只限教師參閱 FOR TEACHERS' USE ONLY

香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九九六年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1996

數學 試卷— MATHEMATICS PAPER I

本評卷參考乃考試局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成 閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對, 但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取 此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致 但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考 試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上 並原則。

This marking scheme has been prepared by the Hong Kong Examinations Authority for markers' reference. The Examinations Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Examinations Authority is counting on the co-operation of markers/teachers in this regard.

考試結束後,各科評卷參考將存放於教師中心,供教師參閱。
After the examinations, marking schemes will be available for reference at the Teachers' Centres.

© 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1996

96-CE-MATHS I-1

只限教師參閱 FOR TEACHE

FOR TEACHERS' USE ONLY

Hong Kong Certificate of Education Examination Mathematics Paper I

NOTES FOR MARKERS

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits all the marks allocated to that part, provided that the method used is sound.
- 2. In a question consisting of several parts each depending on the previous parts, marks may be awarded to steps or methods correctly deduced from previous erroneous answers. However, marks for the corresponding answers should NOT be awarded. In the marking scheme, marks are classified as:

'M' marks awarded for correct methods being used;
'A' marks awarded for the accuracy of the answers;
Others awarded for correctly completing a proof or arriving at an answer given in a question.

- 3. Use of notation different from those in the marking scheme should not be penalised.
- 4. Each mark deducted for poor presentation (p.p.) should be denoted by [pp-1]:
 - a. At most deduct 1 mark for (p.p.) in each question, up to a maximum of 3 marks for the whole paper.
 - b. For similar (p.p.), deduct 1 mark for the first time that it occurs.
 i.e. do not penalise candidates twice in the paper for the same p.p.
- 5. Each Mark deducted for wrong/no unit (u.) should be denoted by [u-1]:
 - a. No mark can be deducted for (u.) in Section A.
 - b. At most deduct 1 mark for (u.) for the whole paper.
- 6. Marks entered in the Page Total Box should be the NET total scored on that page.

只限教師參閱 FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
$1. \qquad r = \frac{h - a}{1 + p^2}$	IA	
$r = \frac{8-6}{1+(-4)^2}$	lM	·
$=\frac{2}{17}$ (or 0.118)	1A	r.t. 0.118
	1A	
$2 = 17r r = \frac{2}{17} $ (or 0.118)	1A	r.t. 0.118
	(3)	
<u>5</u> 4 <u>5</u> <u>3</u>		
$2. \frac{a^{\frac{3}{4}}\sqrt[4]{a^3}}{a^{-2}} = \frac{a^{\frac{5}{4}}a^{\frac{3}{4}}}{a^{-2}}$	1A	For $\sqrt[4]{a^3} = a^{\frac{3}{4}}$
$= a^{\frac{5}{4} + \frac{3}{4} - (-2)}$	1M	For applying either
$=a^4$	1A	$a^{m}a^{n} = a^{m+n}$ or $\frac{a^{m}}{a^{n}} = a^{m-n}$.
	(3)	
3. (a) 4, 1, -2, -5	1A	
(b) $S_{100} = \frac{100}{2} [2(4) + (100 - 1)(-3)]$	1M+1A	$1 \text{ M for } \frac{100}{2} [2a + (100 - 1)d],$
= -1445 0	1A	2 a is the 1st term in (a). r.t14500
$OR T_{100} = 4 + (100 - 1)(-3) = -293$	1A	
$S_{100} = \frac{100}{2} [4 + (-293)]$	1M	
= -14450	1A	
	(4)	
4. Let $f(x) = x^3 - x^2 - 3x - 1$, then $f(-1) = (-1)^3 - (-1)^2 - 3(-1) - 1 = 0$.	1A	Accept using long or synthetic
$\therefore x+1 \text{ is a factor of } x^3-x^2-3x-1$		division pp-1 for not defining $f(x)$
$x^3 - x^2 - 3x - 1 = 0$		
$(x+1)(x^2-2x-1) = 0$ $x = -1$ or $\frac{2 \pm \sqrt{(-2)^2 - 4(-1)}}{2}$	IA IA+IM	146-1-1
$x = -1 \text{ or } 1 \pm \sqrt{2}$		1A for $x = -1$ 1M for quad. formula
λ1 OI II γ Z	1A —(5)	For $x = 1 \pm \sqrt{2}$
96_CF_MATHS I=3		1

