Form 5

HKCEE 1989 Mathematics II

89
$$3^{n-1} \times 3^{n+1}$$

1.

A.
$$3^{n^2-1}$$

B.
$$9^{n^2-1}$$

$$C = 3^{2i}$$

C.
$$3^{2n}$$
 D. 6^{2n}

E.
$$9^{2n}$$

$$\frac{89}{2} \quad \frac{27x^3 - 8}{3x - 2} =$$

A.
$$(3x-2)^2$$

B.
$$9x^2 - 4$$

C.
$$9x^2 + 4$$

D.
$$9x^2 - 6x + 4$$

B.
$$9x^2 - 4$$

C. $9x^2 + 4$
D. $9x^2 - 6x + 4$
E. $9x^2 + 6x + 4$

$$3. \qquad \sqrt{\frac{x}{\sqrt{x}}} =$$

A.
$$\frac{3}{x^4}$$

B.
$$\frac{1}{x^4}$$

B.
$$\frac{1}{x^4}$$
C. $\frac{1}{x^2}$

D.
$$-\frac{1}{4}$$

D.
$$\frac{-1}{x^{-\frac{1}{4}}}$$
E. $\frac{-3}{x^{-\frac{3}{4}}}$

89
4. If
$$f(x) = \frac{x}{1-x}$$
, then $f(\frac{1}{x}) =$

C.
$$\frac{x}{x-1}$$
.

C.
$$\frac{x}{x-1}$$
. D.
$$\frac{x}{1-x}$$
.

E.
$$\frac{1-x}{x}$$
.

89 5.

Which of the following systems of inequalities is represented by the shaded region in the figure?

A.
$$\begin{cases} x + 2y \ge 6 \\ 5x + 2y \ge 10 \\ y \ge 0 \end{cases}$$

B.
$$\begin{cases} x + 2y \le 6 \\ 5x + 2y \le 10 \end{cases}$$

C.
$$\begin{cases} x + 2y \ge 6 \\ 5x + 2y \le 10 \\ x \ge 0 \end{cases}$$

D.
$$\begin{cases} x + 2y \le 6 \\ 5x + 2y \ge 10 \\ y \ge 0 \end{cases}$$

$$\begin{cases} 5x + 2y \ge 0 \\ 5x + 2y \ge 10 \\ y \ge 0 \end{cases}$$
E.
$$\begin{cases} x + 2y \ge 6 \\ 5x + 2y \le 10 \\ y \ge 0 \end{cases}$$

89 Let
$$f(x) = ax^2 - 5$$
 and

 $g(x) = 27x^3 - 18x + 4$. If both expressions leave the same remainder when divided by 3x + 1, then a =

- A. -74.
- В. 0.
- C. 36.
- D. 76.
- E. 126.
- 89 If 3x > -2y and y < 0, then 7.
 - A. $\frac{x}{y} > -\frac{3}{2}$.
- Given that r is the only real root of
- $x^5 + x 1 = 0$, which of the following ranges contains r?
 - A. -2 < r < -1
 - В. -1 < r < 0
 - C. 0 < r < 1
 - D. 1 < r < 2
 - E. 2 < r < 3
- 89 If z varies inversely as x and directly as
- 9. y, then
 - A. xyz is a constant.
 - $\frac{xz}{y}$ is a constant
 - C. $\frac{yz}{x}$ is a constant
 - $\frac{xz^2}{y}$ is a constant
 - $\frac{z^2}{xy}$ is a constant
- 89 Which of the following is/are true?
- 10.

- I. If both 2 and 3 are factors of m, then 6 is also a factor of m.
- II. If 15 is a factor of n, then both 3 and 5 are factors of n.
- III. If p is a multiple of both 4 and 6, then p is also a multiple of 24.
- A. I only
- В. II only
- C. I and II only
- D. II and III only
- E. I, II and III
- 89 11.

- In the figure, ABCD is a square and AE $= BE. \quad \frac{\text{Area of } AED}{\text{Area of } AED}$
- A.
- B.
- C.
- $\frac{1}{2}$ $\frac{3}{8}$ $\frac{1}{3}$ $\frac{1}{4}$ D.
- E.

89

12.

Aright conical vessel placed horizontal ground contains some water as shown in the figure. If AD : DB =

volume of empty space 2:3, then volume of water

A.

В.

C.

