

MATHEMATICS PAPER 2

11.15 am – 12.45 pm (1½ hours)

Subject Code 180

- Read carefully the instructions on the Answer Sheet and insert the information required (including the Subject Code) in the spaces provided.
- When told to open this book, check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- ANSWER ALL QUESTIONS. All the answers should be marked on the Answer Sheet.
- 4. Note that you may only mark **ONE** answer to each question. Two or more answers will score **NO MARKS**.
- 5. All questions carry equal marks. No marks will be deducted for wrong answers.

©香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 2000

2000-CE-MATH 2-1

FORMULAS FOR REFERENCE

SPHERE Surface area = $4\pi r^2$

Volume = $\frac{4}{3}\pi r^3$

CYLINDER Area of curved surface = $2\pi rh$

Volume = $\pi r^2 h$

CONE Area of curved surface = πrl

Volume = $\frac{1}{3}\pi r^2 h$

PRISM Volume = base area \times height

PYRAMID Volume = $\frac{1}{3} \times \text{base area} \times \text{height}$

There are 36 questions in Section A and 18 questions in Section B. The diagrams in this paper are not necessarily drawn to scale.

Section A

1. If
$$A = \frac{h}{2}(a+b)$$
, then $b =$

A.
$$2A-ah$$
.

B.
$$\frac{2}{h}(A-a)$$
.

C.
$$\frac{2A-a}{h}$$
.

D.
$$a - \frac{2A}{h}$$
.

E.
$$\frac{2A}{h} - a$$
.

2. Factorize
$$x^2 - x - xy + y$$
.

A.
$$(x-y)(x-1)$$

B.
$$(x-y)(x+1)$$

C.
$$(x+y)(x-1)$$

D.
$$(1-x)(x+y)$$

E.
$$(1+x)(y-x)$$

- 3. Simplify $\frac{(a^3b^{-1})^{-2}}{(a^{-1}b^2)^4}$.
 - A. $\frac{1}{ab^3}$
 - B. $\frac{1}{a^2b^3}$
 - C. $\frac{1}{a^2b^6}$
 - $D. \qquad \frac{1}{a^2b^9}$
 - E. $\frac{a^4}{b^6}$
- 4. Let $f(x) = 3x^2 + ax 7$. If f(-1) = 0, find f(-2).
 - A. –27
 - B. -11
 - C. –3
 - D. 1
 - E. 13

5. If
$$\begin{cases} y = x^2 - 1 \\ y = 2x - 2 \end{cases}$$
, then $y =$

- A. -4.
- B. 0.
- C. 1.
- D. 0 or 8.
- E. -4 or 4.
- 6. Find the values of x which satisfy both x+3>0 and -2x<1.
 - A. x > -3
 - B. $x > -\frac{1}{2}$
 - $C. x > \frac{1}{2}$
 - D. $-3 < x < -\frac{1}{2}$
 - E. $-3 < x < \frac{1}{2}$

7. In the figure, a square of side x cm is cut into 9 equal squares. If the total perimeter of the 9 small squares is 72 cm more than the perimeter of the original square, then x =

- A. 6.
- B. 8.
- C. 9.
- D. 12.
- E. 18.
- 8. The figure shows a trapezium of area 6 cm^2 . Find x.
 - A. 2
 - B. 3
 - C. 4
 - D. $\sqrt{6}$
 - E. $\sqrt{11}$

9. Let $f(x) = x^3 - 2x^2 - 5x + 6$. It is known that f(1) = 0. f(x) can be factorized as

A.
$$(x-1)^2(x+6)$$
.

B.
$$(x-1)(x+1)(x+6)$$
.

C.
$$(x-1)(x-2)(x+3)$$
.

D.
$$(x-1)(x+2)(x-3)$$
.

E.
$$(x+1)(x-2)(x-3)$$
.

10. If $3x^2 + ax + 7 \equiv 3(x-2)^2 + b$, then

A.
$$a = -12$$
, $b = -5$.

B.
$$a = -12$$
, $b = 7$.

C.
$$a = -4$$
, $b = 3$.

D.
$$a = 0$$
, $b = -5$.

E.
$$a = 0$$
, $b = 19$.

11. Which of the following may represent the graph of $y = \tan x^{\circ}$ for $0 \le x \le 90$?

A.

B.

C.

D.

E.

- 12. In the figure, ABCD is a rectangle formed by four squares each of area $1~{\rm cm}^2$. DB is a diagonal. Find the area of the shaded region.
 - A. $\frac{9}{10}$ cm²

- B. $\frac{7}{8}$ cm²
- C. $\frac{5}{6}$ cm²
- D. $\frac{4}{5}$ cm²
- E. $\frac{3}{4}$ cm²
- 13. In the figure, the areas of the two triangles are equal. Find θ .

