12 Geometry of Circles

12A Angles and chords in circles

12A.1 HKCEE MA 1980(1/1*/3) - I 10

(Continued from 15A.1.)

A, B and C are three points on the line OX such that OA = 2, OB = 3 and OC = 4. With A, B, C as centres and OA, OB, OC as radii, three semi-circles are drawn as shown in the figure. A line OY cuts the three semi circles at P, Q, R respectively.

(a) If $\angle YOX = \theta$, express $\angle PAX$, $\angle QBX$ and $\angle RCX$ in terms of θ .

(b) Find the following ratios: area of sector OAP: area of sector OBQ: area of sector OCR.

(c) If $RD \perp OX$, calculate the angle θ .

12A.2 HKCEE MA 1980(1*) - I 14

In the figure, AB = AC, AD = AE, x = y. Straight lines BD and CE intersect at K.

- (a) Prove that $\triangle ABD$ and $\triangle ACE$ are congruent.
- (b) Prove that ABCK is a cyclic quadrilateral.
- (c) Besides the quadrilateral ABCK, there is another cyclic quadrilateral in the figure. Write it down (proof is not required).

12A.3 HKCEE MA 1981(2) I 7

In the figure, O is the centre of circle ABC, $\angle OAB = 40^{\circ}$. Calculate $\angle BCA$.

12A.4 HKCEE MA 1982(2) - I 6

In the figure, O is the centre of the circle BAD. BOC and ADC are straight lines. If $\angle ADO = 50^{\circ}$ and $\angle ACB = 20^{\circ}$, find x, y and z.

12. GEOMETRY OF CIRCLES

12A.5 HKCEE MA 1982(2) I 13

In the figure, $\triangle ADB$ and $\triangle ACE$ are equilateral triangles. DC and BE intersect at F.

- (a) Prove that DC = BE. [Hint: Consider $\triangle ADC$ and $\triangle ABE$.]
- (b) (i) Prove that A, D, B and F are concyclic.
 - (ii) Find ∠BFD.
- (c) Let the mid points of DB, BC and CE be X, Y and Z respectively. Find the angles of △XYZ.

12A.6 HKCEE MA 1989 - I - 4

AB is a diameter of a circle and M is a point on the circumference. C is a point on BM produced such that BM = MC.

- (a) Draw a diagram to represent the above information.
- (b) Show that AM bisects ∠BAC.

12A.7 HKCEE MA 1989 I-6

(To continue as 14A.4.)

In the figure, ABCD is a cyclic quadrilateral with AD = 10 cm, $\angle ACD = 60^{\circ}$ and $\angle ACB = 40^{\circ}$.

(a) Find $\angle ABD$ and $\angle BAD$.

12A.8 HKCEE MA 1990 I-9

In the figure, AB is a diameter of the circle ADB and ABC is an isosceles triangle with AB = AC.

- (a) Prove that $\triangle ABD$ and $\triangle ACD$ are congruent.
- (b) The tangent to the circle at D cuts AC at the point E. Prove that △ABD and △ADE are similar.
- (c) In (b), let AB = 5 and BD = 4.
 - (i) Find DE.
 - (ii) CA is produced to meet the circle at the point F. Find AF.

In the figure, A, B, C, D, E and F are points on a circle such that AD//FE and $\widehat{BCD} = \widehat{AFE}$. AD intersects BE at X. AF and DE are produced to meet at Y.

- (a) Prove that $\triangle EFY$ is isosceles.
- (b) Prove that BA//DE.
- (c) Prove that A, X, E, Y are concyclic.
- (d) If $b = 47^\circ$, find f_1 , y and x.

12A.10 HKCEE MA 1993 - I - 11

The figure shows a semicircle with diameter AD and centre O. The chords AC and BD meet at P. Q is the foot of the perpendicular from P to AD.

- (a) Show that A, Q, P, B are concyclic.
- (b) Let $\angle BQP = \theta$. Find, in terms of θ ,
 - (i) ∠BQC,
 - (ii) ∠BOC.
- (c) Let $\angle CAD = \phi$. Find $\angle CBQ$ in terms of ϕ .

12A.11 HKCEE MA 1994 I - 13

In the figure, A, B, C, D are points on a circle and ABE, GHKE, DJCE, AGDF, HJF, BKCF are straight lines. FH bisects $\angle AFB$ and GE bisects $\angle AED$.

- (a) Prove that $\angle FGH = \angle FKH$.
- (b) Prove that $FH \perp GK$.
- (c) (i) If $\angle AED = \angle AFB$, prove that D, J, H, G are concyclic.
 - (ii) If $\angle AED = 28^{\circ}$ and $\angle AFB = 46^{\circ}$, find $\angle BCD$.

12. GEOMETRY OF CIRCLES

12A.12 HKCEE MA 1996 - I - 6

In the figure, A, B, C, D are points on a circle. CB and DA are produced to meet at P. If AB//DC, prove that AP = BP.

12A.13 HKCEE MA 1997 - I - 9

In the figure, AC is a diameter of the circle. $AC = 4 \,\mathrm{cm}$ and $\angle BAC = 30^{\circ}$. Find

- (a) ∠BDC and ∠ADB,
- (b) $\widehat{AB}:\widehat{BC}$,
- (c) AB: BC.

12A.14 HKCEE MA 1998-I-6

In the figure, A, B, \overline{C} , D are points on a circle. AC and \overline{BD} meet at E.

- (a) Which triangle is similar to $\triangle ECD$?
- (b) Find y.

12A.15 HKCEE MA 1998 - I - 14

In the figure, O is the centre of the semicircle ABCD and AB = BC. Show that BO//CD.

12A.16 HKCEE MA 1999 - I - 5

In the figure, A, B, C, D are points on a circle and AC is a diameter. Find x and y.

12A.17 HKCEE MA 1999 - I - 16

(To continue as 16C.20.)

- (a) In the figure, ABC is a triangle right angled at B. D is a point on AB. A circle is drawn with DB as a diameter. The line through D and parallel to AC cuts the circle at E. CE is produced to cut the circle at F.
 - (i) Prove that A, F, B and C are concyclic.
 - (ii) If M is the mid point of AC, explain why MB = MF.

12A.18 HKCEE MA 2000 - I - 7

In the figure, AD and BC are two parallel chords of the circle. AC and BD intersect at E. Find x and y.

12A.19 HKCEE MA 2001 - I - 5

In the figure, AC is a diameter of the circle. Find $\angle DAC$.

12A.20 HKCEE MA 2002-I-9

In the figure, BD is a diameter of the circle ABCD. AB = AC and $\angle BDC = 40^{\circ}$. Find $\angle ABD$.

12. GEOMETRY OF CIRCLES

12A.21 HKCEE MA 2002 I 16

(To continue as 16C.23.)

In the figure, AB is a diameter of the circle ABEG with centre C. The perpendicular from G to AB cuts AB at O. AE cuts OG at D. BE and OG are produced to meet at F.

Mary and John try to prove $OD \cdot OF = OG^2$ by using two different approaches.

- (a) Mary tackles the problem by first proving that $\triangle AOD \sim \triangle FOB$ and $\triangle AOG \sim \triangle GOB$. Complete the following tasks for Mary.
 - (i) Prove that $\triangle AOD \sim \triangle FOB$.
 - (ii) Prove that $\triangle AOG \sim \triangle GOB$.
 - (iii) Using (a)(i) and (a)(ii), prove that $OD \cdot OF = OG^2$.

12A.22 HKCEE MA 2005 - I - 17

(To continue as 16C.26.)

- (a) In the figure, MN is a diameter of the circle MONR. The chord RO is perpendicular to the straight line POQ. RNQ and RMP are straight lines.
 - By considering triangles OQR and ORP, prove that OR² = OP · OQ.
 - (ii) Prove that $\triangle MON \sim \triangle POR$.

