqrt{s(s-AB)(s-BC)(s-AC)}$	IM	with s defined
$\approx \sqrt{s(s-40)(s-60)(s-63.376952)}$		
≈ 1162.961055 cm ²		1
$\approx 1160 \mathrm{cm}^2$	1A	r.t. 1160 cm ²
	I A	1.t. 1100 cm
(3) The area of $\triangle ADC$		
$=\frac{1}{2}(AD)(AC)\sin \angle DAC$	1M	
1	ŀ	
$\approx \frac{1}{2}(33.8888888889)(63.37695244)\sin 62^{\circ}$		
$\approx 948.1861616 \text{cm}^2$		
BD		
$= AB \sin \angle BAD$		
≈ 40 sin 32.08918386°		
≈ 21.24954611 cm		
Let H be the projection of D on the horizontal plane.		
Then, the height of the tetrahedron $ABCD$ is DH .		
So, we have		
$\frac{DH}{3}$ (area of $\triangle ABC$) = $\frac{BD}{3}$ (area of $\triangle ADC$)	1M	
$\frac{1}{3}DH(1162.961055) \approx \frac{1}{3}(21.24954611)(948.1861616)$		
DH ≈ 17.32519373 cm		
Thus, the required height is 17.3 cm.	1A	r.t. 17.3 cm
(ii) The volume of the tetrahedron ABCD		
$(AD)(CD)(BD)\sin \angle ADC$		
6	1M	for either one
So, the volume of the tetrahedron varies directly as $\sin \angle ADC$.		
When $\angle ADC$ increases from 30° to 90°, the volume of the tetrahedron $ABCD$ increases.		
When ∠ADC increases from 90° to 150°, the volume of the	1A	
tetrahedron ABCD decreases.		
·	(9)	