Form 5

HKCEE 1981 Mathematics II

$$\begin{array}{ll} 81 & \frac{(a^2b^{-3})^2}{a^{-2}b} = \end{array}$$

A.
$$a^2b^{-7}$$

B.
$$a^2b^{-5}$$

C.
$$a^6b^{-2}$$

D.
$$a^6b^{-6}$$

D.
$$a^6b^{-6}$$

E. a^6b^{-7}

81
2.
$$\frac{1}{x+1} + \frac{1}{x-1} + \frac{x + \frac{1}{x}}{x - \frac{1}{x}} =$$

A.
$$\frac{1}{x+1}$$

B.
$$\frac{1}{r-1}$$

C.
$$\frac{x+1}{x-1}$$

D.
$$\frac{1}{(x+1)(x-1)}$$

E.
$$\frac{x^2 + 4x + 1}{(x+1)(x-1)}$$

81
3. If
$$x = \frac{-bx + ay - c}{a + by}$$
, then $y =$

A.
$$\frac{ax + bx + c}{a - bx}$$

B.
$$-\frac{ax + bx + c}{a - bx}$$

C.
$$\frac{ax + bx + c}{a + bx}$$

D.
$$-\frac{ax+bx+c}{a+bx}$$

E.
$$\frac{ax - bx - c}{a - bx}$$

81
$$(2^x)^x =$$

A.
$$2^{(x^x)}$$

B.
$$2^{x} \cdot x^{x}$$

C. $2x^{x}$
D. 2^{2x}

C.
$$2x^x$$

D.
$$2^{2x}$$

E.
$$2^{(x^2)}$$

5.
$$\left(\frac{\frac{x}{y} + \frac{y}{x} + 2}{\frac{\frac{x}{y} - \frac{y}{x}}{x}} \right)^{-1} =$$

A.
$$\frac{x-y}{x+y}$$

B.
$$\frac{x+y}{x-y}$$

C.
$$-\frac{x+y}{x-y}$$

D.
$$\frac{x^2 + y^2}{x^2 - y^2}$$

E.
$$\frac{x^2 - y^2}{x^2 + y^2}$$

81 6. If
$$H = K + \frac{M}{4\pi (r^2 + l^2)^n}$$
 and $r > 0$, then

A.
$$\left\{ \left[\frac{M}{4\pi (H-K)} \right]^{-n} - r^2 \right\}^{\frac{1}{2}}$$

B.
$$\left[\frac{M}{4\pi(H-K)}\right]^{-\frac{n}{2}}-l$$

A.
$$\left\{ \left[\frac{M}{4\pi(H-K)} \right]^{-n} - r^2 \right\}^{\frac{1}{2}}$$
B.
$$\left[\frac{M}{4\pi(H-K)} \right]^{-\frac{n}{2}} - l$$
C.
$$\left\{ \left[\frac{M}{4\pi(H-K)} \right]^{\frac{1}{n}} - l^2 \right\}^{\frac{1}{2}}$$

- $\left[\frac{M}{4\pi(H-K)}\right]^{\frac{1}{2n}} l$ $\left\{\left[\frac{4\pi}{M(H-K)}\right]^{\frac{1}{n}} l^{2}\right\}^{\frac{1}{2}}$
- If $f(x) = x^2 + x + 1$, then f(x + 1) f(x)81 7.
 - A. 1 B. 3
 - C. 2x + 1
 - D. 2x + 2
 - $x^2 + x + 1$ E.
- 81 If $\log_{10}x + \log_{10}4 = \log_{10}(x + 4)$, what is
- 8. the value of x?
 - A. 0
 - B. 1
 - C.
 - D.
 - x may be any positive number
- 81 It is given that
- 9. x(2x + 3) = x(3x - 4). x = ?
 - A. 0 only
 - В. 7 only
 - C. 0 or 7
 - $-\frac{3}{2}$ or $\frac{4}{3}$ only
 - $0, -\frac{3}{2} \text{ or } \frac{4}{3}$
- 81 2y - 3 > 4y + 2x + 5 is equivalent to 10.
 - A. y > x + 4
 - B. y < x + 4
 - C. y > -x 4
 - D. y < -x 4
 - y > x + 1E.