12A.23 HKCEE MA 2006 - I - 16

In the figure, G and H are the circumcentre and the orthocentre of $\triangle ABC$ respectively. AH produced meets BC at O. The perpendicular from G to BC meets BC at R. BS is a diameter of the circle which passes through A, B and C.

- (a) Prove that
 - (i) AHCS is a parallelogram,
 - (ii) AH = 2GR.

12A.24 HKCEE MA 2007-1-17

(To continue as 16C.28.)

- (a) In the figure, AC is the diameter of the semi circle ABC with centre O. D is a point lying on AC such that AB = BD. I is the in-centre of △ABD. AI is produced to meet BC at E. BI is produced to meet AC at G.
 - (i) Prove that $\triangle ABG \cong \triangle DBG$.
 - (ii) By considering the triangles AGI and ABE, prove that $\frac{GI}{AG} = \frac{BE}{AB}$.

12A.25 HKCEE MA 2008 - I 17

The figure shows a circle passing through A, B and C. I is the in centre of $\triangle ABC$ and AI produced meets the circle at P.

(a) Prove that BP = CP = IP.

12A.26 HKDSE MA SP I 7

In the figure, O is the centre of the semicircle ABCD. If AB//OC and $\angle BAD = 38^{\circ}$, find $\angle BDC$.

12A.27 HKDSE MA PP - I - 7

In the figure, BD is a diameter of the circle ABCD. If AB = AC and $\angle BDC = 36^{\circ}$, find $\angle ABD$.

12. GEOMETRY OF CIRCLES

12A.28 HKDSE MA PP - I - 14

In the figure, OABC is a circle. It is given that AB produced and OC produced meet at D.

(a) Write down a pair of similar triangles in the fi gure.

(To continue as 16C.51.)

12A.29 HKDSE MA 2012-I-8

In the figure, AB, BC, CD and AD are chords of the circle. AC and BD intersect at E. It is given that BE = 8 cm, CE = 20 cm and DE = 15 cm.

- (a) Write down a pair of similar triangles in the figure. Also find AE.
- (b) Suppose that AB = 10 cm. Are AC and BD perpendicular to each other? Explain your answer.

12A.30 HKDSE MA 2015-I-8

In the figure, ABCD is a circle. E is a point lying on AC such that BC = CE. It is given that AB = AD, $\angle ADB = 58^{\circ}$ and $\angle CBD = 25^{\circ}$. Find $\angle BDC$ and $\angle ABE$.

12A.31 HKDSE MA 2017 - I - 10

(Continued from 11B.11.)

In the figure, OPQR is a quadrilateral such that OP = OQ = OR. OQ and PR intersect at the point S. S is the mid-point of PR.

- (a) Prove that $\triangle OPS \cong \triangle ORS$.
- (b) It is given that O is the centre of the circle which passes through P, Q and R. If OQ = 6 cm and ∠PRQ = 10°, find the area of the sector OPQR in terms of π.

12A.32 HKDSE MA 2018 - I - 8

In the figure, ABCDE is a circle. It is given that AB//ED. AD and BE intersect at the point F.

Express x and y in terms of θ .

12A.33 HKDSE MA 2019 - I - 13

In the figure, O is the centre of circle ABCDE. AC is a diameter of the circle. BD and OC intersect at the point F. It is given that $\angle AED = 115^{\circ}$.

- (a) Find ∠CBF.
- (b) Suppose that BC//OD and OB = 18 cm. Is the perimeter of the sector OBC less than 60 cm? Explain your answer.

12. GEOMETRY OF CIRCLES

12B Tangents of circles

12B.1 HKCEE MA 1980(1*)-I 8

In the figure, TA and TB touch the circle at A and B respectively. $\angle ACB = 65^{\circ}$. Find the value of x.

12B.2 HKCEE MA 1981(2) I - 13

In the figure, circles *PMQ* and *QNR* touch each other at *Q*. *QT* is a common tangent. *PQR* is a straight line. *TP* and *TR* cut the circles at *M* and *N* respectively.

- (a) If ∠P = x and ∠R = y, express ∠MQN in terms of x and y.
- (b) Prove that Q, M, T and N are concyclic.
- (c) Prove that P, M, N and R are concyclic.
- (d) There are several pairs of similar triangles in the figure. Name any two pairs (no proof is required).

12B.3 HKCEE MA 1982(2) I - 14

In the figure, two circles touch internally at T. TR is their common tangent. AB touches the smaller circle at S. AT and BT cut the smaller circle at P and Q respectively. PQ and ST intersect at K.

- (a) Prove that PQ//AB.
- (b) Prove that ST bisects $\angle ATB$.
- (c) \(\Delta STQ \) is similar to four other triangles in the figure.
 Write down any three of them.
 (No proof is required.)

12B.4 HKCEE MA 1983(A/B) - I 2

In the figure, O is the centre of the circle. A and B are two points on the circle such that OAB is an equilateral triangle. OA is produced to C such that OA = AC.

- (a) Find $\angle ABC$.
- (b) Is CB a tangent to the circle at B? Give a reason for your answer.

12B.5 HKCEE MA 1984(A/B) I-5

In the figure, AP and AQ touch the circle BCD at B and D respectively. $\angle PBC = 30^{\circ}$ and $\angle CDQ = 80^{\circ}$. Find the values of x, y and z.

12B.6 HKCEE MA 1985(A/B) - I - 2

In the figure, PB touches the circle ABC at B. PAC is a straight line. $\angle ABC = 60^{\circ}$. AP = AB. Find the value of x.

12B.7 HKCEE MA 1986(A/B) I - 2

In the figure, TAE and TBF are tangents to the circle ABC. If $\angle ATB = 30^{\circ}$ and AC//TF, find x and y.

12B.8 HKCEE MA 1986(A/B)-I-6

In the figure, A, B and C are three points on the circle. CT is a tangent and ABT is a straight line.

- (a) Name a triangle which is similar to $\triangle BCT$.
- (b) Let BT = x, AB = 17 and $CT = 10\sqrt{2}$. Find x.

12. GEOMETRY OF CIRCLES

12B.9 HKCEE MA 1987(A/B) I 6

The figure shows a circle, centre O, inscribed in a sector ABC. D, E and F are points of contact. OD = 1 cm, AB = r cm and $\angle BAC = 60^{\circ}$. Find r.

12B.10 HKCEE MA 1987(A/B) I-7

In the figure, O is the centre of the circle. AOCP is a straight line, PB touches the circle at B, BA = BP and $\angle PAB = x^{\circ}$. Find x.

12B.11 HKCEE MA 1988 I - 8(b)

In the figure, CT is tangent to the circle ABT.

- (i) Find a triangle similar to $\triangle ACT$ and give reasons.
- (ii) If CT = 6 and BC = 5, find AB.

12B.12 HKCEE MA 1991 I-13

In the figure, A, B are the centres of the circles DEC and DFC respectively. ECF is a straight line.

- (a) Prove that triangles ABC and ABD are congruent.
- (b) Let $\angle FED = 55^{\circ}$, $\angle ACB = 95^{\circ}$.
 - Find ∠CAB and ∠EFD.
 - (ii) A circle S is drawn through D to touch the line CF at F.
 - (1) Draw a labelled rough diagram to represent the above information.
 - (2) Show that the diameter of the circle S is 2DF.

12B.13 HKCEE MA 1995 - I - 14

In Figure (1), AP and AQ are tangents to the circle at P and Q. A line through A cuts the circle at B and C and a line through Q parallel to AC cuts the circle at R. PR cuts BC at M.

- (a) Prove that
 - (i) M, P, A and Q are concyclic;
 - (ii) MR = MQ.
- (b) If $\angle PAC = 20^{\circ}$ and $\angle QAC = 50^{\circ}$, find $\angle QPR$ and $\angle PQR$. (You are not required to give reasons.)
- (c) The perpendicular from M to RQ meets RQ at H (see Figure (2)).
 - (i) Explain briefly why MH bisects RQ.
 - (ii) Explain briefly why the centre of the circle lies on the line through M and H.