96-CE-MATHS I-3

	Solution	Marks	Remarks
. 5 .	(i) $x > 3$	1A	Accept graphical solutions. Withhold 1 mark for having equal signs in inequalities.
	(ii) $(x-2)(x-4) < 0$	IA	For factorization, can be omitted
	2 < x < 4	2A	Accept " $x > 2$ and $x < 4$ "
	Solution of (i) and (ii): $3 < x < 4$	1A	
		(5)	
		.(5)	·
6.	$\therefore \angle ABP = \angle DCB \qquad (corr. \angle s, AB//DC)$		"同位角, <i>AB//DC</i> "
	$\angle DCB = \angle BAP$ (ext. \angle , cyclic quad.) $\angle ABP = \angle BAP$		"圓內接四邊形外角"
_	$\therefore AP = BP \qquad \text{(sides opp. equal } \angle \text{s}\text{)}$		Or "base ∠s equal", "converse of 'base ∠s, iso. Δ' ", "equal ∠s, equal sides"
	A		"等角對邊相等" 或 "等腰三角形底角等的 逆定理"或"底角相 等"或"等邊對等角" 或"等角對等邊"
	Marking scheme:		
	Case 1 Any correct proof with correct reasons.	5	
	Case 2 Any correct proof without reasons.	3	
	In addition, any correct argument with correct reason.	1	Maximum 1 mark
	Case 3 Any correct argument with correct reason.	1	Maximum 2 marks
_			
		(5)	
_			
7.	(a) Area of the shaded region = $(12^2 - 2^2)\pi$ cm ² = 140π cm ² (or 440 cm ²)	1A	r.t. 440
		***	1.1. 110
	(b) (i) The probability that both darts hit the shaded region $(140\pi)^2$		A
	$= \left(\frac{140\pi}{144\pi}\right)^2 \text{(or } 0.972^2\text{)}$	1M+1M	1M for Ans. in (a) Area of the board
	$= \frac{1225}{1296} \qquad \text{(or } 0.945)$	1A	1M for p ² r.t. 0.945
	1296	IA	1.1. 0.943
	(ii) The probability that only one dart hits the shaded region		
	$= 2\left(\frac{140\pi}{144\pi}\right)\left(\frac{4\pi}{144\pi}\right)$	lM+1M	1M for $p(1-p)$
	_ 35 (~ 0.0540)		1M for 2p or p+p
	$= \frac{35}{648} \qquad \text{(or } 0.0540\text{)}$	1A	r.t. 0.0540
96	CF-MATHS I-4	(7)	pp-1 if no text in (b)

