香港考試局 HONG KONG EXAMINATIONS AUTHORITY

2000年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 2000

數學 試卷一 MATHEMATICS PAPER 1

本評卷參考乃考試局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對,但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations Authority for markers' reference. The Examinations Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Examinations Authority is counting on the co-operation of markers/teachers in this regard.

考試結束後,各科評卷參考將存放於教師中心,供教師參閱。 After the examinations, marking schemes will be available for reference at the teachers' centre.

©香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 2000

2000-CE-MATH 1-1

只限教師參閱

FOR TEACHERS' USE ONLY

Hong Kong Certificate of Education Examination **Mathematics Paper 1**

General Marking Instructions

- It is very important that all markers should adhere as closely as possible to the marking scheme. In 1. many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits all the marks allocated to that part, unless a particular method has been specified in the question. Makers should be patient in marking alternative solutions not specified in the marking scheme.
- In the marking scheme, marks are classified into the following three categories: 2.

'M' marks

awarded for correct methods being used;

'A' marks

awarded for the accuracy of the answers;

Marks without 'M' or 'A'

awarded for correctly completing a proof or arriving

at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- For the convenience of markers, the marking scheme was written as detailed as possible. However, it is 3. still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- Use of notation different from those in the marking scheme should not be penalized. 4.
- In marking candidates' work, the benefit of doubt should be given in the candidates' favour. 5.
- Marks may be deducted for wrong units (u) or poor presentation (pp). 6.
 - The symbol (u-1) should be used to denote 1 mark deducted for u. At most deduct 1 mark for u for the whole paper.
 - The symbol (pp-1) should be used to denote 1 mark deducted for pp. At most deduct 2 b. marks for pp for the whole paper. For similar pp, deduct 1 mark for the first time that it occurs. Do not penalize candidates twice in the paper for the same pp.
 - At most deduct 1 mark in each question. Deduct the mark for u first if both marks for u and ppc. may be deducted in the same question.
 - d. In any case, do not deduct any marks for pp or u in those steps where candidates could not score any marks.
- 7. Marks entered in the Page Total Box should be the NET total scored on that page.
- In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to', 'f.t.' stands for 8. 'follow through' and 'or equivalent' means 'accepting equivalent forms of the equation which may have not been simplified but without uncollected like terms'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles or (brackets). All fractional answers must be simplified.

Solution	Marks	Remarks
When $C = 30$, $30 = \frac{5}{9}(F - 32)$	iМ	substituting $C = 30$
$\frac{30 \times 9}{5} = F - 32 \qquad (or 270 = 5F - 160)$ $F = 86$	1A 1A	removing brackets
$C = \frac{5}{9}(F - 32)$ $F = \frac{9}{5}C + 32 \qquad \text{(or } 9C = 5F - 160)$ When $C = 30$,	IA	removing brackets
$F = \frac{9}{5} \times 30 + 32$ $F = 86$	IM IA	substituting $C = 30$
	(3)	
$\frac{x^{-3}y}{x^2} = \frac{y}{x^2x^3} \qquad (\text{or } x^{-2}x^{-3}y)$	IM	applying $a^{-m} = \frac{1}{a^m}$
$\frac{x^{-3}y}{x^2} = \frac{y}{x^2x^3} \qquad \text{(or } x^{-2}x^{-3}y\text{)}$ $= \frac{y}{x^{2+3}} \qquad \text{(or } x^{-2-3}y\text{)}$	1M	applying $a^m a^n = a^{m+n}$
$=\frac{y}{x^5}$	1A(3)	
Area of the sector $=\frac{75}{360}(6^2\pi)$ cm ²	1M+1A	1M for ratio or area of circle
$\approx 23.6 \text{ cm}^2 \text{(or } 7\frac{1}{2}\pi \text{ cm}^2\text{)}$	1A	r.t. 23.6 or $\frac{15}{2}\pi$, 7.5π
Area of the sector $=\frac{1}{2} \times 6^2 \times \frac{75}{180} \pi$ cm ²	IM+IA	1M for $\frac{1}{2}r^2\theta$ or correct value of θ
$\approx 23.6 \text{ cm}^2 (\text{or } 7\frac{1}{2}\pi \text{ cm}^2)$	1A	r.t. 23.6 or $\frac{15}{2}\pi$, 7.5 π
	(3)	6 cm 75°

