評卷參考 * Marking Scheme

香港考試及評核局

Hong Kong Examinations and Assessment Authority

2006年香港中學會考

Hong Kong Certificate of Education Examination 2006

數學 試卷一

Mathematics Paper 1

本文件專爲閱卷員而設,其內容不應視爲標準答案。考生以 及沒有參與評卷工作的教師在詮釋本文件時應小心**謹慎。**

This document was prepared for markers' reference. It should not be regarded as a set of model answers. Candidates and teachers who were not involved in the marking process are advised to interpret its contents with care.

Hong Kong Certificate of Education Examination Mathematics Paper 1

General Marking Instructions

- It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits all the marks allocated to that part, unless a particular method has been specified in the question. Markers should be patient in marking alternative solutions not specified in the marking scheme.
- In the marking scheme, marks are classified into the following three categories:

'M' marks awarded for correct methods being used;
'A' marks awarded for the accuracy of the answers;

Marks without 'M' or 'A' awarded for correctly completing a proof or arriving

at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 4. Use of notation different from those in the marking scheme should not be penalized.
- 5. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 6. Marks may be deducted for wrong units (u) or poor presentation (pp).
 - a. The symbol (u-1) should be used to denote 1 mark deducted for u. At most deduct 1 mark for u in Section A. Do not deduct any marks for u in Section B.
 - b. The symbol (pp-1) should be used to denote 1 mark deducted for pp. At most deduct 1 mark for pp in each of Section A and Section B. For similar pp, deduct 1 mark for the first time that it occurs. Do not penalize candidates twice in the paper for the same pp.
 - c. At most deduct 1 mark in each question. Deduct the mark for u first if both marks for u and pp may be deducted in the same question.
 - d. In any case, do not deduct any marks for pp or u in those steps where candidates could not score any marks.
- 7. In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to' and 'f.t.' stands for 'follow through'. Steps which can be skipped are whereas alternative answers are enclosed with rectangles. All fractional answers must be simplified.

-	Solution	Marks	Remarks
1.	$\frac{(a^3)^5}{a^{-6}}$	1M	for $(x^m)^n = x^{mn}$ for $\frac{x^m}{x^n} = x^{m-n}$ or $x^{-n} = \frac{1}{x^n}$
	$\approx a^{21}$	1M 1A (3)	for $\frac{x^m}{x^n} = x^{m-n}$ or $x^{-n} = \frac{1}{x^n}$
2	(a) $x+1 < \frac{x+25}{6}$ 6x+6 < x+25 6x-x < 25-6 5x < 19	1 M	for putting x on one side
	$x < \frac{19}{5}$ (b) The required greatest integer is 3.	1A IA (3)	x < 3.8
3.	(a) $3b - ab$ = $b(3 - a)$ (b) $9 - a^2$	1A	
	$= (3+a)(3-a)$ $= (3+a)(3-a)$ (c) $9-a^2+3b-ab$ $= (3+a)(3-a)+b(3-a)$ $= (3-a)(3+a+b)$	1A 1A (3)	
4.	The length of \widehat{AB} = $2\pi (12) \left(\frac{150}{360} \right)$ = 10π cm	1M + 1A 1A (3)	1M for $\frac{150}{360}$ + 1A for $2\pi(12)$ u-1 for missing unit

		Solution	Marks	Remarks
5.		1EB		
	$= \angle 0$ = 70		1 }	
			1	
	= Zi	ABE AER	1 1	
	= 70		1 A	u-1 for missing unit
		BCD	, ,,	can be absorbed
		0° – 70° – 70°	1M 1A	u-1 for missing unit
	= 40	<u> </u>	·	u-1 for missing one
		BAE	1M	can be absorbed
	= 18 = 40	0° – 70° – 70° °		can be developed
	1			
		BCD BAE] !	
	= 40		1A	u-1 for missing unit
			(3)	
6.	(a)	Let $x ext{ kg}$ be the weight of John. Then, we have	lM	
		x(1+20%) = 60	l M	
		$\frac{6x}{5} = 60$		•
		5 $x = 50$	1A	
		Thus, the weight of John is 50 kg .		u-1 for missing unit
	(b)	The weight of Susan	1M	
		= 60 (1 – 20%)	I IVI	,
		= 60 (0.8)	1	
		= 48 kg ≠ 50 kg		
		Thus, Susan and John are not of the same weight.	1A	f.t.
			(4)	
		•	1	
7.	(a)	A'	1 ,,	pp-1 for missing '(' or ')'
		= (7, 2)	1A	pp=1 for missing (or)
		B' = (5,5)	1A	pp-1 for missing '(' or ')'
	(b)	A'B'	1)
		$=\sqrt{(7-5)^7}$ $\pm (21-5)^2$	1M	for using distance formula
		$=\sqrt{13}$		either or
				i citati di
		AB	1	1
		$=y(-5-(-2))^2+(5-7)^2$		~
		=√13	}	ł .
		Thus, the lengths of AB and $A'B'$ are equal.	1A	f.t.
		To obtain B' is the same as rotating B clockwise through 90° .	1M	for reflection the same as rotation
		So, $A'B'$ can be obtained by rotating AB clockwise through 90° .	1	
		Thus, the lengths of AB and A'B' are equal.	1A	f.t.
			(4)	7