- The nth term of the arithmetic 81
- progression 2, 6, 10, 14, ... is
 - $2n^2$ A.
 - В. 4n
 - C. 4n - 2
 - 4n + 2
 - E. 6 - 4n
- If 3x 2y = x + 3y, then $x^2 : y^2 =$ 81 12.
 - A. 2:5
 - 5:2 В.
 - C. 4:25
 - D. 25:4
 - E. 1:4
- 81 The marked price of a book is x. 30%
- 13. of this price is profit. If the book is sold at a discount of 20%, what will the profit then be?
 - A. \$0.04x
 - В. \$0.06x
 - C. \$0.1*x*
 - D. \$0.24x
 - E. \$0.56x
- A group consists of n boys and n girls. 81
- If two of the girls are exceeded by two other boys, then 51% of the group members will be boys. What is n?
 - 50 A.
 - В. 51
 - C. 52
 - D. 100
 - E. 102
- 81 If the surface area of a spherical soap
- 15. bubble increases by 44%, its volume increases by
 - A. 20%
 - 33.1% В.
 - C. 60%
 - 66% D.
 - E. 72.8%

The total area of the six faces of the solid cube in the figure is 96 cm^2 . What is the length of the diagonal AB?

A.
$$6\sqrt{2}$$
 cm

B.
$$4\sqrt{3}$$
 cm

C.
$$4\sqrt{2}$$
 cm

D.
$$2\sqrt{6}$$
 cm

- 81 A merchant sold 100 chairs. 80 of
- 17. them were sold at a profit of 30% on each chair, while 20 of them were sold at a loss of 40% on each chair. What is his percentage gain or loss on the whole stock?

81 18. If
$$0^{\circ} < \theta < 90^{\circ}$$
 and $\sin \theta = \frac{k}{2}$,

then $\cos \theta =$

A.
$$1-\frac{k}{2}$$

B.
$$\frac{2}{\sqrt{4+k^2}}$$

$$C. \quad \frac{\sqrt{4+k^2}}{2}$$

D.
$$\frac{2}{\sqrt{4-k^2}}$$
E.
$$\sqrt{4-k^2}$$

$$\begin{array}{ll}
81 \\
19.
\end{array}
\tan \theta \sin \theta - \frac{1}{\cos \theta} =$$

B.
$$\cos \theta$$

C.
$$-\cos \theta$$

D.
$$\frac{-1}{\cos\theta}$$

E.
$$-\tan \theta \sin \theta$$

- 81 If $0^{\circ} \le \theta \le 360^{\circ}$, the number of roots of
- 20. the equation

$$2 \sin \theta \cos \theta - \cos \theta = 0$$
 is

- 81 An angle measures x radians. What is
- 21. its measure in degrees?

A.
$$\left(\frac{\pi x}{180}\right)^{c}$$

B.
$$\left(\frac{180x}{\pi}\right)^{\circ}$$

C.
$$\left(\frac{\pi}{180x}\right)^{\circ}$$

D.
$$\left(\frac{\pi x}{360}\right)^{\circ}$$

E.
$$\left(\frac{360x}{\pi}\right)^{3}$$

In the figure, $\cos \theta =$

- A.
- В.
- C.
- D.
- $\frac{2}{3}$ $\frac{3}{4}$ $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{4}$ E.

81 23.

In the figure, AD = p, DC = q, $\angle B =$ 90° . AB =

- A. $p \sin \theta + q \sin \phi$
- В. $p\cos\theta + q\cos\phi$
- C. $p \sin \theta + q \cos \phi$
- D. $p\cos\theta + q\sin\phi$
- $(p+q)(\cos\theta+\cos\phi)$ E.

81 24.

In the figure, BE is a diameter of the circle. ABC and EDC are straight lines. $x^{o} =$

- 21° A.
- 31° B.
- C. 38°
- D. 52°
- E. 59°

81 25.

In the figure, AT touches the circle at A. In $\triangle ABC$, $\angle A: \angle B: \angle C=2:3:4$. θ =

- 40° A.
- 50° В.
- 60° C.
- 70° D.
- $80^{\rm o}$ E.

In the figure, AB is a diameter of the circle with centre at O. The length of the minor arc AC in twice the length of the minor arc CD. $\angle BOD =$

81 27.

In the figure, two circles both with radius

2 cm touch each other externally. AP and AQ are equal tangents to the two circles. AP = ?