Solution	Marks	Remarks
$a^{2} + 7^{2} = 10^{2}$ (or $a = \sqrt{10^{2} - 7^{2}}$) $a = \sqrt{51}$ (or 7.14)	lA lA	r.t. 7.14
$\cos x^{\circ} = \frac{7}{10}$ (or $\sin x^{\circ} = \frac{\sqrt{51}}{10}$, $\tan x^{\circ} = \frac{\sqrt{51}}{7}$)	1M	1.6. /.17
$x \approx 45.6$	۱A	r.t. 45.6, $u-1$ for $x \approx 45.6^{\circ}$, $x \approx 45^{\circ}34^{\circ}$, $x^{\circ} \approx 45.6^{\circ}$, $x^{\circ} \approx 45$.
$\cos x^{\circ} = \frac{7}{10}$ $x \approx 45.6$ $a \approx 10 \sin 45.6^{\circ} \qquad (\text{ or } a \approx 7 \tan 45.6^{\circ})$	1A 1A 1M	10 cm a cm
<i>a</i> ≈ 7.14	1A	7 cm
$\frac{11-2x}{5} < 1$	(4)	
$ 11-2x < 5 (or \frac{11}{5} - \frac{2}{5}x < 1) -2x < -6 2x > 6 (or 6 < 2x, \frac{2}{5}x > \frac{6}{5}) $) 1A+1A	For any 2 of these 3 steps, 1A f each. 2 of these 3 steps can be omitted.
x > 3	1A	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		or \longleftrightarrow
f(-3) (or $2(-3)^3 + 6(-3)^2 - 2(-3) - 7$) = -1 :. The remainder is -1.	2A 1A	
$ \begin{array}{r} 2+0-2 \\ 1+3 \overline{\smash{\big)}2+6-2-7} \\ 2+6 \\ \hline -2-7 \\ -2-6 \end{array} $	2A	
$ \frac{-1}{\therefore \text{Remainder} = -1} $	[1A] (3)	

	Solution	Marks	Remarks
7.	x = 25	1A	$u-1$ for $x = 25^{\circ}$, $x^{\circ} = 25^{\circ}$
	$\therefore \angle ADB = x^{\circ}$ $\therefore y = 180 - 56 - 25 - x$ $= 74$	1M 1M —1A —(4)	applying \angle s in same segment $u-1$ for $y = 74^{\circ}$, $y^{\circ} = 74^{\circ}$
8.	Actual area = 220×5000^2 cm ² = $\frac{220 \times 5000^2}{100^2}$ m ² = 550000 m ² (or area in m ² = 550000)	2M 1M —1A (4)	for $\times 5000^2$, ignore unit for $\div 100^2$, $pp-1$ for not handling units properly
9.	(a) Slope of $L = \frac{4-0}{-4-6}$ = $-\frac{2}{5}$ (or -0.4)	1A	
	(b) Equation of L : $y = -\frac{2}{5}(x-6) \qquad (\text{ or } \frac{y-4}{x+4} = -\frac{2}{5})$ $y = -\frac{2}{5}x + \frac{12}{5} \qquad (\text{ or } 2x+5y-12=0)$	1M 1A	or equivalent
	(c) When $x = 0$, $y = \frac{12}{5}$. (or $y = 2.4$)	1M 1A	
	$C = \left(0, \frac{12}{5}\right).$	(5)	-