9. (a) $\frac{x}{= 360^{\circ} \cdot 90^{\circ} \cdot 130^{\circ} - 35^{\circ} - 40^{\circ} \cdot 30^{\circ}}$ $1M = 1A$ 0.4 $1A$ 0.4 $1A$ 0.4 $1A$ $1A$ 0.4 $1A$ 0.4 $1A$ $1A$ $1A$ $1A$ $1A$ $1A$ $1A$ $1A$		Solution	Marks	Remarks
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•	10		
$= 360^{\circ} \cdot 90^{\circ} \cdot 130^{\circ} - 35^{\circ} - 40^{\circ} - 30^{\circ}$ $= 35^{\circ}$ (b) Her total expenditure $= 1750 \left(\frac{360}{35} \right)$ $= 18000 1M $= 18000$ (c) Her expenditure on travelling $= 1750 \left(\frac{35}{35} \right)$ $= 1750 Her expenditure on travelling)	$=\frac{4}{10}$	1A	1M for numerator + 1A for denominator 0.4
$= 1750 \left(\frac{360}{35}\right)$ $= \$ 18000$ 1A $= 1750 \left(\frac{35}{35}\right)$ $= \$ 1750$ 1A $= \$ 1750$ Her expenditure on travelling)	= 360°- 90°- 130°- 35°- 40°- 30°	l l	for 360°-90°-θ u-1 for missing unit
$= 1750 \left(\frac{35}{35}\right)$ $= \$ 1750$ IA u- Her expenditure on travelling)	$=1750\left(\frac{360}{35}\right)$		u–1 for missing unit
· · · · · · · · · · · · · · · · · · ·	:)	$=1750\left(\frac{35}{35}\right)$	IA	u-1 for missing unit
		$=18000\left(\frac{35}{360}\right)$		u-1 for missing unit

		Solution	Marks	Remarks
10(a)	(i)	Note that $f(1) = (1-a)(1-b)(1+1)-3$.		
` '	` '	f(1) = 1		
		2(1-a)(1-b)-3=1		
		(1-a)(1-b)=2		
		Thus, we have $(a-1)(b-1) = 2$.	1	
	(ii)	Since a and b are positive integers and $a < b$, we have $a-1=1$ and $b-1=2$.		
		Thus, we have $a=2$ and $b=3$.	1A + 1A (3)	
(b)	ſ	f(x) - g(x)		
	= ($(x-2)(x-3)(x+1)-3-(x^3-6x^2-2x+7)$		
	= 1	$x^3 - 4x^2 + x + 3 - x^3 + 6x^2 + 2x - 7$	1M	for expanding $f(x)$
	•	x^2+3x-4	1M	
	So,	f(x) = g(x), we have $f(x) - g(x) = 0$. we have $2x^2 + 3x - 4 = 0$. erefore, we have $x = \frac{-3 \pm \sqrt{(3)^2 - 4(2)(-4)}}{2(2)}$. as, the exact values of all the roots are $\frac{-3 + \sqrt{41}}{4}$ and $\frac{-3 - \sqrt{41}}{4}$.	IM IA	can be absorbed for both correct
			(4)	

		Solution	Marks	Remarks
11.	(a)	The maximum absolute error is 0.5 cm.	1A (1)	u-1 for missing unit
	(b)	The least possible area of the metal sheet = $(17.5)(11.5) + (14.5)(1.5)$ = 223 cm^2	1M + 1A 1A	1M for sum of several areas + 1A for one of the areas correct u-1 for missing unit
		The least possible area of the metal sheet = $(14.5)(11.5+1.5) + (11.5)(17.5-14.5)$ = 223 cm^2	1M + 1A 1A	[1M for sum of several areas + 1A for one of the areas correct u-1 for missing unit
		The least possible area of the metal sheet = $(14.5)(11.5) + (14.5)(1.5) + (11.5)(17.5 - 14.5)$ = 223 cm ²	IM + 1A 1A	{ 1M for sum of several areas + 1A for one of the areas correct u-1 for missing unit
		The least possible area of the metal sheet = $(17.5)(11.5 + 1.5) - (1.5)(17.5 - 14.5)$ = 223 cm ²	1M + 1A	u-1 for missing unit
	(c)	The actual area of the metal sheet $< (18.5)(12.5) + (15.5)(2.5)$ = 270 cm ²	1A	for either area correct
		The actual area of the metal sheet $< (15.5)(12.5 + 2.5) + (12.5)(18.5 - 15.5)$ = 270 cm ²	IA 1A	for either area correct
		The actual area of the metal sheet < (15.5)(12.5) + (15.5)(2.5) + (12.5)(18.5 - 15.5) $= 270 \text{ cm}^2$	1A 1A	for either area correct
		The actual area of the metal sheet < (18.5)(12.5+2.5)-(2.5)(18.5-15.5) $= 270 \text{ cm}^2$	1A 1A	for either area correct
		Thus, by (b), we have $223 \le x < 270$.	1M + 1A	u-1 for having unit