Figure (1)

Figure (2)

12B.14 HKCEE MA 1997 - I - 16

- (a) In the figure, D is a point on the circle with AB as diameter and C as the centre. The tangent to the circle at A meets BD produced at E. The perpendicular to this tangent through E meets CD produced at F.
 - (i) Prove that AB//EF.
 - (ii) Prove that FD = FE.
 - (iii) Explain why F is the centre of the circle passing through D and touching AE at E.

(To continue as 16C.18.)

(To continue as 16C.21.)

12B.15 HKCEE MA 2000 - I - 16

In the figure, C is the centre of the circle PQS. OR and OP are tangent to the circle at S and P respectively. OCQ is a straight line and $\angle QOP = 30^\circ$.

- (a) Show that $\angle PQO = 30^{\circ}$.
- (b) Suppose OPQR is a cyclic quadrilateral.
 - (i) Show that RQ is tangent to circle PQS at Q.

12. GEOMETRY OF CIRCLES

12B.16 HKCEE MA 2003 - I - 17

- (a) In the figure, OP is a common tangent to the circles C₁ and C₂ at the points O and P respectively. The common chord KM when produced intersects OP at N. R and S are points on KO and KP respectively such that the straight line RMS is parallel to OP.
 - (i) By considering triangles NPM and NKP, prove that NP² = NK⋅NM.
 - (ii) Prove that RM = MS.

12B.17 HKCEE MA 2004 I 16(a),(b),(c)(i)

In the figure, BC is a tangent to the circle OAB with BC//OA. OA is produced to D such that AD = OB. BD cuts the circle at E.

- (a) Prove that $\triangle ADE \cong \triangle BOE$.
- (b) Prove that $\angle BEO = 2\angle BOE$.
- (c) Suppose OE is a diameter of the circle OAEB.
 - (i) Find ∠BOE.

(To continue as 16C.25.)

12B.18 HKCEE AM 2002 - 15

(a) DEF is a triangle with perimeter p and area A. A circle C_1 of radius r is inscribed in the triangle (see the figure). Show that $A = \frac{1}{2}pr$.

12B.19 HKDSEMASP-I-19

In the figure, the circle passes through four points A, B, C and D. PQ is the tangent to the circle at D and is parallel to BD. AC and BD intersect at E. It is given that AB = AD.

- (a) (i) Prove that $\triangle ABE \cong \triangle ADE$.
 - (ii) Are the in centre, the orthocentre, the centroid and the circum centre of ΔABD collinear? Explain your answer.

12B.20 HKDSE MA 2016 - I - 20

(To continue as 16C.54.)

 $\triangle OPQ$ is an obtuse-angled triangle. Denote the in-centre and the circumcentre of $\triangle OPQ$ by I and J respectively. It is given that P, I and J are collinear.

(a) Prove that OP = PQ.

12B.21 HKDSE MA 2019 I 17

(To continue as 16D.14.)

(a) Let a and p be the area and perimeter of $\triangle CDE$ respectively. Denote the radius of the inscribed circle of $\triangle CDE$ by r. Prove that pr = 2a.

12 Geometry of Circles

12A Angles and chords in circles

12A.1 HKCEE MA 1980(1/1*/3)-1-10

- (a) $\angle PAX = 2\theta$ (\angle at centre twice \angle at \bigcirc^{ce}) Similarly, $\angle QBX = \angle RCX = 2\theta$
- (b) Areas of sector $OAP: OBQ: OCR = (OA:OB:OC)^2$ = 4:9:16
- CD 2 1 (c) $\cos \angle RCX = \frac{cD}{CR} = \frac{z}{4} = \frac{1}{2} \implies 2\theta = 60^{\circ} \implies \theta = 30^{\circ}$

12A.2 HKCEE MA 1980(1*) - I - 14

- $\angle CAD = \angle CAD$ (common) $x + \angle CAD = \angle CAD + y$ (given) $\Rightarrow \angle BAD = \angle CAE$ In $\triangle ABD$ and $\triangle ACE$. AB = AC(given) $\angle BAD = \angle CAE$ (proved) AD = AE(given) $\triangle ABD \cong \triangle ACE$ (SAS)
- (b) $\angle ABK = \angle ACK$ (corr. $\angle s$, $\cong \triangle s$) .: ABCK is cyclic. (converse of \(\alpha \) in the same segment)
- (c) AEDK

12A.3 HKCEE MA 1981(2) - I - 7

 $\angle OBA = 40^{\circ}$ (base \angle s, isos, \triangle) $\angle BOA = 180^{\circ} - 40^{\circ} - 40^{\circ} = 100^{\circ} \ (\angle \text{sum of } \triangle)$ $\angle BCA = 100^{\circ} \div 2 = 50^{\circ}$ (\angle at centre twice \angle at \bigcirc^{α})

12A.4 HKCEE MA 1982(2) - I - 6

 $x = 50^{\circ} - 20^{\circ} = 30^{\circ}$ (ext. \angle of \triangle) Let OC meet the circle at E. Then $\angle BOD = 180^{\circ}$ $x = 150^{\circ}$ (adj. \angle s on st. line) $\Rightarrow \angle BED = 150^{\circ} \div 2 = 75^{\circ}$ (\angle at centre twice \angle at \odot ^{cc}) $z = 180^{\circ} - \angle BED = 105^{\circ}$ (opp. \angle s, cyclic quad.) $\Rightarrow y = 180^{\circ} - 20^{\circ} - z = 55^{\circ} \quad (\angle \text{ sum of } \triangle)$

12A.5 HKCEE MA 1982(2) - I - 13

- $\angle DAB = \angle EAC \approx 60^{\circ}$ (property of equil. △) $\angle DAB + \angle BAC = \angle EAC + \angle BAC$ $\angle DAC = \angle BAE$ In $\triangle ADC$ and $\triangle ABE$. DA = BA(property of equil. △) $\angle DAC = \angle BAE$ (proved) AC = AE(property of equil. \triangle) ∴ △ADC ≅ △ABE (SAS) DC = BE $(corr sides, \cong \triangle s)$
- (b) (i) $\angle ADC = \angle ABF$ (corr. $\angle s$, $\cong \triangle s$) ... A. D. B and F are concyclic.
 - (converse of \(\sin \) in the same segment)
 - (ii) $\angle BFD = \angle BAD = 60^{\circ}$ (\angle s in the same segment)

- BX = XD and BY = YC (given)
- $XY = \frac{1}{2}DC$ and XY//DC (mid-pt thm)

Similarly, $YZ = \frac{1}{2}BE$ and YZ//BE (mid-pt thm)

- DC = BE (proved); XY = YZ
- $\angle BFD = 60^{\circ}$ (proved)
- $\angle BFC = 180^{\circ} 60^{\circ} = 120^{\circ}$ (adj. \angle s on st. line) and $\angle CFE = 60^{\circ}$ (vert. opp. $\angle s$)

Suppose XY meets BE at H and YZ meets DC at K. Then $\angle YHF = \angle CFE = 60^{\circ}$ (corr. $\angle s, XY//DC$) $\angle YKF = \angle BFD = 60^{\circ} \text{ (corr. } \angle s, YZ//BE)$

 $\angle XYZ = 360^{\circ} - \angle YHF - \angle YKF - \angle BFC = 120^{\circ}$ (∠ sum of polygon) $\angle XZY = \angle ZXY$ (base $\angle s$, isos. \triangle)

= $(180^{\circ} - 120^{\circ}) \div 2 = 30^{\circ}$ (\angle sum of \triangle)

12A.6 HKCEE MA 1989-I-4

(a)

- (b) In △ABM and △ACM.
 - AM = AM(common) MB = MC(given) (Z in semi-circle) $\angle AMB = \angle AMC = 90^{\circ}$ $\triangle ABM \cong \triangle ACM$ (SAS) $\angle BAM = \angle CAM$ $(corr. \angle s. \cong \triangle s)$ i.e. AM bisects ∠BAC.