		Solution		Marks	Remarks
10. (a		$10x^2 + 9x - 22 = 0$			
10. (a	1)	10x +9x - 22 - 0	$-9+\sqrt{9^2+4\times10\times22}$		
		(x+2)(10x-11)=0	(or $x = \frac{-9 \pm \sqrt{9^2 + 4 \times 10 \times 22}}{2 \times 10}$)	1A	
		$x = -2$ or $\frac{11}{10}$	(or $x = -2$ or 1.1)	_1A_	
		10	,	(2)	
				(-)	2
(ł	b)	$10000(1+r\%)^2 + 9000(1+r\%) = 220$	000	1M+1A	1M for $10000(1+r\%)^2$
		[10000(1+r%)+9000](1+r%) = 22	2000	1M+1A	1M for $10000(1+r\%) + 9000$
			2		pp-1 for confusing r with $r%$
			(or $r^2 + 290r - 3000 = 0$,		for choosing '+ve' value from 1
			$10(r\%)^2 + 29(r\%) - 3 = 0$	1M	'+ve' and 1 '-ve' roots, provide
		From (a), $1 + r\% = 1.1$		1141	that the original equation must be
		r = 10		$\frac{1A}{A}$	correct
				(4)	
				1A	
11. (a)	Missing value in 1st table = 66 Missing value in 2nd table = 20		1A 1A	
		Wiissing value in 2nd table = 20		(2)	
((b)	An estimate of the mean			
,	U	$= \frac{210 \times 3 + 230 \times 13 + 250 \times 30 + 270}{75}$	×20+290×9 (seconds)	1 M	
		그는 그는 그는 그는 그는 그는 그를 가는 것이 되었다면서			r.t. 255
		≈ 255 seconds		$\frac{1A}{(2)}$	1.6. 233
			(255		r.t. 254 or 255
((c)	Median ≈ 254 seconds	(or 255 seconds)	$\frac{1A}{(1)}$	1.t. 254 01 255
		N. J. C. Januarila and a	contour than 220 seconds		
((d)	Number of songs have lengths gr but not greater than 260 second			
		= 13 + 30	(or 46-3)	1A	
		= 43			
		Percentage required = $\frac{43}{75} \times 100\%$			
				1.4	57.2
		≈ 57.3%	$(or 57\frac{1}{3}\%)$	1A	r.t. 57.3
				(2)	
2000	CE	5_MATH 1-6			

	Solution	Marks	Remarks
(a)	Numbers having two zero digits are 100, 200,, 900.		
	Probability required = $\frac{9}{900}$	1A	for numerator
	$=\frac{1}{100}$ (or 0.01)	1A	
	Probability required = $\frac{1}{10} \times \frac{1}{10}$	1A	
	$= \frac{1}{100} $ (or 0.01)	IA	
		(2)	
(b)	Numbers having no zero digits are 111, 112,, 119 121, 122,, 129 921, 922,, 929		
	i i 191, 192,, 199 991, 992,, 999		
	Probability required = $\frac{9 \times 9 \times 9}{900}$	1A	for numerator
	$= \frac{81}{100} $ (or 0.81)	1A	
	Probability required = $\frac{9}{10} \times \frac{9}{10}$	1A	
	$= \frac{81}{100} $ (or 0.81)	1A	
		(2)	
(c)	101, 102,, 109, 110, 120,, 190 201, 202,, 209, 210, 220,, 290 :		
	901, 902,, 909, 910, 920,, 990		
	Probability required = $\frac{9 \times 9 + 9 \times 9}{900}$	1A	for numerator
	$= \frac{9}{50} $ (or 0.18)	1A	
	Probability required = $1 - \frac{1}{100} - \frac{81}{100}$	IM	
	$= \frac{9}{50} $ (or 0.18)	1A	
	Probability required = $\frac{1}{10} \times \frac{9}{10} \times 2$	1A	
	$= \frac{9}{50} $ (or 0.18)	1A	
			I

Marks 1A 1A 1M 1A (5)	Remarks A A P D 1 d.p. is sufficient
1A 1M 1A 1A (5)	C
1M+1	
	<u> </u>
43 44 222 row 1 2 1st row	
1A —1A —(2)	
1A	
1M	262 552
1A 1A	r.t. 36.2, -55.2
}[M+[1A] [1A] (4)	
r	1A

Solution		Remarks
15. (a) x and y satisfy the following conditions: $1000(40x) + 800(30y) \le 2400000$ or $5x + 3y \le 300$ $1000(10x) + 800(25y) \le 1200000$ or $x + 2y \le 120$ $x + y \le 70$ x, y are non-negative integers	1A 1A 1A	Withhold 1 mark for any "<".

