Hong Kong Certificate of Education Examination Mathematics Paper 1

General Marking Instructions

- It is very important that all markers should adhere as closely as possible to the marking scheme. In
 many cases, however, candidates will have obtained a correct answer by an alternative method not
 specified in the marking scheme. In general, a correct answer merits all the marks allocated to that
 part, unless a particular method has been specified in the question. Makers should be patient in
 marking alternative solutions not specified in the marking scheme.
- In the marking scheme, marks are classified into the following three categories:

'M' marks
'A' marks

awarded for correct methods being used; awarded for the accuracy of the answers;

Marks without 'M' or 'A'

awarded for correctly completing a proof or arriving at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 4. Use of notation different from those in the marking scheme should not be penalized.
- In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- Marks may be deducted for wrong units (u) or poor presentation (pp).
 - a. The symbol (u-) should be used to denote 1 mark deducted for u. At most deduct 1 mark for u for the whole paper.
 - b. The symbol pp-D should be used to denote 1 mark deducted for pp. At most deduct 2 marks for pp for the whole paper. For similar pp, deduct 1 mark for the first time that it occurs. Do not penalize candidates twice in the paper for the same pp.
 - c. At most deduct 1 mark in each question. Deduct the mark for u first if both marks for u and pp may be deducted in the same question.
 - d. In any case, do not deduct any marks for pp or u in those steps where candidates could not score any marks.
- Marks entered in the Page Total Box should be the NET total scored on that page.
- 8. In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to', 'f.t.' stands for 'follow through' and 'or equivalent' means 'accepting equivalent forms of the equation which may have not been simplified but without uncollected like terms'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles or (brackets). All fractional answers must be simplified.

只阿教師參閱 FOR TEACHERS' USE ONLY

	Solution	Marks	Remarks
1. When $C = 30$, $30 = \frac{5}{9}(F - 32)$		IM	substituting $C = 30$
, ,	(or 270 = 5E ÷ 160.)	ΪA	removing brackets
$\frac{30 \times 9}{5} = F - 32$ $F = 86$		1A	
$C = \frac{5}{9}(F - 32)$ $F = \frac{9}{5}C + 32$	(or g(= 5F €160)	IA	removing brackets
When $C = 30$, $F = \frac{9}{5} \times 30 + 32$		IM	substituting $C = 30$
F = 86		IA	
2. $\frac{x^{-1}y}{x^2} = \frac{y}{x^{2}x^{2}}$ $= \frac{y}{x^{5}}$	(ar. 122) (ar. 127)	(3) 1M 1M 1A (3)	applying $a^{-4i} = \frac{1}{a^m}$ applying $a^m a^n = a^{m+n}$
3. Area of the sector	$= \frac{75}{360} (6^2 \pi) \text{ cm}^2$ $\approx 23.6 \text{ cm}^2 \text{(or } 7\frac{1}{2}\pi \text{ cm}^2\text{)}$	1M+1A	1M for ratio or area of circle r.t. 23.6 or $\frac{15}{2}\pi$, 7.5 π
	$=\frac{1}{2}\times6^2\times\frac{75}{180}\pi$ cm ²	IM+IA	IM for $\frac{1}{2}r^2\theta$ or correct value of θ
<u> </u>	$\approx 23.6 \text{ cm}^2 (\text{or } 7\frac{1}{2}\pi \text{ cm}^2)$	<u> </u>	r.t. 23.6 or $\frac{15}{2}\pi$, 7.5π
		(3)	6 cm 75°
2000-CE-MATH 1-3			