(a) The coordinates of M are $(4,4)$. (b) The slope of $AB = \frac{8-0}{12-(-4)} = \frac{1}{2}$ The slope of $CM = \frac{-1}{1} = -2$ The equation of CM is $y - 4 = -2(x - 4)$ $2x + y - 12 = 0$ Putting $y = 0$ in $2x + y - 12 = 0$, we have $x = 6$. Thus, the coordinates of C are $(6,0)$. (c) (i) The slope of $BD = \frac{8-0}{12-2} = \frac{4}{5}$ The equation of BD is $y - 0 = \frac{4}{5}(x - 2)$ $4x - 5y - 8 = 0$ (ii) Solving $\begin{cases} 2x + y - 12 = 0 \\ 4x - 5y - 8 = 0 \end{cases}$ We have $x = \frac{34}{7}$ and $y = \frac{16}{7}$. So, the coordinates of K are $\left(\frac{34}{7}, \frac{16}{7}\right)$. The required ratio $= \frac{(AC)(4)}{2} \cdot \frac{(AC)\left(\frac{16}{7}\right)}{2}$ $= 4 \cdot \frac{16}{7}$ $= 7 : 4$ IM for point-slope form IA pp-1 for missing '(' or ')' The required ratio $= \frac{(AC)(4)}{7} \cdot \frac{(AC)\left(\frac{16}{7}\right)}{2}$ $= 4 \cdot \frac{16}{7}$ $= 7 : 4$ IIM for point-slope form IM for point-slope form		Solution	Marks	Remarks
The slope of $CM = \frac{-1}{\frac{1}{2}} = -2$ The equation of CM is $y - 4 = -2(x - 4)$ $2x + y - 12 = 0$ Putting $y = 0$ in $2x + y - 12 = 0$, we have $x = 6$. Thus, the coordinates of C are $(6,0)$. (c) (i) The slope of $BD = \frac{8 - 0}{12 - 2} = \frac{4}{5}$ The equation of BD is $y - 0 = \frac{4}{5}(x - 2)$ $4x - 5y - 8 = 0$ (ii) Solving $\begin{cases} 2x + y - 12 = 0 \\ 4x - 5y - 8 = 0 \end{cases}$ we have $x = \frac{34}{7}$ and $y = \frac{16}{7}$. So, the coordinates of K are $\left(\frac{34}{7}, \frac{16}{7}\right)$. The required ratio $= \frac{(AC)(4)}{2} : \frac{(AC)\left(\frac{16}{7}\right)}{2}$ $= 4 : \frac{16}{7}$ $= 7 : 4$ IM for point-slope form IM pp-1 for missing '(' or ')' pp-1 for missing '(' or ')' IM for y-coordinate of M : y-coordinate o	(a)	The coordinates of M are $(4,4)$.	1	pp-1 for missing '(' or ')'
The equation of CM is $y-4=-2(x-4)$ $2x+y-12=0$, we have $x=6$. Thus, the coordinates of C are $(6,0)$. (c) (i) The slope of $BD=\frac{8-0}{12-2}=\frac{4}{5}$ The equation of BD is $y-0=\frac{4}{5}(x-2)$ $4x-5y-8=0$ (ii) Solving $\begin{cases} 2x+y-12=0\\ 4x-5y-8=0 \end{cases}$ We have $x=\frac{34}{7}$ and $y=\frac{16}{7}$. So, the coordinates of K are $\left(\frac{34}{7},\frac{16}{7}\right)$. The required ratio $=\frac{(AC)(4)}{2}:\frac{(AC)\left(\frac{16}{7}\right)}{2}$ $=4:\frac{16}{7}$ $=7:4$ IM for point-slope form	(b)	. ,	-	·
The equation of CM is $y-4=-2(x-4)$ $2x+y-12=0$, we have $x=6$. Thus, the coordinates of C are $(6,0)$. (c) (i) The slope of $BD=\frac{8-0}{12-2}=\frac{4}{5}$ The equation of BD is $y-0=\frac{4}{5}(x-2)$ $4x-5y-8=0$ (ii) Solving $\begin{cases} 2x+y-12=0\\ 4x-5y-8=0 \end{cases}$ We have $x=\frac{34}{7}$ and $y=\frac{16}{7}$. So, the coordinates of K are $\left(\frac{34}{7},\frac{16}{7}\right)$. The required ratio $=\frac{(AC)(4)}{2}:\frac{(AC)\left(\frac{16}{7}\right)}{2}$ $=4:\frac{16}{7}$ $=7:4$ IM for point-slope form		The slope of $CM = \frac{-1}{\frac{1}{2}} = -2$	I M	can be absorbed
Putting $y = 0$ in $2x + y - 12 = 0$, we have $x = 6$. Thus, the coordinates of C are $(6,0)$. 1A (3) (c) (i) The slope of $BD = \frac{8-0}{12-2} = \frac{4}{5}$ The equation of BD is $y - 0 = \frac{4}{5}(x-2)$ $4x - 5y - 8 = 0$ (ii) Solving $\begin{cases} 2x + y - 12 = 0 \\ 4x - 5y - 8 = 0 \end{cases}$ we have $x = \frac{34}{7}$ and $y = \frac{16}{7}$. So, the coordinates of K are $\left(\frac{34}{7}, \frac{16}{7}\right)$. The required ratio $ = \frac{(AC)(4)}{2} : \frac{(AC)\left(\frac{16}{7}\right)}{2} = 4 : \frac{16}{7} = 7 : 4$ 1M for point-slope form 1A pp-1 for missing '(' or ')'		The equation of CM is		
Thus, the coordinates of C are $(6,0)$. 1A		· ·	1A	or equivalent
The equation of BD is $y - 0 = \frac{4}{5}(x - 2)$ $4x - 5y - 8 = 0$ (ii) Solving $\begin{cases} 2x + y - 12 = 0 \\ 4x - 5y - 8 = 0 \end{cases}$ $\text{we have } x = \frac{34}{7} \text{ and } y = \frac{16}{7} \text{.}$ So, the coordinates of K are $\left(\frac{34}{7}, \frac{16}{7}\right) \text{.}$ The required ratio $= \frac{(AC)(4)}{2} : \frac{(AC)\left(\frac{16}{7}\right)}{2}$ $= 4 : \frac{16}{7}$ $= 7 : 4$ IM for point-slope form $1M$ $pp-1 \text{ for missing '(' or ')'}$ $pp-1 \text{ for missing '(' or ')'}$ $pp-1 \text{ for missing '(' or ')'}$ $1M$ $pp-1 \text{ for missing '(' or ')'}$ $1M$ $pp-1 \text{ for y-coordinate of } M : y\text{-coordinate of } M$				pp-1 for missing '(' or ')'
The equation of BD is $y - 0 = \frac{4}{5}(x - 2)$ $4x - 5y - 8 = 0$ (ii) Solving $\begin{cases} 2x + y - 12 = 0 \\ 4x - 5y - 8 = 0 \end{cases}$ $\text{we have } x = \frac{34}{7} \text{ and } y = \frac{16}{7} \text{.}$ So, the coordinates of K are $\left(\frac{34}{7}, \frac{16}{7}\right) \text{.}$ The required ratio $= \frac{(AC)(4)}{2} : \frac{(AC)\left(\frac{16}{7}\right)}{2}$ $= 4 : \frac{16}{7}$ $= 7 : 4$ IM for point-slope form $1M$ $pp-1 \text{ for missing '(' or ')'}$ $pp-1 \text{ for missing '(' or ')'}$ $pp-1 \text{ for missing '(' or ')'}$ $1M$ $pp-1 \text{ for missing '(' or ')'}$ $1M$ $pp-1 \text{ for y-coordinate of } M : y\text{-coordinate of } M$	(c)	(i) The slope of $BD = \frac{8-0}{10.00} = \frac{4}{5}$		
$y-0=\frac{4}{5}(x-2)$ $4x-5y-8=0$ IM for point-slope form $\begin{cases} 2x+y-12=0\\ 4x-5y-8=0 \end{cases}$ we have $x=\frac{34}{7}$ and $y=\frac{16}{7}$. So, the coordinates of K are $\left(\frac{34}{7},\frac{16}{7}\right)$. The required ratio $=\frac{(AC)(4)}{2}:\frac{(AC)\left(\frac{16}{7}\right)}{2}$ $=4:\frac{16}{7}$ $=7:4$ IM for point-slope form $=\frac{1}{1}$ $=\frac{1}{1}$ IM for point-slope form $=\frac{1}{1}$ $=\frac{1}{1}$ $=\frac{1}{1}$ $=\frac{1}{1}$ If for y-coordinate of $M: y$ -coordinate of accept $1: x$ and $t: 1$ with $t = x$. t		12 2 0		
(ii) Solving $\begin{cases} 2x + y - 12 = 0 \\ 4x - 5y - 8 = 0 \end{cases}$ we have $x = \frac{34}{7}$ and $y = \frac{16}{7}$. So, the coordinates of K are $\left(\frac{34}{7}, \frac{16}{7}\right)$. The required ratio $= \frac{(AC)(4)}{2} : \frac{(AC)\left(\frac{16}{7}\right)}{2}$ $= 4 : \frac{16}{7}$ $= 7 : 4$ 1M for y -coordinate of M : y -coordinate of M		$y-0=\frac{4}{3}(x-2)$	iM	for point-slope form
we have $x = \frac{34}{7}$ and $y = \frac{16}{7}$. So, the coordinates of K are $\left(\frac{34}{7}, \frac{16}{7}\right)$. The required ratio $= \frac{(AC)(4)}{2} : \frac{(AC)\left(\frac{16}{7}\right)}{2}$ $= 4 : \frac{16}{7}$ $= 7 : 4$ 1A pp-1 for missing '(' or ')' for y-coordinate of M : y-coordina		-		
So, the coordinates of K are $\left(\frac{34}{7}, \frac{16}{7}\right)$. The required ratio $= \frac{(AC)(4)}{2} : \frac{(AC)\left(\frac{16}{7}\right)}{2}$ $= 4 : \frac{16}{7}$ $= 7 : 4$ IM for y-coordinate of M :		(ii) Solving $\begin{cases} 2x + y - 12 = 0 \\ 4x - 5y - 8 = 0 \end{cases}$,	1M	
The required ratio $= \frac{(AC)(4)}{2} : \frac{(AC)\left(\frac{16}{7}\right)}{2}$ $= 4 : \frac{16}{7}$ $= 7 : 4$ 1M for y-coordinate of M: y-coordinate of accept 1: s and t:1 with s r.t. 0.571 and t r.t. 1.75		•	1A	
$= \frac{(AC)(4)}{2} : \frac{(AC)\left(\frac{16}{7}\right)}{2}$ $= 4 : \frac{16}{7}$ $= 7 : 4$ $1M for y-coordinate of M: y-coordinate of accept 1: s and t: 1 with s r.t. 0.571 and t r.t. 1.75$		So, the coordinates of K are $\left(\frac{34}{7}, \frac{16}{7}\right)$.		pp-1 for missing '(' or ')'
$= 4 : \frac{16}{7}$ $= 7 : 4$ $= 1M$ for y-coordinate of M: y-coordinate of 1 with accept 1: s and t: 1 with s r.t. 0.571 and t r.t. 1.75		1>		
= 7:4		2 2		
= 7:4		= 4: 16	1M	for y-coordinate of M: y-coordinate of K
s r.t. 0.571 and t r.t. 1.75			1A	
			(5)	s r.t. 0.571 and t r.t. 1.75