96-CE-MATHS I-4

8. (a) Capacity = $\frac{1}{3}\pi(5)^2(12)$ cm ³ ≈ 314 cm ³ (or 100π cm ³) (b) (i) $AB = \sqrt{5^2 + 12^2}$ cm = 13 cm Area of the sector = $\pi(5)(13)$ cm ² ≈ 204 cm ² (or 65π cm ²) OR Arc length of the sector = 10π cm	1A 1A 1M 1A	r.t. 314
$\approx 314 \text{ cm}^3 \qquad (\text{or } 100\pi \text{ cm}^3)$ (b) (i) $AB = \sqrt{5^2 + 12^2} \text{ cm} = 13 \text{ cm}$ Area of the sector = $\pi(5)(13) \text{ cm}^2$ $\approx 204 \text{ cm}^2 \qquad (\text{or } 65\pi \text{ cm}^2)$ $\boxed{OR} \text{Arc length of the sector} = 10\pi \text{ cm}$	1A 1M	r.t. 314
(b) (i) $AB = \sqrt{5^2 + 12^2}$ cm = 13 cm Area of the sector = $\pi(5)(13)$ cm ² ≈ 204 cm ² (or 65π cm ²) OR Arc length of the sector = 10π cm	1A 1M	
\underline{OR} Arc length of the sector = 10π cm		r.t. 204
		1 201
Area of the sector = $\frac{1}{2} \cdot 13 \cdot 10 \pi \text{cm}^2$	1A+1M	1A for 13
$\approx 204 \text{ cm}^2 (\text{or } 65\pi \text{ cm}^2)$	1A	r.t. 204
(ii) Angle of the sector = $\frac{65\pi}{13^2\pi} \times 360^\circ$	IM	
≈ 138°	1A	r.t. 138
\underline{OR} Let the angle of the sector be θ .		
$\frac{1}{2}(13)^2\theta=65\pi$	1M	
$\theta = \frac{10}{13}\pi \qquad \text{(or 2.42)}$	1A	r.t. 2.42
$\underline{OR} \text{Angle of the sector} = \frac{10\pi}{13} \qquad \text{(or 2.42)}$	1M+1A	1M for Arc length , r.t. 2.42
→ 5 cm → B B B B B B B B B	(6)	
	, y	L_3 L_2
9. (a) $3x + 2y - 7 = 0 \qquad(1)$ $2x - y - 7 = 0 \qquad(3)$ $(3) \times 2 + (1): \qquad 7x - 21 = 0$ $x = 3, y = -1$ $\therefore C = (3, -1)$	IM 1A	C L_1
(b) $3x + 2y \ge 7$ $3x - 5y \ge -7$ $2x - y \le 7$] IA+IA	1A for any one being correct Withhold 1 mark for strict inequalities
(c) Let $P(x, y) = 2x - 2y - 7$, then $P(1, 2) = -9$, $P(6, 5) = -5$, $P(3, -1) = 1$. The maximum value of $2x - 2y - 7$ is 1.	1M 1A	For testing any one of these pts.

96-CE-MATHS I-5

•		Solution	Marks	Remarks
	(a)	$x = 360^{\circ} - (80^{\circ} + 60^{\circ} + 80^{\circ} + 75^{\circ})$		
, iU.	(a)	$x = 300^{\circ} - (80^{\circ} + 00^{\circ} + 80^{\circ} + 73^{\circ})$ = 65°	1A	
	(b)	$\triangle ABE \cong \triangle CDB$	1A	
	(c)	$60^{\circ} + z + \theta + y = 180$		
	(-)	∴ $y + z = 80^{\circ}$ ∴ $\theta = 180^{\circ} - 60^{\circ} - 80^{\circ} = 40^{\circ}$	1A 1A	
		$\angle BDE = \frac{180^{\circ} - 60^{\circ} - 80^{\circ}}{2} = 70^{\circ}$	IM	
		$y = 180^{\circ} - 75^{\circ} - 70^{\circ} = 35^{\circ}$	1A	
		$z = 80^{\circ} - 35^{\circ} = 45^{\circ}$	1A	
		$OR \angle BDE = \angle BED$		
		$180^{\circ} - 75^{\circ} - y = 180^{\circ} - 65^{\circ} - z$ $z - y = 10^{\circ} \qquad \dots $	1M	
		$y + z = 80^{\circ}$ (2)	1A 1A	
· C		Solving (1) and (2), $y = 35^{\circ}$ $z = 45^{\circ}$	1A	
		$\theta = 180^{\circ} - 60^{\circ} - 35^{\circ} - 45^{\circ} = 40^{\circ}$	1A	
			(7)	
		60° B		·
		C × 80°		
		θ θ θ		
		₹ / \ <i>/</i> ^		
		$\bigvee \qquad \bigvee_{x}^{z}$		
		$D \bigvee_{75^{\circ}} E$		
		. •		
,				
			·	
	•			