	尺吹软帅多度 FUN TEACHE	110 00	r hre-1
_	Solution	Marks	Remarks
4.	$a^{2} + 7^{2} = 10^{2}$ (or $a = \sqrt{10^{2} - 7^{2}}$) $a = \sqrt{51}$ (or 7.14) $\cos x^{o} = \frac{7}{10}$ (or $\sin x^{o} = \frac{\sqrt{51}}{10}$, $\tan x^{o} = \frac{\sqrt{51}}{7}$) x = 45.6	1A 1A 1M 1A	r.t. 7.14 r.t. 45.6, $u-1$ for $v \approx 45.6^\circ$,
	$\cos x^{\circ} = \frac{7}{10}$ $x \approx 45.6$ $a \approx 10 \sin 45.6^{\circ}$ (or $a \approx 7 \tan 45.6^{\circ}$) $a \approx 7.14$	IA IA IM IA	$x \approx 45^{\circ}34^{\circ}, x^{\circ} \approx 45.6^{\circ}, x^{\circ} \approx 45.6$ 10 cm $a \text{ cm}$
i,	$\frac{11-2x}{5} < 1$ $11-2x < 5 \qquad \text{(or } \frac{11}{5} - \frac{2}{5}x < 1 \text{)}$ $-2x < -6$ $2x > 6 \qquad \text{(or } 6 < 2x, \frac{2}{5}x > \frac{6}{5} \text{)}$ $x > 3$	(4)	For any 2 of these 3 steps, !A for each. 2 of these 3 steps can be omitted.
	-5 -4 -3 -2 -1 0 t 2 · 3 4 5) — <u>IM</u> — (4)	or
i.	f(-3) (or $2(-3)^3 + 6(-3)^2 - 2(-3) - 7$) = -1 : The remainder is -1.	2A 1A	
	$ \begin{array}{r} 2+0-2 \\ 1+3 \overline{\smash{\big)}2+6-2-7} \\ 2+6 \\ \hline -2-7 \\ -2-6 \\ \hline -1 \\ $	5A	
	IVIIIIIIII1	(3)	
ታሰውና	LCC.MATH I-4	l	!

Solu	tion	Marks	Remarks
, x=25		1 A	$u-1$ for $x = 25^{\circ}$, $x^{\circ} = 25^{\circ}$
$\therefore \angle ADB = x^{0}$ $\therefore y = 180 - 56 - 25 - x$ $= 74$		1M 1M 1A (4)	applying $\angle s$ in same segment $u-1$ for $y = 74^\circ$, $y^\circ = 74^\circ$ $y^\circ = 74^\circ$
Actual area = 220×5000^{2} cm ² 5000^{2} = 550000 m ² (or	area in m² = 550 000)	2M FM 1A (4)	for ×5000 ² , ignore unit for +100 ² , pp-1 for not handling units properly
9. (a) Slope of $L = \frac{4-0}{-4-6}$ = $-\frac{2}{5}$ (or	-0.4)	1A	
(b) Equation of L: $y = -\frac{2}{5}(x-6)$ (or $y = -\frac{2}{5}x + \frac{12}{5}$ (or		1M	or equivalent
(c) When $x = 0$, $y = \frac{12}{5}$. (o) $C = (0, \frac{12}{5})$.		1M 1A	
C = (0, 3).		(5)	
2000-CE-MATH 1-5			

•	大学文章 DE LEVEL			DE ALI
	Soluti	Marks	Remarks	
-). (a)	$10x^{2} + 9x - 22 = 0$ $(x+2)(10x-11) = 0$ $x = -2 \text{ or } \frac{11}{10}$	(or $x = \frac{-9 \pm \sqrt{9^2 + 4 \times 10 \times 22}}{2 \times 10}$) (or $x = -2$ or 1.1)	IA LA	
	$r = -2$ or $\frac{10}{10}$	(= = = = = .	(2)	
(b)			IM+1A	1M for 10000(1+1%) ²
	[10000(1+r%)+9000](1+r%)	- 22000	[MHIA	1M for 10000(1+r%)+9000
	$10(1+r\%)^2+9(1+r\%)-22=0$	(or $r^2 + 290r - 3000 = 0$, $10(r\%)^2 + 29(r\%) - 3 = 0$)	lM	pp-1 for confusing r with r% for choosing '+ve' value from '+ve' and 1 '-ve' roots, provid
	From (a), $1+r\%=1.1$			that the original equation must correct
	r = 10		<u> A</u> (4)	
l. (a)) Missing value in 1st table = 66 Missing value in 2nd table = 20		1A — <u>1A</u> —(2)	
(b	An estimate of the mean 210×3+230×13+260×30+ 75 255 seconds	270×20 # 290×9 (seconds)	1M 1A	r.t. 255
(c) Median ≈ 254 seconds	(or 255 seconds)	<u>iA</u> (1)	r.t. 254 or 255
(d	Number of songs have length but not greater than 260 seco = 13 + 30 = 43	s greater then 220 seconds ands (or 46 - 3)	1A	
	Percentage required = $\frac{43}{75} \times 10^{-10}$	0%		
	≈ 57.3%	(or $57\frac{1}{3}\%$)	<u>IA</u>	r.t. 57.3
			l	I