	Solution	Marks	Remarks
a)	In Figure 7(a), let h cm be the height of the smaller cone. Then, we have $\frac{h}{h+8} = \frac{3}{6}$		
	h=8	l A	can be absorbed
	The volume of the frustum		
	$=\frac{1}{3}\pi(6^2)(16)-\frac{1}{3}\pi(3^2)(8)$	1M	
	$= 168\pi \text{ cm}^3$ The relative of V	1A	can be absorbed
	The volume of X = $\frac{2}{3}\pi(6^3) + 168\pi$	1M	
	$3^{3} = 312\pi \text{ cm}^{3}$	1 A	u-1 for missing unit
	The volume of Y		
	$=\left(\sqrt{\frac{9}{4}}\right)^3 (312\pi)$	1 M	
	$=\left(\frac{27}{8}\right)(312\pi)$		
	$=1053\pi \text{ cm}^3$	1A	u-1 for missing unit
	$\frac{h}{h+8} = \frac{3}{6}$ $h = 8$ The volume of the frustum The volume of smaller cone The volume of the frustum	· 1A	can be absorbed
	$=\frac{1}{3}\pi(3^2)(8)(7)$	1M	
	$= 168\pi \text{ cm}^3$ The volume of X	1 A	can be absorbed
	$= \frac{2}{3}\pi(6^3) + 168\pi$	1 M	
	= 312π cm ³ The ratio of a linear measurement of X to the corresponding linear measurement of Y = $\sqrt{4}:\sqrt{9}$ = 2:3	1A	u-1 for missing unit
	The radius of the top circular surface of $Y = 3(\frac{3}{2}) = 4.5$ cm		
	The radius of the hemisphere part of $Y = 6(\frac{3}{2}) = 9 \text{ cm}$		
	The height of the frustum part of $Y = 8(\frac{3}{2}) = 12 \text{ cm}$		
	The volume of Y	13.4	
	$= \frac{1}{3}\pi(9^2)(24) - \frac{1}{3}\pi(4.5^2)(12) + \frac{2}{3}\pi(9^3)$	1M	
	$= 1053\pi \text{ cm}^3$	1A (7)	u-I for missing unit

