HKDSE Problems

- 1. If P is a moving point in the rectangular coordinate plane such that the distance between P and the point (20, 12) is equal to 5, then the locus of P is a
 - A. circle.
 - B. square.
 - C. parabola.
 - D. triangle.

[2012-DSE-MATHS 2-24]

- 2. The coordinates of the points A and B are (2, 5) and (4, -1) respectively. Let P be a moving point in the rectangular coordinate plane such that AP = BP. Find the equation of the locus of P.
 - A. x 3y + 3 = 0
 - **B**. x 3y 7 = 0
 - C. x 3y + 13 = 0
 - **D**. 3x + y 11 = 0

[2013-DSE-MATHS 2-24]

- 3. The equations of the straight lines L_1 and L_2 are 2x + 3y = 5 and 4x + 6y = 7 respectively. If P is a moving point in the rectangular coordinate plane such that the perpendicular distance from P to L_1 is equal to the perpendicular distance from P to L_2 , then the locus of P is a
 - A. circle.
 - B. square.
 - C. parabola.
 - D. straight line.

[2014-DSE-MATHS 2-24]

- 4. The coordinates of the points A and B are (2, 0) and (1, 5) respectively. If P is a moving point in the rectangular coordinate plane such that P is equidistant from A and B, then the locus of P is
 - **A**. the perpendicular bisector of AB.
 - **B**. the circle with AB as a diameter.
 - \mathbb{C} . the straight line which passes through A
 - **D.** the angle bisector of $\angle AOB$, where O is the origin.

[2015-DSE-MATHS 2-24]

5. It is given that A and B are two distinct points lying on the circle $x^2 + y^2 - 6x - 4y - 87 = 0$. Let P be a moving point in the rectangular coordinate plane such that AP = BP. The equation of the locus of P is x + 2y + k = 0, where k is a constant. Find k.

- **A**. -8
- **B**. -7
- C. 7
- **D**. 8

[2017-DSE-MATHS 2-27]

- 6. The equations of the straight lines L₁ and L₂ are 3x y + 7 = 0 and 12x 4y 11 = 0 respectively. Let P be a moving point in the rectangular coordinate plane such that the perpendicular distance from P to L₁ is equal to the perpendicular distance from P to L₂. Find the equation of the locus of P.
 - A. 8x 24y 17 = 0
 - B. 8x 24y + 17 = 0
 - C. 24x 8y 17 = 0
 - **D.** 24x 8y + 17 = 0

[2018-DSE-MATHS 2-25]

- 7. The equation of the straight line L is 5x 7y 14 = 0. If P is a moving point in the rectangular coordinate plane such that the perpendicular distance from P to L is equal to 3, then the locus of P is
 - A. a sector
 - B. a square
 - C. a parabola
 - D. a pair of straight lines

[2019-DSE-MATHS 2-26]

- 8. Let A be the point of intersection of straight lines 9x + 4y 7 = 0 and 9x 4y + 7 = 0. If P is a moving point in the rectangular coordinate plane such that the distance between P and A is 8, then the locus of P is
 - A. circle
 - B. triangle
 - C. quadrilateral
 - D. regular hexagon

[2020-DSE-MATHS 2-25]