	Solution		Marks	Remarks
(a) Num	nbers having two zero digits are 100,	200,, 900.		
	pability required = 9		ĪΑ	for numerator
	• •	4.013	lA	
	100	(or 0.01)	10	
Pro	bability required = $\frac{1}{10} \times \frac{1}{10}$		ĺΑ	
	$=\frac{1}{100}$	(or 0.01)	[A	
			(2)	
(b) Nu	mbers having no zero digits are		i	
• •	111, 112,, 119	911, 912,, 919	1	
	121, 122,, 129	921, 922,, 929 :		
	: 191, 192,, 199	991, 992,, 999		
Pro	bability required = $\frac{9 \times 9 \times 9}{900}$		1A	for numerator
	<u>81</u> 100	(or 0.81)	1A	
Pro	obability required $=\frac{9}{10} \times \frac{9}{10}$		ΙĀ	
		(or 0.81)	ĪĀ	
<u> </u>	$=\frac{81}{100}$	(01 0.51)		
			(2)	
(c) Nu	Imbers having exactly one zero digit s 101, 102,, 109, 110, 120,, 201, 202,, 209, 210, 220,, : : 901, 902,, 909, 910, 920,,	190 290		
		, 170		6
Pro	obability required = $\frac{9 \times 9 + 9 \times 9}{900}$		14	for numerator
	= 9/50	(or 0.18)	1A	
Pt	robability required = $1 - \frac{1}{100} - \frac{81}{100}$		[M]	
	= 9/50	(or 0.18)	ĨA.	
Pi	robability required = $\frac{1}{10} \times \frac{9}{10} \times 2$		1A	
	$=\frac{9}{50}$	(or 0.18)	IA	
L			(2)	
				1