Solution	Marks	Remarks
The volume of X'		
$=312\pi + \frac{4}{3}\pi(1^3)$		
•		
$=\frac{940\pi}{3}\mathrm{cm}^3$	Ì	
The volume of Y'		
$=1053\pi + \frac{4}{3}\pi(2^3)$		
$=\frac{3191\pi}{3}$ cm ³		
The volume of X'		
The volume of Y'		
$=\frac{940}{3191}$		
$\neq \frac{8}{27}$	1M	
Thus, X' and Y' are not similar.	1 A	f.t.
The ratio of a linear measurement of X to the corresponding linear	1	
measurement of Y		
$=\sqrt{4}:\sqrt{9}$		
= 2:3 But the ratio of the radius of the sphere fixed onto X to the radius of		
the sphere fixed onto Y is $1:2$, which is not equal to $2:3$.	1M 1A	f.t.
Thus, X' and Y' are not similar.	IA	I.L.
The volume of the sphere fixed on X		
The volume of the sphere fixed on Y		
$=\left(\frac{1}{2}\right)$		
$=\frac{8}{8}$		
$\neq \frac{8}{27}$	1 M	
Thus, X' and Y' are not similar.	1 A	f.t.
The surface area of the sphere fixed on X		
The surface area of the sphere fixed on Y		
$=\left(\frac{1}{2}\right)^2$		
$\left \frac{\pi}{2} \right $		
$=\frac{1}{4}$		
	1 M	1
Thus, X' and Y' are not similar.	1 A	f.t.
	(2)	