- A. 7.2° (correct to the nearest 0.1°)
- B. 7.5° (correct to the nearest 0.1°)
- C. 14.5° (correct to the nearest 0.1°)
- D. 15°
- E. 30°

- 14. A man bought two books at \$30 and \$70 respectively. He sold the first one at a profit of 20% and the second one at a loss of 10%. On the whole, he
 - A. lost 1%.
 - B. lost 10%.
 - C. gained 1%.
 - D. gained 10%.
 - E. gained 13%.
- 15. The 1st and 10th terms of an arithmetic sequence are 2 and 29 respectively. The 20th term of the sequence is
 - A. 56.
 - B. 58.
 - C. 59.
 - D. 60.
 - E. 62.

16. Which of the following could be a geometric sequence/geometric sequences?

- I. $3, 3^3, 3^5, 3^7, \dots$
- II. 9, 99, 999, 9999, ...

III. 10, -100, 1000, -10000, ...

- A. III only
- B. I and II only
- C. I and III only
- D. II and III only
- E. I, II and III

17. In the figure, find the area of $\triangle ABC$.

- A. 12
- B. 15
- C. 16
- D. 20
- E. 25

C 保留版權 All Rights Reserved 2000

18. Consider the three straight lines

$$L_1: 6x+4y-3=0$$
,

$$L_2: y = -\frac{3}{2}x + 4$$
 and $L_3: 6x - 4y + 3 = 0$.

$$L_3: 6x-4y+3=0$$
.

Which of the following is/are true?

- I. $L_1 // L_2$ II. $L_2 // L_3$ III. $L_1 \perp L_3$
- - A. I only
 - B. II only
 - C. III only
 - I and III only D.
 - E. II and III only

19. In the figure, ABCD is a parallelogram. Find $\angle BDE$.

A. 30°

B. 35°

C. 40°

D. 50°

E. 55°

20. In the figure, O is the centre of the circle. EAOB and EDC are straight lines. Find x.

A. 40°

B. 46°

C. 57°

D. 66°

E. 68°

C 保留版權 All Rights Reserved 2000

- 21. Two fair dice are thrown. Find the probability that at least one "6" occurs.
 - A. $\frac{1}{3}$
 - B. $\frac{1}{6}$
 - C. $\frac{5}{18}$
 - D. $\frac{7}{36}$
 - E. $\frac{11}{36}$
- 22. A bag contains six balls which are marked with the numbers -3, -2, -1, 1, 2 and 3 respectively. Two balls are drawn randomly from the bag. Find the probability that the sum of the numbers drawn is zero.
 - A. $\frac{1}{30}$
 - B. $\frac{1}{10}$
 - C. $\frac{1}{5}$
 - D. $\frac{1}{3}$
 - E. $\frac{1}{2}$

- 23. $\{x, x+2, x+4, x+6, x+8\}$ and $\{x+1, x+3, x+5, x+7, x+9\}$ are two groups of numbers. Which of the following is/are true?
 - I. The two groups of numbers have the same range.
 - II. The two groups of numbers have the same standard deviation.
 - III. The two groups of numbers have the same mean.
 - A. I only
 - B. II only
 - C. III only
 - D. I and II only
 - E. I and III only
- 24. In the figure, AB = CD, $\angle CAB = \angle ECD$ and $\angle ABC = \angle CDE$. Which of the following must be true?
 - I. $\triangle ABC \cong \triangle CDE$
 - II. $\triangle ABC \sim \triangle EAC$
 - III. EAC is an isosceles triangle
 - A. I only
 - B. III only
 - C. I and II only
 - D. I and III only
 - E. I, II and III

- 25. In the figure, PXQ, QYR and RZP are semicircles with areas A_1 cm², A_2 cm² and A_3 cm² respectively. If $A_1 = 12$ and $A_2 = 5$, find A_3 .
 - A. 13
 - B. 17
 - C. 169
 - D. 13π
 - E. $\frac{169}{8}\pi$

- 26. In the figure, find the area of the triangle correct to the nearest $0.1~\text{cm}^2$.
 - A. 7.3 cm^2
 - B. 10.7 cm²
 - C. 12.7 cm^2
 - D. 15.0 cm^2
 - E. 19.1 cm^2

- 27. In the figure, find x correct to 3 significant figures.
 - A. 63.8
 - B. 78.5
 - C. 84.5
 - D. 87.3
 - E. 89.1