D.

E.

89 If A is greater than B by 20% and B is

smaller than C by 30%, then 13.

> A is smaller than C by 16% A.

A is smaller than C by 6%

C. A is greater than C by 6%

D. A is greater than C by 10%

E. A is greater than C by 16%

89 At the beginning of a year, a man

14. borrows \$1000 from a bank at 5% per annum, compounded yearly. promises to repay \$300 at the end of each year. How much will he still owe the bank just after the second repayment?

> A. \$402.5

\$450 В.

C. \$487.5 D. \$500

E. \$502.5

The least value of $9\cos^2\theta - 6\cos\theta + 1$ is 89

15.

-4 . A.

В. 0.

C. 1.

D. 4.

E. 16.

89

16. $\cos\theta$

> A. 2 $\tan^2 \theta$

2 В. $\tan \theta$

 $2 \tan^2 \theta$ C.

D. $2\cos\theta$ $\sin^2\theta$

E. $2\cos^2\theta$ $\sin \theta$

89 17.

 $y = \cos 2x$

The figure shows the graph of $y = \cos x$ 2x, where $0 \le x \le \pi$. The area of the rectangle ABCD is

C.

- D. $\frac{3\pi}{2}$
- E. 2π .
- 89 Given that $0^{\circ} \le \theta \le 180^{\circ}$, how many
- 18. roots has the equation $(\sin \theta + 1)(\tan \theta + 3) = 0$?
 - A. 0
 - **B**. 1
 - C. 2
 - D. 3
 - E. 4
- 89
- 19.

In the figure, $AD \perp BC$. Find $\frac{x}{y}$

- A. $\frac{\sin\phi}{\sin\theta}$
- B. $\frac{\cos\phi}{\cos\theta}$
- C. $\frac{\tan \phi}{\tan \theta}$
- D. $\frac{\cos\theta}{\cos\phi}$
- E. $\frac{\tan \theta}{\tan \phi}$
- 89 20.

Referring to the figure, find y.

- A. 20
- B. 30

- C. 40
- D. 50
- E. 80
- 89 21.

In the figure, ABCDE is a regular pentagon and ABYE is a rhombus. Find $\angle CAY$.

- A. 27°
- B. 24°
- C. 21°
- D. 18°
- E. 15°
- 89 22.

Referring to the figure, find the length of the line segment joining P and Q.

- A. 25
- B. $10\sqrt{5}$
- C. 18
- D. $8\sqrt{5}$
- E. $\sqrt{194}$

89 23.

In the figure O is the centre of two Concentric circles. ADOEB and CGFB are straight lines. Which of the following is/are true?

I. AC // DG

II. BF = CG

III. A, E, F and C are concyclic

A. I only

B. II only

C. I and II only

D. I and III only

E. I, II and III

89 24.

In the figure, TC is a tangent to the circle at C and AB // DC. If $\angle BCT = 48^{\circ}$, then $\theta =$

A. 48°

B. 72°

C. 84°

D. 90°

E. 96°

89 Referring to the data 1, 1, 1, 1, 1, 2, 2,

25. 2, 3, which of the following is/are true?

I. median < mean

II. range = 3

III. mode = 3

A. I only

B. II only

C. III only

D. I and II only

E. I, II and III

89 A BIASED die is thrown. Suppose the

26. probabilities of getting 1, 2, 3, 4, and 4

are respectively $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$ and $\frac{1}{32}$.

What is the probability of getting 6?

A. $\frac{1}{64}$

B. $\frac{1}{36}$

C. $\frac{1}{32}$

D. $\frac{1}{12}$

E. $\frac{1}{6}$

A bag contains 4 red, 3 green and 2 27. white balls. Three men A, B and C

each draw one ball in turn from the bag at random without replacement. If A draws first, B second and C third, what is the probability that the balls drawn by B and C are both white?

A. $\frac{1}{36}$

B. $\frac{1}{28}$

C. $\frac{4}{81}$

D. $\frac{25}{72}$

E. 11 28

89 The equation of the straight line 28. perpendicular to 2x + y - 3 = 0 and

passing through (1, -1) is

x + 2y + 1 = 0. A.

В. x - 2y - 3 = 0.

C. -x + 2y - 1 = 0.

D. 2x + y - 1 = 0.

E. 2x - y - 3 = 0.

89 29.

