1 Estimation

1.1 HKCEE MA 2006 - I - 11

In the figure, ABCDEF is a thin six-sided polygonal metal sheet, where all the measurements are correct to the nearest cm.

A 18 cm B

(a) Write down the maximum absolute error of the measurements.

(b) Find the least possible area of the metal sheet.

(c) The actual area of the metal sheet is x cm². Find the range of values of x.

1.2 HKCEE MA 2007 I 10

- (a) If the length of a piece of thin metal wire is measured as 5 cm correct to the nearest cm, find the least possible length of the metal wire.
- (b) The length of a piece of thin metal wire is measured as 2.0 m correct to the nearest 0.1 m.
 - (i) Is it possible that the actual length of this metal wire exceeds 206 cm? Explain your answer.
 - (ii) Is it possible to cut this metal wire into 46 pieces of shorter metal wires, with each length measured as 5 cm correct to the nearest cm? Explain your answer.

1.3 HKCEE MA 2008 - I - 7

John wants to buy the following items in a supermarket:

Item	Unit price	Quantity needed
Biscuit	\$8.2 per pack	4 packs
Chocolate	\$16.3 per box	3 boxes
Soft drink	\$4.8 per can	2 cans

- (a) By rounding up the unit price of each item to the nearest dollar, estimate the total amount that John should pay.
- (b) If John has only \$100, does he have enough money to buy all the items needed? Use the result of (a) to explain your answer.

1.4 HKCEE MA 2009 - I - 4

Round off 405.504 to

- (a) the nearest integer,
- (b) 2 decimal places,
- (c) 2 significant figures.

1.5 HKCEEMA 2010 I 8

Three students, Peter, John and Henry have \$16.8, \$24.3 and \$32.5 respectively.

- (a) By rounding down the amount owned by each student to the nearest dollar, estimate the total amount they have.
- (b) If the three students want to buy a football of price \$70, will they have enough money to buy the football? Use the result of (a) to explain your answer.

1. ESTIMATION

1.6 HKCEE MA 2011 - I - 4

- (a) Round off 8 091.1908 to the nearest ten
- (b) Round up 8091.1908 to 3 significant figures.
- (c) Round down 8 091.1908 to 3 decimal places.

1.7 HKDSE MA 2013-I-8

A pack of sea salt is termed regular if its weight is measured as 100 g correct to the nearest g.

- (a) Find the least possible weight of a regular pack of sea salt.
- (b) Is it possible that the total weight of 32 regular packs of sea salt is measured as 3.1 kg correct to the nearest 0.1 kg? Explain your answer.

1.8 HKDSE MA 2014-I-3

- (a) Round up 123.45 to 1 significant figure.
- (b) Round off 123.45 to the nearest integer.
- (c) Round down 123.45 to 1 decimal place.

1.9 HKDSE MA 2017 - I 9

A bottle is termed standard if its capacity is measured as 200 mL correct to the nearest 10 mL.

- (a) Find the least possible capacity of a standard bottle.
- (b) Someone claims that the total capacity of 120 standard bottles can be measured as 23.3 L correct to the nearest 0.1 L. Do you agree? Explain your answer.

1.10 HKDSEMA 2018-I-3

- (a) Round up 265.473 to the nearest integer.
- (b) Round down 265.473 to 1 decimal place.
- (c) Round off 265.473 to 2 significant figures.

1.11 HKDSE MA 2020 - I - 3

- (a) Round up 534.7698 to the nearest hundred.
- (b) Round down 534.7698 to 2 decimal places.
- (c) Round off 534.7698 to 2 significant figures.

1 Estimation

1.1 HKCEE MA 2006 -- I -- 11

- (a) Maximum absolute error = $1 \text{ cm} \div 2 = 0.5 \text{ cm}$
- (b) Least possible area of ABCX = 17.5 × 11.5 = 201.25 cm²
 Least possible area of DEFX = 1.5 × 15.5 = 23.25 cm²
 ∴ Least possible area of sheet = 224.5 cm²
- (c) Upper limit of area = $18.5 \times 12.5 + 2.5 \times 16.5 = 272.5 \text{ cm}^2$ $\therefore 224.5 \le x < 272.5$

1.2 HKCEE MA 2007-I-10

- (a) Least possible length = $5 1 \div 2 = 4.5$ (cm)
- (b) (i) Upper limit = $(2.0 + 0.1 \div 2)$ m = 205 cm < 206 cm \cdot No.
 - (ii) Method I

Least possible total length of short wires $4.5 \text{ cm} \times 46 = 207 \text{ cm} > 205 \text{ cm}$

∴ No.

Method 2

Upper limit of length of one short wire $= 205 \text{ cm} \div 46 = 4.4565 \text{ cm} < 4.5 \text{ cm}$

. No.

1.3 HKCEE MA 2008 -I - 7

- (a) Total amount $\approx \$(9 \times 4 + 17 \times 3 + 5 \times 2) = \97
- (b) ∴ Actual amount < Estimated amount < \$100 ∴ Yes.

1.4 HKCEE MA 2009-1-4

- (a) 406
- (b) 405.50
- (c) 410

1.5 HKCEE MA 2010-1-8

- (a) Total amount $\approx \$(16+24+32) = \72
- (b) Actual amount > Estimated amount > \$70
 Yes.

1.6 HKCEE MA 2011-I-4

- (a) 8090
- (b) 8100
- (c) 8091.190

1.7 HKDSEMA 2013-I-8

- (a) Least possible weight = $(100 1 \div 2)g = 99.5g$
- (b) Method I

Least possible total weight = $99.5 g \times 32$

=3184 g = 3.2 kg, nearest 0.1 kg

.. No.

Method 2

Upper limit of weight of 1 pack = $\frac{3.1 + 0.1 + 2}{32}$ kg = 98.43 g < 99.5 g \therefore No.

1.8 HKDSE MA 2014-I-3

- (a) 100
- (b) 123
- (c) 123.4

1.9 HKDSE MA 2017 -- I -- 9

- (a) Least possible capacity = (200 10÷5) mL = 195 mL
- (b) Method 1

Least total capacity = $195 \text{ mL} \times 120 = 23.4 \text{ L} > 23.35 \text{ L}$ \therefore No.

Method 2

Upper limit of capacity of 1 bottle = $\frac{23.3 + 0.1 \div 2}{120} L$ = 194.58 mL < 195 mL

- , No.
- 1.10 HKDSE MA 2018 I 3
- (a) 266
- (b) 265.4
- (c) 270

1.11 HKDSE MA 2020 - I - 3

- 3a | 600
- b 534.76
- c 530