····	Solution	Marks	Remarks
11. (a) (i)	Equation of \mathcal{C}_1 : $x^2 + (y-2)^2 = 4$ (or $x^2 + y^2 - 4y = 0$)	1A	
(ii)	B = (0, 4) Equation of $L: y = 2x + 4$	IA IA	Can be omitted Or equivalent
(b) $\begin{cases} x^2 \\ y \end{cases}$	$(x+(y-2)^2 = 25)$ = 2x + 4		
x^2	$+(2x+4-2)^2 = 25$ (or $(y-4)^2 + 4(y-2)^2 = 100$)	1 M	Eliminate either x or y
	$+8x-21=0$ (or $5y^2-24y-68=0$) -7)(x+3)=0	1A	,
<i>x</i> =	$\frac{7}{5}$ or -3 . $(y = \frac{34}{5} \text{ or } -2)$	1A	Accepted $x = 1.4$ or -3 , y = 6.8 or -2 .
Q =	$=(\frac{7}{5},\frac{34}{5})$ [or (1.4, 6.8)], $R=(-3,-2)$.	1A	Must indicate Q and R
(c) (i)	The mid-point of QR is the point on L which is nearest to A . Mid-point of $QR = \left(\frac{\frac{7}{5} + (-3)}{2}, \frac{\frac{34}{5} + (-2)}{2}\right)$	1M	Attempt to find mid-pt. of QR
	$=(-\frac{4}{5},\frac{12}{5})$ [or (-0.8, 2.4)]	1A	
	\overline{OR} Let L' be the line through A perpendicular to L.		
	Equation of L': $\frac{y-2}{x} = -\frac{1}{2}$ or $x+2y-4=0$	1M	For attempting to find the eqtn. of L'
	The required point is the intersection of L and L' = $(-\frac{4}{5}, \frac{12}{5})$.	1A	
(ii)		1M	y L
	The required point is $\left(\frac{3(0) + 2(\frac{7}{5})}{5}, \frac{3(2) + 2(\frac{34}{5})}{5}\right)$	1M	B e ₁ (-
	$= \left(\frac{14}{25}, \frac{98}{25}\right) \text{[or (0.56, 3.92)]}$	1A	RO
	$\underline{OR} \text{Equation of } QA: \qquad 24x - 7y + 14 = 0$	1M	For finding equn. of QA
	Solving the equations of QA and C_1 , we have $625y^2 - 2500y + 196 = 0$		
	$y = \frac{2}{25}$ (rej.) or $\frac{98}{25}$	1M	For solving & giving 1 solm. only
	The required pt. is $(\frac{14}{25}, \frac{98}{25})$ [or (0.56, 3.92)]		

				Solution	n		Marks	Remarks
12. (a)			Table 1 an Interes (\$)		Chan) oan Repaid (\$)	Outstanding Balance (\$)		
		1	750.00		8 250.00	41 750.00		
		2	626.25		8 373.75	33 376,25		
		3	500.64		8 4 99.36	24 876.89		·
		4 (a)	373,15		8 626.85	(c)16250.04 (05)	IA+IM	1A for (a), 1M for $a + b = 900$
		5	243.75		8 756.25	7 493,79 (80)		or $b + c = 24876.89$
	<u> </u>	6	112.41	-1	7 493.79 (80)	0.00	1A	
1	(ii) Amo	ount of last	payment =	\$7606	5.20 (21)		1A	Accept 7606.2
	(iii) Tota	l interest ea	rned by th	ne bank	= \$ 2 606.20		l IA	Accept 2606.2
	(==-)		•					Accept 2000.2
(b)	Month	Installme (3)		oan est (\$)	. Lee) Loan Repaid (\$)	Cutstanding Balance (5)		
	1	9 000.0	0 750	0.00	8 250.00	41 750.00		
	2	10 800.0	0 626	5,25	10 173,75	31 576,25	1A+1A+1A	1A for 10800.00, 1A for 626.25
	3	12 960.0	0 473	3.64	12 486.36	19 089,89		
	4	15 552.0	0 286	5.35	15 265.65	3 824.24		
	5	3 881.6	0 51	7.36	3 824.24	0.00	1A	
(c)	Mr. Cheu	ng saves \$	2000 eac	h montl	1 .			
	Month	Savin			alment (\$)	Balance (\$)		
	1	12 00	0.00		9 000.00	3 000.00		·
	2	15 00	0.00	10	0800.00	4 200.00		,
	3	16 20	0.00	13	2 960.00	3 240.00		
	4	15 24	0.00	1:	5 552.00	-312.00		
	Mr. Cheu	ng will not	have enou	4th instalment.				
	Markin	g Scheme:						
	Mr. Cheung cannot afford to use the repayment scheme as described in (b).							
	Putting					ying the 1st instalment	1M	Can be omitted
	Showin			nstalme 5240.00		nonth's savings)	1A	