		Solu	ition		Marks	Remarks
(a)	(i)	Some statistics are tabulat	ed as follows:			
			Class A	Class B		
		The lower quartile	18 marks	11 marks	1A	
		The upper quartile	39 marks	25 marks		for either row or either column
		The inter-quartile range of class A = 39-18 = 21 marks	e of the score distribut	tion of the student	1 1 M	
		The inter-quartile range of class $B = 25-11$	e of the score distribut	tion of the student	3	for either one for both correct
		== 14 marks				
	(ii)	By (a)(i), the inter-quartil students of class B is less Thus, the score distribution dispersed than class A .	s than that of class A		} 1M	(4)
(b)	(i)	The required probabilit = $(\frac{28}{50})(\frac{27}{49})(\frac{22}{48})(3)$	у		1M + 1	M $\begin{cases} 1M \text{ for } (\frac{p}{q})(\frac{p-1}{q-1})(\frac{50-p}{q-2}), \\ p < q + 1M \text{ for the 3 cases} \end{cases}$
		$=\frac{297}{700}$			1 A	p < q + 1 in for the 3 cases $r.t. 0.424$
	(ii)	The required probabilities $= \left((\frac{18}{50})(\frac{17}{49})(\frac{22}{48}) + (\frac{10}{50})(\frac{10}{$			1M	$\begin{cases} \text{for } (\frac{p}{q})(\frac{p-1}{q-1})(\frac{r}{q-2}), \\ p < q \text{ and } r < q - 2 \end{cases}$
		$=\frac{1089}{4900}$			1A	r.t. 0.222
	(iii)		у		1M	for (b)(ii) (b)(i)
		$=\frac{11}{21}$			1A	r.t. 0.524
		The required probabil $= \frac{(18)(17)(22) + (10)(9)(9)(9)(10)}{(28)(27)(22)}$			1M	$\begin{cases} \text{for denominator} = (28)(27)(27) \\ \text{or denominator} = (28)(27) \end{cases}$
		$=\frac{11}{21}$			1A	r.t. 0.524
						(7)

Solution	Marks	Remarks
(a) Let $C = aA + \frac{bA^2}{n}$ where a and b are non-zero constants. When $A = 50$ and $n = 500$, $C = 350$, we have	1A	pp-1 for writing $C \propto aA + \frac{bA^2}{n}$
when $A = 50$ and $n = 300$, $C = 350$, we have $50a + \frac{(50^2)b}{500} = 350$ $10a + b = 70$ When $A = 20$ and $n = 400$, $C = 100$, we have	1 M	for substitutions (either one)
$20a + \frac{(20^2)b}{400} = 100$ $20a + b = 100$ (2)		<u> </u>
Solving (1) and (2), we have $a = 3$ and $b = 40$. Thus, we have $C = 3A + \frac{40A^2}{n}$.	1A	for both correct
n	(3)	
(b) (i) Note that $P = 8A - \left(3A + \frac{40A^2}{n}\right)$.		
Thus, we have $P = 5A - \frac{40A^2}{n}$.	1M	for $P = 8A - (a)$ and simplified
(ii) When $P: n = 5:32$, $\frac{5n}{32} = 5A - \frac{40A^2}{n}$		
$256A^2 - 32An + n^2 = 0$	1 M	for $\alpha A^2 + \beta A n + \gamma n^2 = 0$ or equivalent
$(16A - n)^2 = 0$ Thus, we have $A: n = 1:16$.	1A	accept 0.0625
(iii) When $n = 500$ and $P = 100$, we have $5A - \frac{40A^2}{500} = 100$.		
So, we have $2A^2 - 125A + 2500 = 0$. $\Delta = (-125)^2 - 4(2)(2500)$ $= -4375$	iM	accept attempting to solve the quadratic equation or find the greatest value of P
<0 Thus, it is impossible to make a profit of \$ 100.	1 A	f.t.
(iv) When $n = 400$, $P = 5A - \frac{40A^2}{400}$		
$= 5A - \frac{A^2}{10}$ $= \frac{-1}{10}(A^2 - 50A)$		
$= \frac{-1}{10}(A^2 - 50A + 25^2 - 25^2)$ $= \frac{-1}{10}(A - 25)^2 + \frac{125}{2}$	1 M	for completing the square
$= \frac{10}{10} (A - 25) + \frac{1}{2}$ Thus, the greatest profit is \$ 62.5.	1A (8)	