In the figure, the line ax - 2y + 5 = 0passes through the point (3, 4). What is the area of the shaded part?

6 A.

В. 25 4

C. 10

D. 12

E. 25 2

89 30.

In the figure, C is the centre of the circle $x^2 + y^2 - 8x - 7y + 12 = 0$. If the circle cuts the x-axis at A and B, find the area of ΔCAB .

 $\frac{7}{4}$ A.

 $\frac{7}{2}$ B.

C.

8 D.

E. 14

89 31.

In the figure, C is the centre of the circle $x^2 + y^2 - 6x - 8y + 21 = 0$. *OA* and *OB* are tangents. If $\angle AOB = 2\theta$, find $\sin \theta$.

A. $\sqrt{21}$ 5

B. $\frac{4}{5}$ $\frac{3}{5}$

C.

D.

E.

89 32.

In the figure, ABCD and WXYZ are sectors of equal radii. If arc BCD: arc XYZ = s: t, then which of the following is/are true?

- I. $\frac{BD}{XZ} = \frac{s}{t}$
- II. $\frac{\text{area of sector } ABCD}{\text{area of sector } WXYZ} = \frac{s}{t}$
- III. $\frac{\angle BAD}{\angle XWZ} = \frac{s}{t}$
- A. I only
- B. II only
- C. III only
- D. I and III only
- E. II and III only

89 33.

In the figure, O is the centre of two concentric circles. AB is tangent to the smaller circle. If AB = 2, find the area of the shaded part.

- A. $\frac{\pi}{2}$
- B. π
- C. 2π
- D. 4π
- E. It cannot be found.

- 89 If 10 arithmetic means are inserted
- 34. between a and b, then the last one is
 - A. $\frac{10a+b}{11}$
 - B. $\frac{9a+b}{10}$.
 - $C. \qquad \frac{10(b-a)}{11} \ .$
 - D. $\frac{a+9b}{10}$
 - E. $\frac{a+10b}{11}$.
- 35. Given that $y \propto \frac{1}{x}$, if x increased by 25%, find the percentage change in y.
 - A. Decreased by 20%
 - B. Decreased by 25%
 - C. Decreased by 80%
 - D. Increased by 20%
 - E. Increased by 25%
- 89 The costs of two kinds of coffee A and
- 36. *B* are \$12/kg and \$20/kg respectively. In what ratio by weight should *A* and *B* be mixed so that the mixture will cost \$15/kg?
 - A. 4:3
 - B. 5:2
 - C. 5:3
 - D. 3:2
 - E. 5:4
- 89
- 37.

In the figure, D and E are points on ABand AC respectively such that $\angle ABC =$ $\angle AED$, AD = 8, AE = 5 and EC = 15. If the area of $\triangle ADE$ is 16, then the area of the quadrilateral BCED is

- A. 200.
- В. 100.
- C. 96.
- 84. D.
- E. 40.

89 38.

In the figure, O is the centre of the circle of radius 6 cm. The area of the shaded part is

- A. $2\pi \,\mathrm{cm}^2$.
- B. $4\pi \,\mathrm{cm}^2$.
- C. $6\pi \text{ cm}^2$
- D. $9\pi \,\mathrm{cm}^2$.
- $12\pi \,\mathrm{cm}^2$ E.

If the sum to infinity of the G.P. 1, -t,

- t^2 , $-t^3$, ... is $\frac{2}{3}$, find the fourth term.
 - A.
 - В.
 - C. 16
 - D.
 - $\frac{1}{8}$ $\frac{5}{8}$ E.

89 40. If
$$\frac{x+3y}{2x+y} = 2$$
, find $\frac{3x+y}{x+2y}$

- A. 2
- В. 3
- 1 C.
- D.
- $\frac{1}{3}$ $\frac{6}{7}$ E.

$$41. \quad \frac{(1-x^2)^n + (1-x)^n}{(1-x)^{2n}} =$$

- B. $\frac{2-x-x^2}{(1-x)^2}$
- $\frac{(1+x)^n + 1}{(1-x)^2}$
- $\frac{(1-x)^n+1}{(1+x)^n}$ D.
- $\frac{2 x^n + x^{2n}}{1 x^{2n}}$ E.
- $\log_4 2\sqrt{2} =$ 42.
 - A.
 - В.

 - C.
 - D.
 - E.