2000-CE-MATH 1-6

	只限教師參閱 FUR TEACHE	K2, 02	E WLY
	Solution	Marks	Remarks
13. (a)	Size of each interior angle of the pentagon = $\frac{(5-2)\times180^{\circ}}{5}$ = $\frac{108^{\circ}}{5}$	IA	<u></u>
	$\angle BCG = 108^{\circ} - 90^{\circ} = 18^{\circ}$	1A	6
	$\angle CBG = \frac{180^{\circ} - 18^{\circ}}{2} = 81^{\circ}$	IM.	B F E
	$ \begin{array}{l} 2 \\ \angle ABP = 108^{\circ} - 81^{\circ} = 27^{\circ} \end{array} $	1A	$ \setminus $
	$\angle APB = 180^{\circ} - 27^{\circ} - 108^{\circ} = 45^{\circ}$	IA	\
		(5)	\
(L)	$\therefore \frac{AP}{\sin 27^{\circ}} = \frac{AB}{\sin 45^{\circ}}$		
(0)			
	$\therefore AP = \frac{\sin 27^{\circ}}{\sin 45^{\circ}} AB$		
	$= \frac{\sin 27^{\circ}}{\sin 45^{\circ}} AE \qquad (or \frac{AP}{\sin 27^{\circ}} = \frac{AE}{\sin 45^{\circ}} etc.)$	IM	
	$\approx 0.642 AE$ (or $AE \approx 1.56 AP$)		l d.p. is sufficient
	\therefore AP is longer than PE.	(3)	
		()	:
		' ــــــــــــــــــــــــــــــــــــ	
	3rd row	13 22	A10066
	2nd re		19 42
		st row	20
14 (4)	Number of seats in the last row = $20 + 2(50 - 1)$	1A	
14. (2)	- 118	_1A_	
		(2)	
	7/3 20.2/ 19	,,	
(b)	2 ·	lA.	
	$= n^2 + 19n$		
	If $n^2 + 19n = 2000$, then (or $n^2 + 19n \ge 2000$)	1M	
	$n^{2} + 19n - 2000 = 0$ $n = \frac{-19 \pm \sqrt{19^{2} - 4(-2000)}}{2}$		
	$-19 \pm \sqrt{19^2 - 4(-2000)}$		
	$n = \frac{1}{2}$	-	
	$n = 36.2 \text{ or } -55.2 \qquad (\text{or } n \approx 36.2 \text{ only})$	1A	r.t. 36.2, -55.2
	The seat numbered 2000 can be found in the 37th row.	1A	
	Let $f(n) = n^2 + 19n$.		
	∴ f(36) = 1980	} [M+[A	
	f(37) = 2072 ∴ The seat numbered 2000 can be found in the 37th row.	I IA	
	The seat numbered 2000 can be found in the 37th tow.		
		(4)	
			i

Solution	Marks	Remarks
15. (a) x and y satisfy the following conditions: $1000(40x) + 800(30y) \le 2400000$ or $5x + 3y \le 300$ $1000(10x) + 800(25y) \le 1200000$ or $x + 2y \le 120$ $x + y \le 70$ $x + 3y \le 120$	IA 1A 1A	Withhold I mark for any "<".
у _ф		· ====

2000-CE-MATH 1-9

•	只账教師參閱 FOR TEACHER					
	Solution	Marks	Remarks			
(b)	In addition to the conditions in (a), x , y should also satisfy $y < x$. The feasible solution becomes the shaded region.	1 A	or drawing $y = x$ in the figure			
(b)	In addition to the conditions in (a), x , y should also satisfy $y < x$. The feasible solution becomes the shaded region. By considering lines parallel to $4x + 5y = 0$ (or testing points). $P(x, y)$ attains its maximum at (36, 34). The greatest profit is \$62800.	1A 1A 1A (3)	or drawing $y = x$ in the figure			