10 20 30		
Draw the straight lines $5x + 3y = 300$, $x + 2y = 120$ and $x + y = 70$.	1A+1A	1A for any correct line. 1A for all. Accept dotted lines or lines without labeling. Position of lines should not lie outside 1
Let $P(x, y)$ be the profit generated by x boxes of brand A mixed nuts and y boxes of brand B mixed nuts. Then $P(x, y) = 800x + 1000y$ $= 200(4x + 5y)$	1A	small grid at the edges.
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	1M	check the line on graph
By drawing parallel lines of $4x + 5y = 0$, P(0, 0) = 0, $P(0, 60) = 60000$, $P(20, 50) = 66000$, P(45, 25) = 61000 and $P(60, 0) = 48000$	1M	
P(45, 25) = 61000 and $P(00, 0) = 40000P(x, y)$ attains its maximum at (20, 50).	1A	f.t.
The profit is the greatest when $x = 20$ and $y = 50$.	(8)	

2000-CE-MATH 1-9

	只阪教師參阅 FUR TEACHE	RS' USE UNLY		
	Solution	Marks	Remarks	
(b)	In addition to the conditions in (a), x , y should also satisfy $y < x$. The feasible solution becomes the shaded region.	!A	or drawing $y = x$ in the figur	
	By considering lines parallel to $4x + 5y = 0$ (or testing points). P(x, y) attains its maximum at (36, 34). \therefore The greatest profit is \$62800.	1A 1A (3)		

	Solution	T	Marks	Remarks
	R	$R \longrightarrow R$		
	S Q	S/ Q		
/				
		7		
	30°			
30°	P 0	P Figure 9B		
Refer to	Figure 9A Figure 9A,	riguie 3D		
(L1)	$\angle OPC = 90^{\circ}$	$(tangent \perp radius)$		(tangent properties)
				[切線_半徑]、[切線性質/定理]
(1.2)	$\angle PCO = 180^{\circ} - 90^{\circ} - 30^{\circ} = 60^{\circ}$	$(\angle \text{ sum of } \Delta)$		[Δ内角和]
	$\angle PQO = \frac{1}{2} \angle PCO = 30^{\circ}$	(∠ at centre twice ∠ at		$(\angle \text{ at centre} = 2 \times \angle \text{ at})$
(L3)	$2PQO = \frac{1}{2}2PCO = 30$	circumference)		circumference) [圓心角兩倍於圓周角]、[圓
				角是圓周角的兩倍]、[圓心角
				=2×圓周角]
Refer to	Figure 9A, and let $\angle CQP = x$.			
(L4)	∠OPC = 90°	(tangent ⊥ radius)		(tangent properties) [切線1半徑]、[切線性質/定理]
(L5)	$\angle PCO = 180^{\circ} - 90^{\circ} - 30^{\circ} = 60^{\circ}$	$(\angle \operatorname{sum} \operatorname{of} \Delta)$		[Δ內角和]
	:: CP = CQ	(radius)		
(L7)	$\therefore \angle CPQ = \angle CQP = x$	(base \angle s of isos. Δ)		[等腰Δ底角]
(L8)	$2x = \angle PCO = 60^{\circ}$	$(\operatorname{ext.} \angle \operatorname{of} \Delta)$		[Δ的外角]
(L9)	x = 30°			
Refer to	o Figure 9B, and let $\angle CQP = x$.			
(L10)	$\angle TPO = \angle CQP = x$	(∠ in alt. segment)		[交錯弓形的圓周角]、[弦切 定理]
(1.11)	$\angle TPQ = 90^{\circ}$	(∠ in semicircle)		[半圓上的圓周角]
(L12)	$30^{\circ} + 90^{\circ} + 2x = 180^{\circ}$	$(\angle \text{ sum of } \Delta)$		[Δ内角和]
	. x = 30°			
Mark Case	ting Scheme: 1 Any correct proof with correct in	reasons.	3	
Case			1	
	In addition, any relevant correct (at most 1 mark).		1	At most 2 marks
Case	3 Any relevant correct argument	with correct reason.	1	At most 1 mark
<u> </u>			(3)	-
				1