28. In the figure, ABCD is a rectangle. Find CF.

- A. $(a+b)\sin\theta$ cm
- B. $(a+b)\cos\theta$ cm
- C. $(a\sin\theta + b\cos\theta)$ cm
- D. $(a\cos\theta + b\sin\theta)$ cm
- E. $\sqrt{a^2+b^2} \sin 2\theta$ cm

– 16 –

29. In the figure, DAB is a straight line. $\tan \theta =$

- A. $2 \tan 20^{\circ}$.
- B. $\frac{1}{2} \tan 20^{\circ}$.
- $C. \qquad \frac{2}{\tan 20^{\circ}} \ .$
- D. $\frac{1}{2 \tan 20^{\circ}}$
- E. $\tan 40^{\circ}$.
- 30. According to the figure, the bearing of B from C is
 - A. 050° .
 - B. 130°.
 - C. 140°.
 - D. 310°.
 - E. 320°.

In the figure, CAB is a semicircle and ABCD is a parallelogram. Find the 31. area of ABCD.

5 cm

13 cm

- 65 cm^2 A.
- 60 cm^2 B.
- 52 cm^2 C.
- D. 32.5 cm^2
- 30 cm^2 E.
- The figure shows a square, a triangle and a sector with areas $a \text{ cm}^2$, $b \text{ cm}^2$ 32. and $c \text{ cm}^2$ respectively.

Which of the following is true?

- A. a > b > c
- B. a > c > b
- C. b > a > c
- D. b > c > a
- E. c > a > b

33. In the figure, a solid wooden sphere of radius r cm is to be cut into a cube of side 3 cm. Find the smallest possible value of r.

- B.
- C.
- $3\sqrt{3}$ D.
- $3\sqrt{2}$ E.
- If $9a^2 b^2 = 0$ and ab < 0, then $\frac{a b}{a + b} =$ 34.
 - **−2** . A.
 - B.
 - C.
 - D.
 - E. 2 .

- 35. y varies directly as x^2 and inversely as \sqrt{z} . If y=1 when x=2 and z=9, find y when x=1 and z=4.
 - A. $\frac{2}{3}$
 - B. $\frac{8}{3}$
 - C. $\frac{1}{6}$
 - D. $\frac{3}{8}$
 - E. $\frac{9}{26}$
- 36. Tea A and tea B are mixed in the ratio x:y by weight. A costs \$80/kg and B costs \$100/kg. If the cost of A is increased by 10% and that of B is decreased by 12%, the cost of the mixture per kg remains unchanged. Find x:y.
 - A. 1:1
 - B. 2:3
 - C. 3:2
 - D. 5:6
 - E. 6:5

Section B

37. Simplify
$$\frac{a}{a+b} + \frac{b}{b-a} + \frac{2ab}{a^2 - b^2}$$
.

A.
$$\frac{a+b}{a-b}$$

B.
$$-\frac{a-b}{a+b}$$

C.
$$\frac{-a^2+b^2+4ab}{a^2-b^2}$$

D.
$$\frac{a^2 + b^2}{a^2 - b^2}$$

38. If
$$\log(x-a) = 3$$
, then $x =$

A.
$$10^{3+a}$$
.

B.
$$a^3$$
.

D.
$$1000 + a$$
.

E.
$$30 + a$$
.

39. Which of the following may represent the graph of $y = -x^2 + 2x - 3$?

A.

В.

C.

D

E.

 \xrightarrow{y}_{O}

- 40. If $\left(\frac{\sqrt{5}}{2} + 1\right)x = \sqrt{2}$, then x =
 - A. $2\sqrt{10}-2$.
 - B. $2\sqrt{10} 4\sqrt{2}$.
 - C. $2\sqrt{10} + 4\sqrt{2}$.
 - D. $\frac{\sqrt{10}-1}{2}$.
 - E. $\frac{2\sqrt{10}-4\sqrt{2}}{3}$.
- 41. In the figure, the graph of y = f(x) intersects the x-axis at P and Q only. In order to find a root of f(x) = 0 using the method of bisection, which of the following intervals can you start with?

y = f(x)

- I. -1 < x < 0
- II. -1 < x < 1
- III. 1 < x < 2
 - A. I only
 - B. III only
 - C. I and II only
 - D. I and III only
 - E. I, II and III

42. According to the figure, which of the following represents the solution of

43. In the figure, ABCDEF is a right triangular prism. It is cut into two parts along the plane PQRS, which is parallel to the face BCDF, and

$$AP: PB = 2:5$$
. Find $\frac{\text{volume of the prism } APQRES}{\text{volume of the prism } ABCDEF}$

A.
$$\frac{2}{7}$$

B.
$$\frac{4}{25}$$

C.
$$\frac{4}{49}$$

D.
$$\frac{8}{125}$$

E.
$$\frac{8}{343}$$

- 44. π degrees =
 - A. $\frac{\pi^2}{180}$ radian.
 - B. $\frac{180}{\pi^2}$ radians.
 - C. $\frac{\pi}{180}$ radian.
 - D. 180 radians.
 - E. 1 radian.
- 45. In the figure, AB is tangent to the circle at B. Find $\angle DCE$.
 - A. 70°
 - B. 75°
 - C. 90°
 - D. 95°
 - E. 105°

In the figure, $\overrightarrow{AB}: \overrightarrow{BC}: \overrightarrow{CD} = 2:1:3$. Find $\angle ADC$. 46.