	Solution	Marks	Remarks
13. (a)	Let $F = k_1xt + k_2t^2$ for some constants k_1 and k_2 .	lA	
	Then $Q = 20000 + k_1 xt + k_2 t^2$.		
	Hence $\begin{cases} 30600 = 20000 + k_1(85)(40) + k_2(40)^2 \\ 28100 = 20000 + k_1(75)(60) + k_2(60)^2 \end{cases}$) 1M+1A	IM for substitution
)	THAT I'VE SUUSLICULUM
	$\begin{cases} 53 = 17k_1 + 8k_2 \\ 9 = 5k_1 + 4k_2 \end{cases}$	} 1A	Or equivalent forms
		/	or equivalent forms
	$7k_1 = 35$ or $28k_2 = -112$		
	$\begin{cases} k_1 = 5 \\ k_2 = -4 \end{cases}$	} 1	
)	
	$Q = 20000 + 5xt - 4t^2$		
(b)	(i) When $x = 82$ and $t = 45$, then		
	$Q = 20000 + 5(82)(45) - 4(45)^2$		
	= 30350 (ii) When $Q = 30350$ and $x = 78$, then	1A	r.t. 30400
	$30350 = 20000 + 5(78)t - 4t^2$	1M	Use ans. in (b)(i)
	$4t^2 - 390t + 10350 = 0$	1111	Osc alis. iii (U)(1)
	$2t^2 - 195t + 5175 = 0$		
	$\Delta = 195^2 - 4(2)(5175)$		
	= -3375 ∴ There is no real solution for t.		
	There is no real solution for t . Thus it is not possible to achieve the same value of Q in (i) by varying t .	1M+1A	f.t.
(c)	When $x = 80$,		
	$Q = 20000 + 5(80)t - 4t^2$		
	$= 20000 - 4(t^2 - 100t)$		
	$= 30000 - 4(t - 50)^2$	IM+1A	1M for $a+b(t-50)^2$ or $a+b(2t-100)^2$
	\therefore Q is maximum when $t = 50$. Thus the amount of time required is 50 seconds.	1A	
	Thus are amount of time required is 50 seconds.	'A	
		ļ	
06.ሮፑ አ ፋ	ATHS I-9		

					Solut	ion	Marks	Remarks
*	14.	(a)	The	unclearly printe	d number in Tab	le 3 is 23.7.	1A	pp-1 for 23.7%
		(b)	The	re are rounding	off errors.		1A	
		(c)	(i)	The c.f. table o	f the distribution	of x ($x \le 1000$) for boys		
				x (≤)	c.f.			
				0	70			
				200	87		1A	For 87, pp-1 for writing
				400 600	135 218			intervals in the left column
				800	310			
				1000	346		1A	
			(ii)	[
			5	00		girls		
_								
				100				þ
				•••				
			enc			boys		
			n Gdn					
			Cumulative frequency	100				
			ativ					
			_					
			2	200				
			1	00				
					#11111111		1M+1A	
					##########			
				0 2	200 400	600 800 1000 x)	
			(iii)	The median of	x for boys = 490		1.4	
			·•/		x for girls = 410		IA IA	Accept 480-500 Accept 400-420
			(iv)	From the cumu	llative frequency	polygons, there are		
			` ,	265(±5) boys a	nd 390(±5) girls	spending up to \$700	lM	For either one correct
				The total	number = 265+3	90 = 655	lA	or a vertical line through x=700
		(d)	Fro-					Accept 645-665
		(u)	mon	ey on buying clo	t, 20.0% of boys and the story of the story of the story christm	and 15.0% of girls did not spend any as.	1	The exact figures need not be quoted
			<i>:</i> .	In this survey,		at spend any money on buying clothes	•	The chase rigures need not be quoted
				for Christmas.				
			We	have to consider	the percentages	instead of the frequencies because the		
			num	oct of doys and	une number of gi	rls in this survey are not equal.	1	
			THE	. 10				