12A.7 HKCEE MA 1989-1-6

(a) $\angle ABD = \angle ACD = 60^{\circ}$ ($\angle s$ in the same segment) $\angle BAD = 180^{\circ} - (60^{\circ} + 40^{\circ})$ (opp. $\angle s$, cyclic quad.)

12A.8 HKCEE MA 1990-1-9

(a) In △ABD and △ACD, $\angle ADB = \angle ADC = 90^{\circ}$ (∠ in semi-circle) AB = AC(given)

AD = AD(common) ∴ △ABD ≅ △ACD (RHS)

- (b) In △ABD and △ADE. $\angle ABD = \angle ADE$ (∠ in alt. segment) $\angle BAD = \angle DAE$ $(corr. \angle s. \cong \triangle s)$ $\angle ADB = \angle AED \quad (\angle \text{sum of } \triangle)$ $\triangle ABD \sim \triangle ADE$ (AAA)
- (c) (i) $AD = \sqrt{AB^2 BD^2} = 3$ (Pyth. thm) $\frac{AB}{BD} = \frac{AD}{DE}$ (com. sides. \to \Delta s) $\frac{5}{4} = \frac{3}{DE}$ DE = 2.4
 - (ii) $\angle AED = \angle ADB = 90^{\circ}$ (corr. $\angle s_* \sim \triangle s$) $\angle CFB = 90^{\circ}$ (\angle in semi-circle) In $\triangle CFB$ and $\triangle CDA$. $\angle CFB = \angle CDA = 90^{\circ}$ (proved)

 $\angle C = \angle C$ (common) $\angle CBF = \angle CAD$ $(\angle sum of \triangle)$ $\triangle CFB \sim \triangle CDA$ (AAA) $\therefore \frac{CF}{CR} = \frac{CD}{CA}$ (corr. sides, $\cong \triangle s$)

AC + AF CD CD+DB CA 5+AF 4 $\frac{1}{4+4} = \frac{4}{5} \Rightarrow AF = 1.4$

12A.9 HKCEE MA 1992-I-11

- $e_3 = d$ (corr. $\angle s$, FE/AD) b=d (\angle s in the same segment) $d = f_1$ (ext. \angle , cyclic quad.) $e_3 = f_1$
 - i.e. $\triangle EFY$ is isosceles. (sides opp. equal \angle s)
- (b) $\overrightarrow{BCD} = \widehat{AFE}$ (given) $e_1 = b$ (equal arcs, equal \angle s)
- .: BA//DE (alt. ∠s equal) (c) $f_1 = b$ (ext. \angle , cyclic quad.) = e₁ (proved)
 - $e_3 = d$ (proved) $f_1 + e_3 + y = 180^{\circ} \quad (\angle \text{sum of } \Delta)$ $\Rightarrow (e_1) + (d) + y = 180^{\circ}$ $x+y = 180^{\circ} \text{ (ext } \angle \text{ of } \triangle \text{)}$
- A, X, E and Y are concyclic. (opp. \angle s supp.)
- (d) $f_1 = b = 47^\circ$ (proved) $e_3 = f_1 = 47^{\circ}$ (proved) $y = 180^{\circ}$ $f_1 - e_3 = 86^{\circ}$ ($\angle \text{sum of } \triangle$) $x = 180^{\circ} - y = 94^{\circ}$ (opp. \angle s, cyclic quad.)

12A.10 HKCEE MA 1993 - I - 11

- (a) $\angle ABP = 90^{\circ}$ (\angle in semi-circle) $\angle PQD = 90^{\circ}$ (given) $\angle ABP = \angle PQD$
 - A, Q, P and B are concyclic. (ext. $\angle = int. opp. \angle$)
- (b) (i) $\angle BAC = \angle BOP = \theta$ ($\angle s$ in the same segment) $\Rightarrow \angle BDC = \theta$ (\angle s in the same segment) Similar to (a), we get D, Q, P and C are concyclic. $\Rightarrow \angle PQC = \angle BDC = \theta$ (\(\angle \text{s in the same segment}\) $\angle BQC = \angle BQP + \angle PQC = 2\theta$
 - (ii) $\angle BOC = 2\angle BAC = 2\theta$ (\angle at centre twice \angle at \bigcirc^{ce})

(c) $\angle BOC = \angle BOC = 2\theta$ (proved) ... BOQC is cyclic. (converse of ∠s in the same segment) $\angle CBQ = \angle COQ$ (\(\alpha \) in the same segment) $2\angle CAD = 2\phi$ (\angle at centre twice \angle at \bigcirc^{ce})

12A.11 HKCEE MA 1994-1-13

- (a) d = b (ext. \angle , cyclic quad.) $g = 180^{\circ} - d - \angle DEG \ (\angle sum of \triangle)$ $=180^{\circ}-d-e$ $k_2 = k_1$ (vert. opp. \angle s)
 - $=180^{\circ} b \angle AEG \ (\angle sum of \triangle)$ $=180^{\circ}-d-e=g$ (proved) $\angle FGH = \angle FKH$
- (b) $h_2 = g + \angle GFH = g + f$ (ext. \angle of \triangle) $h_1 = k_2 + \angle KFH = k_2 + f$ (ext. \angle of \triangle) $= g + f = h_2$ (proved)
- $h_1 = h_2 = 180^{\circ} \div 2 = 90^{\circ}$ (adj. \angle s on st. line) i.e. $FH \perp GK$
- (c) (i) $d = 180^{\circ} a 2e$ ($\angle \text{ sum of } \triangle$) $=180^{\circ}-a$ 2f (given) $= \angle ABF \quad (\angle \text{ sum of } \triangle)$: $d + \angle ABF = 180^{\circ}$ (opp. $\angle s$, cyclic quad.) $d = 180^{\circ} \div 2 = 90^{\circ}$ Hence, $d = h_1 = 90^\circ$ (proved) \Rightarrow D, J, H and G are concyclic. (ext. $\angle = \text{int. opp. } \angle$)
- (ii) $d = 180^{\circ} 28^{\circ} a = 152^{\circ} a \ (\angle \text{sum of } \triangle)$ $b = a + 46^{\circ} \text{ (ext. } \angle \text{ of } \triangle \text{)}$ 152° a = a + 46° (ext. \angle , cyclic quad.) $a = 53^{\circ}$ $\angle BCD = 180^{\circ}$ 53° (opp. \angle s, cyclic quad.) $=127^{\circ}$

12A.12 HKCEE MA 1996-1-6

 $\angle BAP = \angle DCP$ (ext. \angle , cyclic quad.) $= \angle ABP$ (corr. \angle s, AB//DC) : AP = BP (sides opp. equal \angle s)

12A.13 HKCEE MA 1997 - I - 9

- (a) $\angle BDC = \angle BAC = 30^{\circ}$ (\angle s in the same segment) $\angle ADB = 90^{\circ} - \angle BDC = 60^{\circ}$ (\angle in semi-circle)
- (b) $\overrightarrow{AB} : \overrightarrow{BC} = \angle ADB : \angle BDC = 2 : 1$ (arcs prop. to $\angle s$ at Off)
- (c) $\angle ABC = 90^{\circ}$ (\angle in semi-circle) $\Rightarrow AB = 4\cos 30^{\circ} = 2\sqrt{3}, BC = 4\sin 30^{\circ} = 2$ $AB:BC = \sqrt{3}:1$