Solution			Marks	Remarks
(i)	$\angle BAS = \angle BCS = 90^{\circ}$	('∠ in semi-circle)		[半圓上的圓周角]
(-)	Produce CH to meet AB at K.			[△垂心]
	and $\angle BCS = 90^{\circ} = \angle BOA$.			
	ŕ	(corr. ∠s equal)		[同位角等] [同側(旁)內角互補] (int. ∠s supp.) [(內)錯角等] (alt. ∠s equa
	Thus, AHCS is a parallelogram.			
		(∠ in semi-circle)		[半圓上的圓周角]
	$CH \perp AB$ and $AH \perp BC$	(orthocentre of Δ)		[[Δ垂心]
	So, AS // HC and SC // AH.	(corr.∠s equal)		[同位角等] [同側(旁)內角互補]
	The street is a second street in the street			(int. ∠s supp.) [(內)錯角等] (alt. ∠s equa
	Thus, AHCS is a parallelogram.		 	
	Marking Scheme:			
			3	
			2	
	Case 3 Incomplete proof with any one	correct step and one correct reason.	<u>I</u>	1
(ii)	: AHCS is a parallelogram. (by(a)(i)			
. ,	$\therefore AH = SC \qquad (opp. si$	des, // gram)		[//四邊形對邊]
	$:: GR \perp BC$			
	$\therefore BR = RC $ (line fro	m centre 1 chord bisects chord		[圓心至弦的垂線平分弦] [通過圓心垂直於弦的線平分弦]
	Note that $BG = GS$.			
	Hence, we have $SC = 2GR$. (mid-po	oint thm.)		[中點定理]
	Thus, we have $AH = 2GR$.		1	
	: AHCS is a parallelogram.	(by(a)(i)		<u> </u>
				[//四邊形對邊]
		,	1	
		(common /)	1	[公共角]
				[Δ內角和]
		(<u>~</u> sum or <u>~</u>)		[[-1,3/244]
		/ / of A)		[[[[]]]]
				[△內角和]
		(AAA)		[等角] (AA) (equiangular)
	So, we have $\frac{BG}{GR} = \frac{BS}{SC}$.			
	I hus, we have $AH = 2GK$.			
	Marking Scheme:]
	Case 1 Any correct proof with cor Case 2 Any correct proof without		2	4
			. 1	•
	(ii)	Produce CH to meet AB at K : $\angle BKC = \angle BOA = 90^{\circ}$ Hence, $\angle BAS = 90^{\circ} = \angle BKC$ and $\angle BCS = 90^{\circ} = \angle BOA$. So, $AS \# HC$ and $SC \# AH$. Thus, $AHCS$ is a parallelogram.	Produce CH to meet AB at K . $\angle BKC = \angle BOA = 90^{\circ}$ (orthocentre of Δ) Hence, $\angle BAS = 90^{\circ} = \angle BKC$ and $\angle BCS = 90^{\circ} = \angle BOA$. So, AS / HC and SC / AH . (corr. $\angle S$ equal) Thus, $AHCS$ is a parallelogram.	Produce CH to meet AB at K . $\angle BKC = \angle BOA = 90^\circ$ (orthocentre of Δ) Hence, $\angle BAS = 90^\circ = \angle BKC$ and $\angle BCS = 90^\circ = \angle BOA$. So, $AS \parallel HC$ and $SC \parallel AH$. (corr. $\angle S$ equal) Thus, $AHCS$ is a parallelogram.

Solution	Marks	Remarks
		Nomina
(b) (i) Let the equation of the required circle be $x^2 + y^2 + Dx + Ey + F = 0$	1	
: the coordinates of B and C are $(-6, 0)$ and $(4, 0)$ respectively $(-6)^2 + (0)^2 + D(-6) + E(0) + E = 0$	<u>'</u> 1	
$\begin{cases} (-6)^2 + (0)^2 + D(-6) + E(0) + F = 0 \\ (4)^2 + (0)^2 + D(4) + E(0) + F = 0 \end{cases}$	l M	 ,
So, we have $D=2$ and $F=-24$.	1A	for both correct for either one
: the coordinates of A are $(0,12)$.		lor cluic one
$\therefore (0)^2 + (12)^2 + D(0) + E(12) + F = 0$		i
So, we have $E = -10$.	1 A	
Thus, the equation of the circle is $x^2 + y^2 + 2x - 10y - 24 = 0$.		$(x+1)^2 + (y-5)^2 = 50$
(ii) Note that the coordinates of G are $(-1,5)$.		
So, the coordinates of R are $(-1,0)$.		
Then, we have $GR = 5$. By (a)(ii), we have $AH = 10$.		
Thus, the coordinates of the H are $(0,2)$.	1A	
5-2		
(iii) The slope of $GH = \frac{5-2}{-1-0} = -3$		
The slope of $BG = \frac{5-0}{-1-(-6)} = 1$		
$\frac{1}{-1-(-6)}$		
: (the slope of GH) (the slope of BG) = $-3 \neq -1$	iМ	for testing whether $GH \perp BG$
$\therefore \angle BGH \neq 90^{\circ}$ Note that $\angle BOH = 90^{\circ}$.		
So, we have $\angle BGH + \angle BOH \neq 180^{\circ}$.		
Thus, B , O , H and G are not concyclic.	1A	f.t.
For the equation of the circle which passes through B , H and O ,		
∴ $\angle BOH = 90^{\circ}$ ∴ the centre of the circle is the mid-point of BH .	1	
So, the coordinates of the centre are (-3,1).		
The radius = $\sqrt{(-3-0)^2 + (1-2)^2} = \sqrt{10}$		
So, the equation of the circle which passes through B , H and O is		
$(x+3)^2 + (y-1)^2 = 10 .$		
Note that $(-1+3)^2 + (5-1)^2 = 20 \neq 10$.	1M	for testing whether the fourth point lies on the circle
G does not lie on the circle which passes through B , H and O .	١	
Thus, B , O , H and G are not concyclic.	1 A	f.t.
Let the equation of the circle which passes through B , H and O		
be $x^2 + y^2 + Dx + Ey + F = 0$.		
Since the coordinates of O are $(0,0)$, we have $F=0$.		
: the coordinates of B and H are (-6, 0) and (0, 2) respectively. : $(-6)^2 + (0)^2 + D(-6) + E(0) = 0$, $(0)^2 + (2)^2 + D(0) + E(2) = 0$.		
Hence, we have $D=6$ and $E=-2$.		
So, the equation of the circle which passes through B , H and O		
is $x^2 + y^2 + 6x - 2y = 0$.		for testing whether the fourth
Note that $(-1)^2 + 5^2 + 6(-1) - 2(5) = 10 \neq 0$.	íМ	point lies on the circle
G does not lie on the circle which passes through B , H and O . Thus, B , O , H and G are not concyclic.	1A	f.t.
	(6)	