			Sc	olution		Marks	Remarks
18. (a) Let			$V = ah^2 + bh^3 \text{ where } a$ $\int \frac{29}{a} \pi = a + b$			1A	
			$\begin{cases} \frac{29}{3}\pi = a+b\\ 81\pi = 9a+27b \end{cases}$	$\begin{cases} a+3b=9 \end{cases}$	π(2)	1M	
			(2) - (1) gives $2b = -$	$\frac{2}{3}\pi$			
			Hence $b = -\frac{\pi}{3}$ and a	$a=10\pi$		1A	
		·:.	$V = 10\pi h^2 - \frac{\pi}{3}h^3$	<i>[-</i>	$P \longrightarrow h \text{ cm}$		
				•		(3)	
					Q		
	(b)	(i)	Surface area = $2\pi \times 10^2$ $\approx 628 \text{ cm}^2$	(cm ²) (or 200π c	rm²)	1A	r.t. 628
		(ii)	· Volume of hemisp	here = $\frac{2}{3}\pi \times 10^3$ (c	em³)	1A	
			$\therefore \frac{2}{3}\pi \times 10^3 - 2V = -$	$\frac{1400}{3}\pi$			
		$\frac{2}{3}\pi \times 10^3 - 2(10\pi h^2 - \frac{\pi}{3}h^3) = \frac{1400}{3}\pi$				1 M	
		$\frac{2}{3}\pi(1000 - 30h^2 + h^3 - 700) = 0$ $h^3 - 30h^2 + 300 = 0$					
					1		
	From the graph in Figure 11.3, $3.3 < h < 3.4$ (or $3.35 < h < 3.4$ etc.)		:4 etc.)	1M	or claiming to draw $y = -300$, writing $h \approx 3.35$, $h \approx 3.4$ etc.		
		Let $f(h) = h^3 - 30h^2 + 300$, then $f(3.3) > 0$ and $f(3.4) < 0$.		0 and $f(3.4) < 0$.			
			Using the method of bis	"mid-value"	f(h)		use interval ⊆ [0, 5] containing the root as the starting interval
			3.3 < h < 3.4	3.35	+ve (0.9204)	1M	testing sign of "mid-value" or any intermediate value
			3.35 < h < 3.4	3.375	-ve (-3.2754)	1M	choosing the correct interval
			3.35 < h < 3.375	3.363	-ve (-1.2583)		
			3.35 < h < 3.363	3.357	-ve (-0.2519)		
			3.35 < h < 3.357 $3.354 < h < 3.357$	3.354 3.356	+ve (0.2507) -ve (-0.0843)		
			3.354 < h < 3.356	3.355	+ve (0.0832)	l	
			3.355 < h < 3.356		1 (0.0007)		1
	$h \approx 3.36$ (correct to 2 decimal places)		1A	f.t.			
	Let $f(h) = h^3 - 30h^2 + 300$.						
			: f(3.34) ≈ 2.5917	((2.255)	0.0022		
			$f(3.35) \approx 0.9203$	f(3.355) ≈	U.U832	1M+1M	
			$f(3.36) \approx -0.7549$ $f(3.37) \approx -2.4342$				
				t to 2 decimal place	s)	1A	f.t.
					,		
						(8)	
						4	