12A.14 HKCEE MA 1998-I-6

- (a) △*EBA*
- (b) $\frac{y}{2} = \frac{6}{4} \Rightarrow y = \frac{9}{2}$ (corr. sides, $\sim \Delta s$)

12A.15 HKCEE MA 1998-1-14

- OB = OD (radii)
- $\angle ODB = \angle OBD$ (base $\angle s$, isos. \triangle)
- CB = BA (given)
- $\angle CDB = \angle BDA$ (equal chords, equal \angle s) $= \angle OBD$
- . BO//CD (alt. \(\s equal \)

12A.16 HKCEE MA 1999 -- I -- 5

 $\angle ADC = 90^{\circ}$ (\angle in semi-circle) $\angle ADB = 50^{\circ}$ (\angle s in the same segment) y = 90 - 50 = 40x = 180 - 20 90 = 70 (\angle sum of \triangle)

12A.17 HKCEE MA 1999 - I - 16

(a) (i) $\angle BFE = \angle BDE$ ($\angle s$ in the same segment) $= \angle BAC$ (corr. $\angle s$, AC//DE) ... A, F, B and C are concyclic. (converse of \(\alpha \) in the same segment)

(ii) $\angle ABC = 90^{\circ}$ (given) ... AC is a diameter of circle AFBC. (converse of ∠ in sem-circle)

 \Rightarrow M is the centre of circle AFBC \Rightarrow MB = MF

12A.18 HKCEE MA 2000 - I - 7

x = 25 (\angle in alt. segment) AD//BC $\angle DBC = \angle DAC = 25^{\circ}$ (\angle s in the same segment) $\angle DAB + \angle ABC = 180^{\circ}$ (int. \angle s, AD//BC) $\therefore y = 180 - 25 - 56 - 25 = 74$

12A.19 HKCEE MA 2001-I-5

 $\angle ADC = 90^{\circ}$ (\angle in semi-circle) $\angle ACD = 30^{\circ}$ (\angle s in the same segment) $\angle DAC = 180^{\circ} - 90^{\circ} - 30^{\circ} = 60^{\circ} \ (\angle \text{sum of } \triangle)$

12A.20 HKCEEMA 2002-I-9

 $\angle BCD = 90^{\circ}$ (\angle in semi-circle) $\angle DBC = 180^{\circ} - 90^{\circ} - 40^{\circ} = 50^{\circ} \quad (\angle \text{ sum of } \triangle)$ $\angle BAC = 40^{\circ}$ (\angle s in the same segment) $\angle ABC = \angle ACB$ (base $\angle s$, isos. \triangle) $=(180^{\circ} - 40^{\circ}) \div 2 = 70^{\circ} \ (\angle \text{ sum of } \triangle)$ $\angle ABD = 70^{\circ} - 50^{\circ} = 20^{\circ}$

12A.21 HKCEE MA 2002 - I - 16 (a) (i) $\angle AEB = 90^{\circ}$ (\angle in semi-circle) $\angle DAO = 180^{\circ} - \angle \angle AEB - \angle ABE \quad (\angle \text{sum of } \triangle)$ $=90^{\circ} - \angle ABE$ $\angle BFO = 180^{\circ} - \angle FOB - \angle ABE \quad (\angle sum of \triangle)$ $\angle DAO = \angle BFO$ In $\triangle AOD$ and $\triangle FOB$. $\angle DAO = \angle BFO$ (proved) (given) $\angle AOD = \angle FOB = 90^{\circ}$ $\angle ADO = \angle FBO$ $(\angle \text{ sum of } \triangle)$ $\triangle AOD \sim \triangle FOB$ (AAA) (ii) ∠AGB == 90° (∠ in semi-circle) $\angle GAO = 180^{\circ} - \angle AGO - \angle AOG \ (\angle sum of \triangle)$ $=90^{\circ}-\angle AGO=\angle BGO$ In $\triangle AOG$ and $\triangle GOB$,

 $\angle GAO = \angle BGO$

 $\angle OGA = \angle OBG$

∴ △AOG ~ △GOB

 $OD \cdot OF = OG^2$

(iii) From (i),

From (ii),

 $\angle AOG = \angle GOB = 90^{\circ}$

 $\frac{AO}{OD} = \frac{FO}{OB}$

 $AO \cdot OB = OD \cdot OF$

AO GO

 $\overline{OG} = \overline{OB}$

 $AO \cdot OB = OG^2$

(proved)

 $(\angle sum of \triangle)$

(corr. sides, $\sim \Delta s$)

(corr. sides, $\sim \triangle s$)

(given)

(AAA)

12A.22 HKCEE MA 2005 - I - 17

(a) (i) : MN is a diameter (given) $\triangle \angle NOM = \angle ORP = 90^{\circ}$ (\(\angle\) in semi-circle) In $\triangle OOR$ and $\triangle ORP$. $\angle ROO = \angle POR = 90^{\circ}$ (given) $\angle ORO = \angle ORP - \angle PRO$ $=90^{\circ}-\angle PRO$ $\angle POR = 180^{\circ} - \angle ROP - \angle PRO$ $(\angle sum of \triangle)$ $=90^{\circ}-\angle PRO$ $\Rightarrow \angle OPO = \angle PRO$ $\angle ROO = \angle PRO$ $(\angle \text{sum of } \triangle)$ $\triangle OQR \sim \triangle ORP$ (AAA) $\frac{OR}{OQ} = \frac{OP}{OR}$ (corr. sides, $\sim \triangle s$) $OR^2 = OP \cdot OQ$

(ii) In △MON and △POR, $\angle NMO = \angle ORO$ (\(\rangle s in the same segment) $= \angle RPO$ (proved)

 $\angle MON = \angle POR$ (proved) $\angle MNO = \angle ROO$ $(\angle sum of \triangle)$ $\triangle \Delta MON \sim \Delta ROO$ (AAA)

12A.23 HKCEE MA 2006 - I - 16

(a) (i) G is the circumcentre (given) $SC \perp BC$ and $SA \perp AB$ (\angle in semi-circle) H is the orthocentre (given) .. AH _ BC and CH 1 AB Thus, SC//AH and $SA//CH \Rightarrow AHCS$ is a //gram. (ii) Method 1

 $\angle GRB = \angle SCB = 90^{\circ}$ (proved) : GR//SC (corr. \(\s \) equal) BG = GS = radius $\therefore BR = RC$ (intercept thm) \Rightarrow SC = 2GR (mid-pt thm)

Hence, AH = SC = 2GR (property of //gram) Method 2

BG = GS = radiusand BR = RC (1 from centre to chord bisects $\Rightarrow SC = 2GR \text{ (mid-ptthm)}$

Hence, AH = SC = 2GR (property of //gram)

12A.24 HKCEE MA 2007 - I - 17

(a) (i) I is the incentre of $\triangle ABD$ (given) · \(\alpha BG = \alpha DBG \) and \(\alpha BAE = \alpha CAE \) In $\triangle ABG$ and $\triangle DBG$,

 $\angle ABG = \angle DBG$ (proved) AB = DB(given) BG = BG(common) $\triangle ABG \cong \triangle DBG$ (SAS)

(ii) $\triangle ABD$ is isosceles and $\angle ABG = \angle DBG$

 $\angle BGA = 90^{\circ}$ (property of isos. \triangle) In $\triangle AGI$ and $\triangle ABE$,

 $\angle AGI = 90^{\circ} = \angle ABE$ (\(\angle\) in semi-circle) $\angle IAG = \angle EAB$ (proved) $\angle AIG = \angle AEB$ $(\angle sum of \triangle)$ ∴ △AGI ~ △ABE (AAA) $\Rightarrow \frac{GI}{AG} = \frac{BE}{AB}$ (corr. sides, $\sim \triangle s$) 12A.25 HKCEE MA 2008 - I - 17

(a) Method I

I is the incentre of \(\Delta ABC \) (given)