A.
$$\sqrt{3}$$
 cm

B.
$$2\sqrt{3}$$
 cm

D.
$$4\sqrt{3}$$
 cm

E.
$$\frac{4\sqrt{3}}{3}$$
 cm

81 28.

In the figure, *ABCD* is a quadrilateral. The shaded portions are four sectors with centres at *A*, *B*, *C* and *D*. Their radii are all equal to a. What is the total area of the four sectors?

A.
$$\pi a^2$$

B.
$$2\pi a^2$$

C.
$$4\pi a^2$$

D.
$$\sqrt{2} \pi a^2$$

81 $2x^2 - 2 \le 0$ is equivalent to

29.

A.
$$x \le 1$$

B.
$$x \ge -1$$

C.
$$-1 \le x \le 1$$

D.
$$x \ge 1$$
 or $x \le -1$

E.
$$x \le 1$$
 or $x \ge -1$

81 30.

In the figure, which point in the shaded region will make the value of x - 2y a minimum

- A. *A*
- B. *B*
- C. *C*
- D. *D*
- E. *E*
- 81 $6x^2 + kx + 6 = 0$ is a quadratic equation
- 31. in which k is a constant. Its roots α and β are positive. $\log_{10}\alpha + \log_{10}\beta =$
 - A. 0
 - B. 1
 - C. $\log_{10}6$
 - D. $\log_{10}(-k)$
 - E. $\log_{10}(-\frac{k}{6})$
- 81 $-3x^2 3x = -3(x + a)^2 + b$ is an identity
- 32. in x. What are the values of the constants a and b?
 - A. a = 1 and b = 0
 - B. $a = \frac{1}{2} \text{ and } b = \frac{3}{4}$
 - C. $a = \frac{1}{2} \text{ and } b = \frac{3}{4}$
 - D. $a = -\frac{1}{2}$ and $b = \frac{3}{4}$
 - E. $a = -\frac{1}{2}$ and $b = -\frac{3}{4}$
- 81 The H.C.F. and L.C.M. of three
- 33. expressions are a^2b^2c and $a^4b^6c^4$ respectively. Two of the expressions are $a^2b^3c^4$ and $a^3b^2c^2$. The third expression is
 - A. a^3b^3c
 - B. $a^3b^6c^4$
 - C. a^4b^2c
 - D. a^4b^6c
 - E. $a^4b^6c^2$
- 81 The sum of the first five terms of an
- 34. arithmetic progression is 15. If the fourth term is 7, the first term is

- A. -5
- B. -3
- C. -1
- D. 1
- E. 10
- 81 Which of the following can be summed
- 35. to infinity?
 - I. The arithmetic progression
 - 4, 3, 2, 1,
 - II. The geometric progression 27, 9, 3, 1,
 - III. The geometric progression $16, -8, 4, -2, \dots$
 - A. II only
 - B. I and II only
 - C. I and III only
 - D. II and III only
 - E. I, II and III
- 81 The running speeds of three boys A, B
- 36. and C are in the ratios a:b:c. The times that A, B and C take to complete a 1500 m race are in the ratios
 - A. a:b:c
 - B. *c*:*b*:a
 - C. b+c:a+c:a+b
 - D. $\frac{1}{a}:\frac{1}{b}:\frac{1}{c}$
 - E. $\frac{a}{b}:\frac{b}{c}:\frac{c}{a}$
- 81 If n is a positive integer, which of the
- 37. following numbers is/are odd?
 - I. 2^{2n+1}
 - II. $3(2^n)$
 - III. $(2n+1)^2$
 - A. II only
 - B. III only
 - C. I and III only
 - D. II and III only
 - E. I, II and III

- 81 A factory employs x workers each
- 38. working n hours a day. The whole factory produces k watches per day. If y workers go on leave, then how many hours a day should the remaining workers work in order to produce the same number of watches per day?
 - A. nx y
 - В. ny \boldsymbol{x}
 - C. nx 4 y
 - D. nx x - y
 - E. n(x-y)
- 81 The daily wages of a man and a boy are
- 39. in the ratio 2:1. In a day a man has to work 8 hours but a boy only 6 hours. The hourly wages of a man and a boy are in the ratio
 - A. 8:3
 - B. 2:1
 - C. 3:2
 - D. 4:3
 - E. 1:1

In the figure, $\angle BAC = 90^{\circ}$, AB = 8, AC = 5 and $AX \perp BC$. BCDE is a rectangle with CD = AX. What is the area of the rectangle BCDE?