		Solution	Marks	Remarks
17. ((a)	By cosine formula, we have		
((44)	$\cos \angle BAD = \frac{AC^2 + AB^2 - BC^2}{2(AC)(AB)}$	1 M	accept using Pythagoras' theorem twi
		$\cos \angle BAD = {2(AC)(AB)}$	1141	accept using 1 yanggatas and
		$90^2 + 40^2 - 60^2$.	
		$\cos \angle BAD = \frac{90^2 + 40^2 - 60^2}{2(90)(40)}$		
		$\cos \angle BAD = \frac{61}{72}$		
		ZBAD ≈ 32.08918386°		
		AD	Ì	
		$=40\cos\angle BAD$		
		$=40(\frac{61}{72})$		
		· •-	1A	r.t. 33.9 cm, AD ≈ 33.88888889 cm
		$=\frac{305}{9}$ cm	1	
			(2))
	(b)	(i) (1) <i>CD</i>		
	(0)	= CA - AD		
		$=90-\frac{305}{9}$		
		,		
		$=\frac{505}{9}$ cm		
		≈ 56.111111111 cm ½		
		建设设置的基本的。在19		
		By sine formula, we have		
		$\frac{CD}{A} = \frac{AD}{A}$	1M	
		$\sin \angle DAC \sin \angle DCA$		
		$\frac{505}{9\sin 62^{\circ}} = \frac{305}{9\sin \angle DCA}$		
		∠DCA ≈ 32.22634992°	1	
			l	for either one
		∠ADC ≈ 180° - 32.22634992° - 62°		
		≈ 85.77365008°		
			1	
		By sine formula, we have	1	
		$\frac{AC}{\sin \angle ADC} = \frac{CD}{\sin \angle DAC}$	ļ	
		$\frac{AC}{\sin 85.77365008^{\circ}} \approx \frac{56.11111111}{\sin 62^{\circ}}$		
		AC ≈ 63.37695244 cm	1,4	r.t. 63.4 cm
		Thus, the required distance is 63.4 cm.	1A	1,1. 05.4 CM
		By cosine formula, we have		
		$CD^2 = AD^2 + AC^2 - 2(AD)(AC)\cos \angle DAC$	1M	
		$(\frac{505}{9})^2 = (\frac{305}{9})^2 + AC^2 - 2(\frac{305}{9})(AC)\cos 62^\circ$		
		$AC^2 - 2(15.90986963)(AC) - 2000 \approx 0$		
		$AC \approx 63.37695244 \text{ cm}$		
		Thus, the required distance is 63.4 cm.	1A	r.t. 63.4 cm
			T	
		·		

Solution	Marks	Remarks
(2) s		
$=\frac{1}{2}(AB+BC+AC)$		
$-\frac{1}{2}(AB+BC+AC)$	}	
$\approx \frac{1}{2}(40 + 60 + 63.37695244)$		
≈ 81.6884762 cm	1.	·
The area of AABC	-	
$= \sqrt{s(s-AB)(s-BC)(s-AC)}$	IM	with s defined
$\approx \sqrt{s(s-40)(s-60)(s-63.376952)}$		
≈ 1162.961055 cm ²		1
≈ 1160 cm ²	1A	r.t. 1160 cm ²
(1)	""	I.a. 1100 Cili
(3) The area of $\triangle ADC$		
$=\frac{1}{2}(AD)(AC)\sin \angle DAC$	1 M	
$\approx \frac{1}{2}(33.8888888889)(63.37695244)\sin 62^{\circ}$	İ	
	1	
$\approx 948.1861616 \text{cm}^2$	ı	
BD		
$= AB \sin \angle BAD$		
≈ 40 sin 32.08918386° ≈ 21.24954611 cm		
~ 21.24934011CHI		
Let H be the projection of D on the horizontal plane.		
Then, the height of the tetrahedron ABCD is DH. So, we have	1	
$\frac{DH}{3}$ (area of $\triangle ABC$) = $\frac{BD}{3}$ (area of $\triangle ADC$)		
$\frac{3}{3}$ (area of $\triangle ADC$)	1M	
$\frac{1}{3}DH(1162.961055) \approx \frac{1}{3}(21.24954611)(948.1861616)$		
DH ≈17.32519373 cm	į	
Thus, the required height is 17.3 cm.	1A	r.t. 17.3 cm
(ii) The volume of the tetrahedron ABCD		
(ii) The volume of the tetrahedron $ABCD$ $(AD)(CD)(BD)\sin \angle ADC$		
6	1M	
So, the volume of the tetrahedron varies directly as $\sin \angle ADC$.	for either one
When ∠ADC increases from 30° to 90°, the volume of the tetrahedron ABCD increases.	•]	
When $\angle ADC$ increases from 90° to 150°, the volume of the	he IA	
tetrahedron ABCD decreases.	' [~]]	
	(9)	