TONIA THE BEAUTION OF CHILL							
Solution	Marks	Remarks					
15. (a) $BC = 1000\cos 60^{\circ} = 500$ (m)	1A						
$CC' = 500 \sin 30^\circ = 250 \text{ (m)}$	1A						
(b) Let the inclination of BO with the horizontal be α							
$\sin\alpha = \frac{250}{1000}$	1M						
$\alpha = 14.5^{\circ}$ (or 14°29')	1A	r.t. 14.5					
(c) $AO = \sqrt{1000^2 + 2000^2 - 2(1000)(2000)\cos 30^\circ}$	2A						
≈ 1239.31	-						
≈ 1240 (or $1000\sqrt{5-2\sqrt{3}}$)							
$\underline{OR} AD = BC = 1000\cos 60^{\circ}$							
$DO = DC - OC = (2000 - 1000\sin 60^{\circ})$	1A	For DO					
$AO = \sqrt{(1000\cos 60^\circ)^2 + (2000 - 1000\sin 60^\circ)^2}$	1A						
≈ 1240							
$AO' = \sqrt{(AO)^2 - (OO')^2}$							
$\approx \sqrt{(1239.31)^2 - (250)^2}$	1M						
≈ 1213.83							
$AT = \sqrt{(AO')^2 + (TO')^2}$							
$= \sqrt{(1239.31)^2 - (250)^2 + (300)^2}$	12.4						
$= \sqrt{(1239.31)^2 - (250)^2 + (300)^2}$ ≈ 1250.36	1M						
≈ 1250 (m)	1A	r.t. 1250					
(d) Route I takes (1000 ± 60) s ~ 3303 s (or 56 min 33 sec.)							
(01.50 mm. 33.80.)	$\left \right\rangle_{1M+1A}$	1M for applying $t = \frac{d}{s}$					
Route II takes $\left(\frac{2000}{08} + \frac{1250.36}{32}\right)$ s ≈ 2891 s (or 48 min. 11 sec.)	J	1A for either, r.t. 3390, 2890 resp.					
Hence route II takes a shorter time.	1						
$m{T}$. —					
D 50 m							
ab ab							
0' 60° 30° C'							
A 2000 m B							
	ŀ						

Solution	Marks	Remarks
16. (a) (i) Area = $[20\times30+2(20\times15+30\times15)]$	1M	For any two of
$= 2100 \text{ (cm}^2)$	1A	20×30, 20×15 and 30×15
(ii) Capacity = $20 \times 30 \times 15$ = $9000 \text{ (cm}^3)$	1A	
(b) (i) $\tan \theta = \frac{15}{30}$	IM	For $\frac{CC'}{30}$ with substitution
$\theta = 26.6^{\circ}$ (or 26°34')	1A	r.t. 26.6
(ii) If $\tan \theta = \frac{1}{3}$, then		
$V = \frac{1}{2}(30)(30 \tan \theta)(20)$ $= \frac{1}{2}(30)(30)(\frac{1}{3})(20)$	IA	
= 3000	1A	
(iii) If $V = 6750$, then $\frac{1}{2}(15)(\frac{15}{\tan \theta})(20) = 9000 - 6750$	lM+1A	1M for 9000 - 6750 or showing that the water level is below B.
$\tan \theta = 1$ $\theta = 45^{\circ}$	1A	a colon B.
(c) Suppose water is poured out by tilting the edge AB and the inclination of AE with the horizontal is ϕ .		
Then $\tan \phi = \frac{15}{20} = \frac{3}{4}$ $\therefore \tan \phi > \tan \theta$, ϕ is larger than the value of θ in (b)(i).	1A 1	
OR Since $AB > AE$ and AD is common, ϕ is larger than the value of θ in (b)(i).	1A 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
96-CE-MATHS I-12 只限教師參閱 FOR TEACHERS	s' USE OI	 NLY