- A. 20
- В. 40
- C. 80
- D. 89

- E. $4\sqrt{89}$
- 81
- 41.

The height of the cone in the figure is h. It contains water to a depth of $\frac{1}{2}h$.

Volume of water Capacity of the cone

- A. 1 8
- В. $\frac{1}{4}$
- C.
- $\frac{1}{2}$ $\frac{3}{4}$ $\frac{7}{8}$ D.
- E.

81 42.

The figure above represents a $50 \text{m} \times$ 20 m swimming pool. The pool is in the shape of a prism with a rectangular surface and four vertical walls. dimensions of the sidewall ABCDEF are as shown in the figure. What is the capacity of the pool in m³?

- 1200 A.
- 1500 В.

- C. 1800
- D. 2000
- E. It cannot be determined
- 81 Given that $\sin \theta - \cos \theta = \frac{1}{2}$, what is 43. the value of $\sin \theta \cos \theta$?
 - A. 2
 - B.
 - C.
 - D.
 - E. It cannot be determined
- 81 If $0^{\circ} \le \theta \le 360^{\circ}$, the minimum value of $1 + 2\cos\frac{\theta}{2}$ is
 - A. -2
 - В. -1
 - C. 0
 - D.
 - 1 E. 2
- 81 45.

The figure above shows the graph of

- $y = \sin(x^{\circ} + 30^{\circ})$ A.
- $y = \sin(x^{\circ} 30^{\circ})$
- $y = \sin(x^{\circ} + 150^{\circ})$ C.
- $y = \sin(x^{\circ} 150^{\circ})$ D.
- E. $y = \sin(x^{0} + 60^{0})$

- 81 The radius of a sector is 3 cm and the
- 46. perimeter is 10 cm. What is the area of the sector?
 - 6 cm^2 A.
 - 12 cm^2 В.
 - 15 cm^2 C.
 - 18 cm^2 D.
 - 45 cm^2 E.
- 81 47.

Figure (a)

Figure (b)

The cone in Figure (b) is formed by bending the sector in Figure (a). The angle of the sector is 60° and the radius is 12 cm. The radius of the base of the cone is

- 2 cm A.
- 4 cm В.
- C. 6 cm
- D. $2\pi \text{ cm}$
- E.
- 81 48.

In the figure, $\sin \theta =$

- A. 0.5
- В. 0.6
- C. 0.625
- D. 0.75
- E. 0.8

In the figure, $AD \perp BC$. CD =

A. $h \sin \alpha \tan \beta$

B. $h \cos \alpha \tan \beta$

C. $h \tan \alpha \sin \beta$

D. $\frac{h\cos\alpha}{\tan\beta}$

E. $\frac{h\sin\alpha}{\tan\beta}$

81 50.

In the figure, ABC is an equilateral triangle of side 2a. P and Q are the mid-points of AB and AC respectively. PQRS is a rectangle. What is the area of PQRS?

A. a^2

B. $\frac{1}{2}a^2$

C. $\frac{2}{3}a^2$

D. $\frac{1}{\sqrt{3}}a^2$

E. $\frac{\sqrt{3}}{2}a^2$

81

51.

In the figure, AB and AC touch the circle at B and C. If P is any point on the minor arc BC, what is θ ?

A. 112°

B. 118°

C. 124°

D. 146°

E. It cannot be determined

81 I

52.

 $\angle BAC = 90^{\circ}$ $AD \perp BC$.

 \mathbf{II}

AC and BC intersect at E.

III

BC produced meets the tangent AT at T.

Which of the above figures contains one or more pairs of similar triangles?

- A. I only
- В. I and II only
- C. I and III only
- D. II and III only
- E. I, II and III

81 53.

In the figure, P is the mid-point of AB. E is a point on AC such that

$$AE : EC = 2 : 1$$
. Area of $\triangle BFE$

- A.
- $\frac{1}{2}$ $\frac{2}{3}$ В.
- 1 C.
- $\frac{3}{2}$ D.
- E.

In the figure, AB // CD // EF. ACF, BCE and BDF are straight lines. AB = 12, EF = 6. CD = ?

- A. 4.5
- B. 4

81

54.

- C. 3.6
- D. 3
- E. 2