47. The bar chart below shows the distribution of scores of a test. Find the mean deviation of the scores of the test.

B.
$$\frac{8}{9}$$
 mark

C.
$$\frac{2\sqrt{2}}{3}$$
 mark

D.
$$\frac{2\sqrt{3}}{3}$$
 marks

E.
$$\frac{6}{5}$$
 marks

E.
$$\frac{6}{5}$$
 marks

- 48. If the centre of the circle $x^2 + y^2 + kx + (k+1)y 3 = 0$ lies on x + y + 1 = 0, find k.
 - A. $\frac{3}{2}$
 - B. $\frac{1}{2}$
 - C. 0
 - D. -1
 - E. $-\frac{3}{2}$
- 49. If the straight line y = mx + 1 is tangent to the circle $(x-2)^2 + y^2 = 1$, then m =
 - A. $-\frac{4}{3}$.
 - B. 0.
 - C. $\frac{4}{3}$.
 - D. 0 or $-\frac{4}{3}$.
 - E. 0 or $\frac{4}{3}$.

- 50. A(-1, -4) and B(3, 4) are two points. The line x y = 0 cuts AB at P so that AP : PB = r : 1. Find r.
 - A. 3
 - B. 2
 - C. 1
 - D. $\frac{1}{2}$
 - E. $\frac{1}{3}$
- 51. If $\cos \theta = \frac{1}{k}$ and $0^{\circ} < \theta < 90^{\circ}$, then $\tan(\theta 270^{\circ}) =$
 - A. $-\frac{k}{\sqrt{1-k^2}}$.
 - B. $-\frac{1}{\sqrt{k^2-1}}$.
 - $C. \qquad \frac{1}{\sqrt{k^2 1}} \ .$
 - D. $-\sqrt{k^2-1}$.
 - E. $\sqrt{k^2-1}$.

52. The figure shows a right triangular prism. Find its volume.

- $\frac{1}{3}\sin^2\alpha\cos\alpha\sin\beta\cos\beta\ \mathrm{m}^3$
- $\frac{1}{3}\sin\alpha\cos^2\alpha\sin\beta\cos\beta\ \mathrm{m}^3$
- $\frac{1}{2}\sin\alpha\cos\alpha\sin\beta\cos\beta\ \mathrm{m}^3$
- $\frac{1}{2}\sin^2\alpha\cos\alpha\sin\beta\cos\beta\ \mathrm{m}^3$
- $\frac{1}{2}\sin\alpha\cos^2\alpha\sin\beta\cos\beta\ \mathrm{m}^3$

53. In the figure, the area of $\triangle ABC$ is

B.
$$\frac{2\pi}{3}$$
.

D.
$$\frac{4\pi}{3}$$

E.
$$2\pi$$
.

54. In the figure, AEC and BED are straight lines. If the area of $\triangle ABE = 4 \text{ cm}^2$ and the area of $\triangle BCE = 5 \text{ cm}^2$, find the area of $\triangle CDE$.

A.
$$4.5 \text{ cm}^2$$

B.
$$5 \text{ cm}^2$$

C.
$$6 \text{ cm}^2$$

D.
$$6.25 \text{ cm}^2$$

E.
$$9 \text{ cm}^2$$

END OF PAPER

2000 Mathematics (Paper 2)

Question No.	Key	Question No.	Key
1.	E	31.	В
2.	A	32.	В
3.	C	33.	A
4.	E	34.	A
5.	В	35.	D
6.	В	36.	C
7.	C	37.	E
8.	В	38.	D
9.	D	39.	Е
10.	A	40.	В
11.	Е	41.	C
12.	В	42.	D
13.	A	43.	C
14.	A	44.	A
15.	С	45.	E
16.	C	46.	C
17.	E	47.	В
18.	A	48.	В
19.	A	49.	D
20.	E	50.	A
21.	E	51.	В
22.	C	52.	Е
23.	D	53.	C
24.	D	54.	D
25.	В		
26.	C		
27.	D		
28.	D		
29.	A		
30.	D		