 $\angle BAP = \angle CAP$

BP = CP (equal \angle s, equal chords)

Method 2

// / is the incentre of \(\Delta ABC \) (given)

 $\angle BAP = \angle CAP$

 $\angle BCP = \angle BAP$ ($\angle s$ in the same segment) = \(\angle CAP \) (proved) $= \angle CBP$ (\angle s in the same segment)

 $\Rightarrow BP = CP$ (sides opp. equal \angle s)

Both methods

Join CI. Let $\angle ACI = \angle BCI = \theta$ and $\angle BCP = \phi$. $\angle PAC = \phi$ (equal chords, equal $\angle s$) $\Rightarrow \angle PIC = \angle PAC + \angle ACI = \theta + \phi \quad (ext \angle of \triangle)$ $= \angle PCI$ P = CP (sides opp. equal \angle s) i.e. BP = CP = IP

12A.26 HKDSE MA SP-I-7

Method 1

 $\angle ABD = 90^{\circ}$ (\angle in semi-circle) $\angle BDA = 180^{\circ} - 90^{\circ} - 38^{\circ} = 52^{\circ} \quad (\angle \text{ sum of } \triangle)$ $\angle COD = 38^{\circ}$ (corr. \angle s, AB//OC) OC = OD (radii) $\angle ODC = \angle OCD$ (base $\angle s$, isos, \triangle) = $(180^{\circ} - 38^{\circ}) \div 2 = 71^{\circ}$ (\angle sum of \triangle)

Hence, $\angle BDC = 71^{\circ} - 52^{\circ} = 19^{\circ}$

Method 2

 $\angle BOD = 2(38^{\circ}) = 76^{\circ}$ (\angle at centre twice \angle at \bigcirc^{cc}) $\angle COD = 38^{\circ}$ (corr. $\angle s$, AB//OC) $\Rightarrow \angle BOC = 76^{\circ} - 38^{\circ} = 38^{\circ}$ $\angle BDC = 38^{\circ} \div 2 = 19^{\circ}$ (\angle at centre twice \angle at \bigcirc^{cr})

Method 3

 $\angle COD = 38^{\circ}$ (corr. $\angle s$, AB//OC) OA = OC (radii) \Rightarrow $\angle OAC = \angle OCA$ (base $\angle s$, isos. \triangle)

 $= \angle COD \div 2 = 19^{\circ}$ (ext. \angle of \triangle)

 $\angle BAC = 38^{\circ} - 19^{\circ} = 19^{\circ}$

⇒ ∠BDC ∠BAC 19° (∠s in the same segment)

12A.27 HKDSE MA PP - I - 7

 $\angle DCB = 90^{\circ}$ (\angle in semi-circle) \Rightarrow $\angle DBC = 180^{\circ}$ 90° 36° = 54° (\angle sum of \triangle) $\angle CAB = 36^{\circ}$ ($\angle s$ in the same segment) $\angle ABC = \angle ACB$ (base $\angle s$, isos. \triangle)/(equal chords, equal $\angle s$) = $(180^{\circ} - \angle CAB) \div 2 = 72^{\circ}$ (\angle sum of \triangle) $\angle ABD = 72^{\circ} - 54^{\circ} = 18^{\circ}$

12A.28 HKDSE MA PP-I-14

(a) $\triangle AOD \sim \triangle CBD$

12A.29 HKDSE MA 2012-I-8

(a) $\triangle AED \sim \triangle BEC$ $\frac{AE}{DE} = \frac{BE}{CE}$ (corr. sides, $\sim \Delta$ s) $\Rightarrow AE = \frac{8}{20} \times 15 = 6 \text{ (cm)}$

(b) $AB^2 = 10^2 = 100$ $AE^2 + EB^2 = 6^2 + 8^2 = 100 = AB^2$ AC | BD (converse of Pyth. thm)

12A.30 HKDSE MA 2015 - I - 8

Method I

 $\angle ACB = \angle ADB = 58^{\circ}$ (\angle s in the same segment) $\angle ABD = \angle ADB$ (base $\angle s$, isos. \triangle)/(equal chords, equal $\angle s$) $\angle BDC = \angle BAC$ (\angle s in the same segment)

= 180° $\angle ABC - \angle ACB$ (\angle sum of \triangle) $= 180^{\circ} - (58^{\circ} + 25^{\circ}) - 58^{\circ} = 39^{\circ}$

 $\angle ABD = \angle ADB$ (base $\angle s$, isos. \triangle)/(equal chords, equal $\angle s$) $= 58^{\circ}$ $\angle ADC + \angle ABC = 180^{\circ}$ (opp. \angle s, cyclic quad.) $58^{\circ} + \angle BDC + (58^{\circ} + 25^{\circ}) = 180^{\circ}$ $\angle BDC = 39^{\circ}$

Both methods

 $\angle BAC = \angle BDC = 39^{\circ}$ (\angle s in the same segment) In $\triangle BCE$, $\angle BEC = \angle EBC$ (base ∠s, isos, △) $= (180^{\circ} - \angle BCA) \div 2 \quad (\angle \text{ sum of } \triangle)$ = 61° $\angle ABE = \angle BEC - \angle BAC = 22^{\circ}$ (ext. \angle of \triangle)

12A.31 HKDSE MA 2017-I-10

(a) In △OPS and △ORS.

OP = OR(given) OS = OS(common) PS = RS(given) ∴ △OPS ≅ △ORS (SSS)

(b) $\angle ROQ = \angle POQ$ (corr. $\angle s_* \cong \triangle s$) $=2\angle PRQ=20^{\circ}$ (\angle at centre twice \angle at \bigcirc^{ce})

Area of sector = $\frac{2(20^{\circ})}{360^{\circ}} \times \pi(6)^2 = 4\pi \text{ (cm}^2)$

12A.32 HKDSE MA 2018-1-8

 $x = 180^{\circ} - \theta$ (opp. \angle s, cyclic quad.) $\angle BED = \angle BAD = x$ (\(\angle s\) in the same segment) $= \angle ADE$ (alt. $\angle s$, AB//ED) $y = 180^{\circ} - \angle BED - \angle ADE \quad (\angle sum of \triangle)$ $= 180^{\circ} \quad 2(180^{\circ} \quad \theta) = 2\theta - 180^{\circ}$

12A.33 HKDSE MA 2019 - I - 13

(a) Method I

Reflex $\angle DOA = 2\angle DEA$ (\angle at centre twice \angle at \odot^{cc}) $=230^{\circ}$

 $\Rightarrow \angle DOC = 230^{\circ} - 180^{\circ} = 50^{\circ}$

 $\angle CBF = \angle DOC \div 2 = 25^{\circ}$ (\angle at centre twice \angle at \bigcirc^{ce})

 $\angle ABD = 180^{\circ} - \angle AED = 65^{\circ}$ (opp. $\angle s$, cyclic quad.) $\angle ABC = 90^{\circ}$ (\angle in semi-circle) $\angle CBF = 90^{\circ} - 65^{\circ} = 25^{\circ}$

(b) $\angle OCB = \angle DOC = 50^{\circ}$ (alt. $\angle s$, BC//OD) $\Rightarrow \angle BOC = 180^{\circ} - 2\angle OCB = 80^{\circ}$

Perimeter of sector $OBC = 2 \times 18 + \overrightarrow{BC}$

 $= 36 + \frac{80^{\circ}}{360^{\circ}} \times 2\pi(18)$ = 61.13 > 60 (cm)

: NO

12B Tangents of circles

12B.1 HKCEE MA 1980(1*) - I - 8

 $\angle TAB = \angle TBA = 65^{\circ}$ (\angle in alt. segment) $x = \angle TAB + \angle TBA = 130^{\circ} \text{ (ext. } \angle \text{ of } \triangle \text{)}$

12B.2 HKCEE MA 1981(2) - I - 13

(a) $\angle MQT = x$ (\angle in alt. segment) $\angle NQT = y$ (\angle in alt. segment) $\therefore \angle MQN = x + y$

(b) $\angle PTR = 180^{\circ} - \angle TPR - \angle PRT$ (\angle sum of \triangle) $= 180^{\circ} - x - y$

 $\angle MQN + \angle MTN = (x+y) + (180^{\circ} - x \quad y) = 180^{\circ}$

Q, M, T and N are concyclic. (opp. \angle s supp.)