89 If
$$x = \sqrt{a+1} - \sqrt{a}$$
, where $a > 0$, then 43.

B.
$$2\sqrt{a}$$
.

C.
$$2\sqrt{a+1}$$
.

D.
$$2\sqrt{a+1}-\sqrt{a}$$
.

E.
$$2(\sqrt{a+1}+\sqrt{a})$$
.

If p is a root of $ax^2 + bx + c = 0$, which 89

44. of the following is a root of
$$a(\frac{x-3}{2})^2 + b(\frac{x-3}{2}) + c = 0$$
?

A.
$$2p + 3$$

B.
$$2p - 3$$

C.
$$3 - 2p$$

D.
$$\frac{p+3}{2}$$

E.
$$\frac{p-3}{2}$$

89 45.

In figure shows the graph of a quadratic function y = f(x). Given that the graph has vertex (2, 18) and it cuts the x-axis

(5, 0), find the quadratic function.

A.
$$y = (x-2)^2 + 18$$

B.
$$y = -(x-2)^2 + 18$$

C.
$$y = (x + 1)(x - 5)$$

D.
$$y = -2(x+1)(x-5)$$

E.
$$y = 2(x - 1)(x + 5)$$

89 If $2\sin 2\theta - \sin \theta \cos \theta - \cos^2 \theta = 0$, the

46.
$$\tan \theta$$

A. 1 or
$$\frac{1}{2}$$
.

B.
$$-1 \text{ or } \frac{1}{2}$$
.

C. 1 or
$$-\frac{1}{2}$$
.

C.
$$1 \text{ or } -\frac{1}{2}$$
.
D. $-1 \text{ or } -\frac{1}{2}$.

E.
$$1 \text{ or } -2$$
.

89 47.

In the figure, VABCD is a right pyramid of height 3 cm. The base ABCD is a square of side 2 cm. Let θ be the angle between the face VBC and the base. Find $\tan \theta$

A.
$$\frac{1}{3}$$

B.
$$\frac{\sqrt{2}}{2}$$

C.
$$\frac{3}{2}$$

D.
$$3\sqrt{2}$$

89

In the figure, if $\cos \theta = \frac{3}{4}$, find the value of x.

A. 2

- B. 3
- C. 4
- D. 5
- E. 6
- 89 49.

Ray of sunlight Ray of sunlight

A vertical rectangular wall on the horizontal ground, 1 m high and 10 m long, runs east and west as shown in the figure. If the sun bears S60°E at an elevation of 45°, find the area of the shadow of the wall on the ground.

- A. $\frac{5}{2}$ m²
- B. 5 m^2
- C. $5\sqrt{2} \text{ m}^2$
- D. $5\sqrt{3} \text{ m}^2$
- E. 10 m^2
- 89 50.

In the figure, ABCD is a trapezium with $AB \parallel DC$. If BC = 1, then AD =

- A. $\frac{\sin \beta}{\sin \alpha}$
- B. $\frac{\sin \alpha}{\sin \beta}$.
- C. $\sin \alpha \sin \beta$.
- D. $\frac{\cos \beta}{\cos \alpha}$.

- E. $\frac{\cos\alpha}{\cos\beta}$.
- 89 51.

In the figure, O is the centre of the smaller circle. OAB and PQR are straight lines. Find θ .

- A. 56°
- B. 108°
- C. 112°
- D. 118°
- E. 124°
- 89 52.

In the figure, B is the mid-point of arc AC. AC = AD. If $\angle ADC = 56^{\circ}$, then $\angle BCD =$

- A. 84°.
- B. 90°.
- C. 96°.
- D. 112°.
- E. 124°.

89 53.

In the figure, ABCD is a parallelogram. E and F are the mid-points of AB and DC respectively. BF and ED cut AC at P and Q respectively. If the area of ABCD is 48, find the area of the shaded part.

- A. 6
- B. 8
- C. 9.6
- D. 12
- E. 16

89 54.

In the figure, AC cuts BD at O. The areas of $\triangle AOB$, $\triangle AOD$ and $\triangle BOC$ are 7 cm², 12 cm² and 10.5 cm² respectively. Find the area of $\triangle OCD$.

- A. 5.5 cm^2
- B. 8 cm^2
- C. 8.5 cm^2
- D. 15.5 cm^2
- E. 18 cm^2