(c) OMTN is cyclic. (proved)

 $\angle NMT = \angle NOT = y$ ($\angle s$ in the same segment)

 $\angle NMT = \angle PRN = y$ (proved)

P, M, N and R are concyclic. (ext. $\angle = int. opp. \angle$)

(d) $\triangle MNT \sim \triangle RPT$, $\triangle MOT \sim \triangle OPT$, $\triangle NOT \sim \triangle ORT$

12B.3 HKCEE MA 1982(2) - I - 14

(a) $\angle ABT = \angle ATR$ (\angle in alt. segment)(large circle) $= \angle PQT$ (\angle in alt. segment)(small circle) ... AB//PQ (corr. \(\s \) equal)

(b) Consider the small circle.

 $\angle QTS = \angle BSQ$ (\angle in alt, segment) $= \angle SQP$ (alt. $\angle s$, AB//PO)

 $= \angle STP$ (\angle s in the same segment) i.e. ST bisects $\angle ATB$.

(c) ▲PTK, △ATS, △ASP, △SOK

12B.4 HKCEE MA 1983(A/B) - I - 2

(a) $\angle OAB = \angle OBA = 60^{\circ}$ (property of equil \triangle) AC = OA = AB (given)

 $\triangle ABC = \angle ACB$ (base $\angle s$, isos. \triangle) $= \angle OAB \div 2 = 30^{\circ}$ (ext. \angle of \triangle)

(b) $\angle OBC = 60^{\circ} + 30^{\circ} = 90^{\circ}$

... CB is tangent to the circle at B.

(converse of tangent 1 radius)

12B.5 HKCEE MA 1984(A/B) - I - 5

∠CBD 80° (∠ in alt, segment) $x = 180 \ 30 \ 80 = 70 \ (adi. \angle s \text{ on st. line})$ y = x = 70 (\angle in alt. segment) AB = AD (tangent properties) $\Rightarrow \angle BDA = x^{\circ}$ (base $\angle s$, isos. \triangle) $\sqrt{z} = 180 - x - x = 40$ (\angle sum of \triangle)

12B.6 HKCEE MA 1985(A/B) - I - 2

 $\angle APB = \angle ABP$ (base $\angle s$, isos. \blacktriangle) $=x^{\circ}$ (\angle in alt. segment) : In $\triangle BCP$, $x^{\circ} + x^{\circ} + (x^{\circ} + 60^{\circ}) = 180^{\circ}$ (\angle sum of \triangle) r - 40

12B.7 HKCEE MA 1986(A/B) - I - 2

TA = TB (tangent properties) $\angle ABT = x^{\circ}$ (base $\angle s$, isos. \triangle) $=(180^{\circ}-30^{\circ})\div 2 \quad (\angle \text{ sum of } \Delta) \Rightarrow x=75$ $y^{\circ} = \angle ACB$ (alt. $\angle s$, AC//TF) $= \angle ABT = x^{\circ}$ (\(\alpha \) in alt. segment) $\Rightarrow v = 75$

12B.8 HKCEE MA 1986(A/B) - I 6

(a) $\triangle CAT$

(b)
$$\triangle BCT \sim \triangle CAT$$

 $\therefore \frac{BT}{CT} = \frac{CT}{4T}$ (corr. sides, $\sim \triangle s$)
 $\frac{x}{10\sqrt{2}} = \frac{10\sqrt{2}}{17 + x}$
 $17x + x^2 = 200 \implies x = 8 \text{ or } -25 \text{ (rejected)}$

12B.9 HKCEE MA 1987(A/B)-1-6

 $\angle ODA = 90^{\circ}$ (rangent L radius) $\angle OAD = 60^{\circ} \div 2 = 30^{\circ}$ (tangent properties) $AO = \frac{1}{\sin 30^{\circ}} = 2 \text{ (cm)}$ r = AE = 2 + 1 = 3

12B.10 HKCEE MA 1987(A/B) - I - 7

 $\angle ABC = 90^{\circ}$ (\angle in semi-circle) $\angle APB = \angle PAB = x^{\circ}$ (base $\angle s$, isos. \triangle) $= \angle CBP$ (\angle in alt. segment) $\therefore \text{ In } \triangle ABP, \quad x^{\circ} + x^{\circ} + (90^{\circ} + x^{\circ}) = 180^{\circ} \quad (\angle \text{ sum of } \triangle)$ x = 30

12B.11 HKCEE MA 1988 - I - 8(b)

(i) In $\triangle ACT$ and $\triangle TCB$, $\angle TCA = \angle BCT$ (common) $\angle TAC = \angle BTC$ (\angle in alt. segment) $\angle CTA = \angle CBT \quad (\angle \text{ sum of } \triangle)$ $\triangle ACT \sim \triangle TCB$ (AAA)

(ii)
$$\frac{AC}{CT} = \frac{TC}{CB}$$
 (corr. sides, $\sim \triangle s$)
 $\frac{AB+5}{6} = \frac{6}{5} \Rightarrow AB = \frac{11}{5}$

12B.12 HKCEE MA 1991 - I - 13

(a) In $\triangle ABC$ and $\triangle ABD$. AC = AD

(radii) BC = BD(radii) AB = AB(common) $\triangle ABC \cong \triangle ABD$ (SSS)

(b) (i) \checkmark $\angle CAD = 2(55^{\circ})$ (\angle at centre twice \angle at \bigcirc^{ce}) =110°

and $\angle CAB = \angle DAB$ (corr. $\angle s$, $\cong \triangle s$) $\angle CAB = 110 \div 2 = 55^{\circ}$ $\angle DBA = \angle CBA$ (corr. $\angle s$, $\cong \triangle s$) = 180° $\angle ACB - \angle CAB$ (\angle sum of \triangle) $=30^{\circ}$ \Rightarrow $\angle CBD = 30^{\circ} + 30^{\circ} = 60^{\circ}$

 $\angle EFD = \frac{1}{2} \angle CBD$ (\angle at centre twice \angle at \bigcirc^{ce}) $=\frac{1}{2}(60^{\circ})=30^{\circ}$

(ii) (1)

(The centre of S lies on the intersection of the perpendicular bisector of DF and the line at F perpendicular to CF.)

(2) Let P be a point on major \widehat{DF} and G be the centre

 $\angle CFD = \angle FPD = 30^{\circ}$ (\angle in alt. segment) $\angle FGD = 2 \times 30^{\circ}$ (\angle at centre twice \angle at \bigcirc^{ce}) $\simeq 60^{\circ}$

Hence, $\triangle FGD$ is equilateral.

 \Rightarrow Diameter = 2GF = 2DF

12B.13 HKCEE MA 1995 - I - 14

(a) (i) $\angle PQA = \angle PRQ$ (\angle in alt. segment) $= \angle PMA$ (con. $\angle s$, AC//OR)

... M. P. A and O are concyclic.

(converse of \(\arr s\) in the same segment) (ii) \(\angle MOR \) \(\angle AMO \) (alt. \(\angle s\), \(AC//QR) $= \angle APO$ (\(\angle \)s in the same segment) $= \angle MRO$ (\angle in alt. segment)

MR = MQ (sides opp. equal \angle s)

(b) $\angle QPR = \angle QAC = 50^{\circ}$ (\angle s in the same segment) $\angle RMQ = \angle PAQ = 70^{\circ}$ (opp. $\angle s$, cyclic quad.) $\angle MQR = (180^{\circ} - 70^{\circ}) \div 2 = 55^{\circ} \quad (\angle \text{ sum of } \triangle)$ $\angle MQP = \angle PAC = 20^{\circ}$ ($\angle s$ in the same segment) $\therefore \angle PQR = \angle MQR + \angle \angle MQP = 75^{\circ}$

(c) (i) Property of isos. \triangle

(ii) L bisector of chord passes through centre

12B.14 HKCEE MA 1997 - I - 16

(a) (i) $\angle EAB = 90^{\circ}$ (tangent \bot radius) $\angle FEA + \angle EAB = 90^{\circ} + 90^{\circ} = 180^{\circ}$... AB//EF (int. ∠s supp.)

(ii) $\angle FDE = \angle BDC$ (vert. opp. $\angle s$) $= \angle DBC$ (base $\angle s$, isos, \triangle) $= \angle FED$ (alt. $\angle s$, AB//EF) FD = FE (sides opp. equal \angle s)

(iii) If the circle touches AE at E, its centre lies on EF. If ED is a chord, the centre lies on the \(\pm \) bisector of

.. The intersection of these two lines, F, is the centre of the circle described.

12B.15 HKCEE MA 2000 -I -16

328

(a) In $\triangle OCP$, $\angle CPO = 90^{\circ}$ (tangent L radius) $\angle PCO = 180^{\circ} - 30^{\circ} - 90^{\circ}$ (\angle sum of \triangle)

 $\therefore \angle PQO = 60^{\circ} \div 2 = 30^{\circ} \ (\angle \text{ at centre twice } \angle \text{ at } \bigcirc^{ce})$ (b) (i) $\angle SOC = \angle POC = 30^{\circ}$ (tangent properties)

 $\angle POR = 180^{\circ} - \angle POS$ (opp. $\angle s$, cyclic quad.) $= 120^{\circ}$

 $\Rightarrow \angle RQO = 120^{\circ} - 30^{\circ} = 90^{\circ}$ RO is tangent to the circle at O.

12B.16 HKCEE MA 2003-1-17

(a) (i) In △NPM and △NKP. $\angle PNM = \angle KNP$ (common) (∠ in alt. segment) $\angle NPM = \angle NKP$ $\angle PMN = \angle KPN$ $(\angle \text{sum of } \triangle)$ ∴ △NPM ~ △NKP (AAA) $\Rightarrow \frac{NP}{NM} = \frac{NK}{NP}$ (corr. sides, $\sim \triangle s$) $NP^2 = NK \cdot NM$

(ii) RS//OP (given) ... AKRM ~ AKON and AKSM ~ AKPN $\frac{KM}{KN}$ and $\frac{SM}{PN}$ $\frac{KM}{KN}$ RM KM ON $\Rightarrow \frac{RM}{ON} = \frac{SM}{PN}$

Similar to (a), $NO^2 = NK NM \Rightarrow NP = NO$ Hence, RM = MS.

12B.17 HKCEE MA 2004 - I - 16

(a) In $\triangle ADE$ and $\triangle BOE$, $\angle ADE = \angle EBC$ (alt. $\angle s$, OD//BC) $= \angle BOE$ (\angle in alt. segment) $\angle DAE = \angle OBE$ (ext. \angle , cyclic quad.) AD = BO(give n) $\triangle ADE \cong \triangle BOE$ (ASA) (b) DE = OE (corr. sides, $\cong \triangle s$) $\angle BOE = \angle ADE$ (proved)

= $\angle AOE$ (base $\angle s$, isos. \triangle) i.e. $\angle AOB = 2 \angle BOE$ $\angle BEO = \angle AED$ (corr. $\angle s$, $\cong \triangle s$)

 $= \angle AOB$ (ext. \angle , cyclic quad.) $=2\angle BOE$ (proved) (c) Suppose OE is a diameter of the circle OAEB.

(i) ∠OBE = 90° (∠ in semi-circle) In $\triangle OBE$, $\angle BOE = 180^{\circ} - 90^{\circ} - (2\angle BOE)$ $(\angle sum of \triangle)$

 $3\angle BOE = 90^{\circ} \implies \angle BOE = 30^{\circ}$

12B.18 HKCEE AM 2002 - 15

(a) Cut the triangle into $\triangle ODE$, $\triangle OEF$ and $\triangle OFD$. Then the radii are the heights of the triangles. (tangent 1 radius)

12B.19 HKDSE MA SP-I-19

(a) (i) In $\triangle ABE$ and $\triangle ADE$.

AB = AD(given) AE = DE(common) $\angle BAE = \angle BCP$ (∠in alt. segment) $= \angle EBC$ (alt. $\angle s$, BD//PQ) $= \angle DAE$ ($\angle s$ in the same segment) ∴ △ABE ≅ △ADE (SAS)

(ii) AB = AD (given) and AE is an \angle bisector of $\triangle ADE$ (proved) AE is an altitude, a median and L bisector of $\triangle ADE$. (property of isos. \triangle) i.e. The in-centre, orthocentre, centroid and circum-

centre of $\triangle ABD$ all lie on AE, and are thus collinear.

12B.20 HKDSE MA 2016 - I - 20

PO = PQ

(a) Method 1

Let $\angle OPJ = \angle QPJ = \theta$. (in-centre) OJ = PJ = OJ (radii) In $\triangle POJ$, $\angle POJ = \angle OPJ = \theta$ (base \angle s, isos. \triangle) In $\triangle PQJ$, $\angle PQJ = \angle QPJ = \theta$ (base $\angle s$, isos. \triangle) In $\triangle POJ$ and $\triangle POJ$. $\angle OPJ = \angle QPJ = \theta$ (in-centre) $\angle POJ = \angle PQJ = \theta$ (proved) PJ = PJ(common) $\triangle POJ \cong \triangle POJ$ (AAS) $(corr. sides, \cong \triangle s)$

Let $\angle OPJ = \angle QPJ = \theta$. (in-centre) OJ = PJ = QJ (radii) In $\triangle POJ$, $\angle POJ = \angle OPJ = \theta$ (base $\angle s$, isos. \triangle) $\Rightarrow \angle PJO = 180^{\circ} 2\theta \ (\angle \text{sum of } \triangle)$ \Rightarrow $\angle PQO = (180^{\circ} - 2\theta) \div 2 = 90^{\circ} - \theta$ (∠at centre twice ∠at ⊙ce) In $\triangle PQJ$, $\angle PQJ = \angle QPJ = \theta$ (base \angle s, isos. \triangle) $\Rightarrow \angle PJQ = 180^{\circ} - 2\theta$ (\angle sum of \triangle) \Rightarrow $\angle POQ = (180^{\circ} - 2\theta) \div 2 = 90^{\circ} - \theta$ (∠at centre twice ∠at ⊙ce) $\angle PQO = \angle POQ = 90^{\circ} - \theta$ (proved)

PO = PQ (sides opp. equal \angle s)

Let PJ extended meet the circle OPQ at R. Then PR is a diameter of the circle. $\angle POR = \angle PQR = 90^{\circ}$ (\(\angle\) in semi-circle) Let $\angle OPR = \angle OPR = \theta$. (in-centre) In $\triangle OPR$, $PO = PR \cos \theta$ In $\triangle QPR$, $PQ = PR\cos\theta$ PO = PQ

12B.21 HKDSE MA 2019 - I - 17

(a) Let I be the in-centre of △CDE. Then the perpendiculars from I to CD, DE and EC are all r.

$$a = \frac{r \cdot CD}{2} + \frac{r \cdot DE}{2} + \frac{r}{2} = \frac{r(p)}{2}$$

$$= \frac{r(CD + DE + EC)}{2} = \frac{r(p)}{2} \implies pr = 2a$$