Refer to Figure 9A		25.10	/ DIT (20)	TON TEACH	. ,	
Figure 9A Figure 9B (tangent 1 radius) (tangent properties) (切線仕事で) (切線仕事で) (切線仕事で) (切線仕事で) (切線仕事で) (世級代事で) (世級代			Solution		Marks	Remarks
Figure 9A Figure 9B Figure 9A (L1) ∠OPC = 90° (L2) ∠PCO = 180° - 90° - 30° = 60° (∠ sum of Δ) (L3) ∠PQO = ½ ∠PCO = 30° (L4) ∠OPC = 90° (L5) ∠OPC = 90° (L5) ∠OPC = 90° (L5) ∠PCO = 180° - 90° - 30° = 60° (∠ sum of Δ) (L5) ∠OPC = 90° (L5) ∠OPC = 90° (L5) ∠PCO = 180° - 90° - 30° = 60° (∠ sum of Δ) (L6) ∠OPC = 90° (L5) ∠PCO = 180° - 90° - 30° = 60° (∠ sum of Δ) (L7) ∠ CPQ = ∠CQP = x (base ∠s of isos. Δ) (L9) x = 30° Refer to Figure 9B, and let ∠CQP = x (∠ in alt. segment) (L1) ∠ TPQ = ∠CQP = x (∠ in semicircle) (L1) ∠ TPQ = 90° (L2) ∠ TPQ = √CQP = x (∠ in alt. segment) (L1) ∠ TPQ = 90° (L1) ∠ TPQ = 90° (L1) ∠ TPQ = 90° (L2) ∠ TPQ = √CQP = x (∠ in semicircle) (L1) ∠ TPQ = 90° (L1) ∠ TPQ = 90° (L2) ∠ TPQ = √CQP = x (∠ in alt. segment) (Δ) ∠ TPQ = √CQP = x (∠ in alt	5	\$\langle \langle \lang	1) [\$ 5		
(L1)	0 120	Figure 9/	0	— Р		
(L2)	(a) Refer to E (L1)	Figure 9A, $\angle OPC = 90^{\circ}$		(tangent 1 radius)		(tangent properties) [切線1半徑]、[切線性質/定
(L4) ∠OPC = 90° (tangent ⊥ radius) (tangent properties) (切線上年極」、「切線性質/理] (L5) ∠PCO = 180° - 90° - 30° = 60° (∠ sum of △) (五内角和] (L6) ∠CPQ = ∠CQP = x (base ∠s of isos. △) (李腰△底角] (L8) 2x = ∠PCO = 60° (ext. ∠ of △) (上9) x = 30° Refer to Figure 9B, and let ∠CQP = x (∠ in alt. segment) (上10) ∠TPO = ∠CQP = x (∠ in alt. segment) (上11) ∠TPQ = 90° (∠ in semicircle) (上12) ∴ 30° + 90° + 2x = 180° (∠ sum of △) (□A角和] Marking Scheme: Case 1 Any correct proof with correct reasons. 3 Case 2 Any correct proof without reasons. 1 At most 2 marks						
(L5)	1		let $\angle CQP = x$.	(tangent 1 radius)		[切線工半徑]、[切線性質/定
(L7)		and the second s	were the transport of the California's Colors and Citizen's	° (∠ sum of Δ)	Angel	1
(L1)	r		- March Color of the Color of t		37	「等腰∆底角!
Refer to Figure 9B, and let ∠CQP = x. (L10) ∠TPO = ∠CQP = x (∠ in alt. segment) (L11) ∠TPQ = 90° (∠ in semicircle) (L12) ∴ 30° + 90° + 2x = 180° (∠ sum of Δ) (L13) x = 30° Marking Scheme: Case 1 Any correct proof with correct reasons. In addition, any relevant correct argument with correct reason (at most 1 mark). Case 3 Any relevant correct argument with correct reason. 1 At most 1 mark At most 1 mark	1.			•		1
Refer to Figure 9B, and let ∠CQP = x. (L10) ∠TPO = ∠CQP = x (∠ in alt. segment) (L11) ∠TPQ = 90° (∠ in semicircle) (L12) ∴ 30° + 90° + 2x = 180° (∠ sum of △) (L13) x = 30° Marking Scheme: Case 1 Any correct proof with correct reasons. In addition, any relevant correct argument with correct reason (at most 1 mark). Case 3 Any relevant correct argument with correct reason. 1 At most 1 mark	1' '			·		
(L10) ∠TPO = ∠CQP = x (∠ in alt. segment) [交鳍弓形的圓周角]、[纺灯定理] (L11) ∠TPQ = 90° (∠ in semicircle) [华圓上的圓周角] (L12) ∴ 30° + 90° + 2x = 180° (∠ sum of Δ) [△内角和] (L13) x = 30° Marking Scheme: Case 1 Any correct proof with correct reasons. 3 Case 2 Any correct proof without reasons. 1 In addition, any relevant correct argument with correct reason (at most 1 mark). At most 2 marks Case 3 Any relevant correct argument with correct reason. 1 At most 1 mark			let /COP = r			
(L12) : 30° + 90° + 2x = 180° (∠ sum of △) [△内角和] (L13) x = 30° Marking Scheme: Case 1 Any correct proof with correct reasons. 3 Case 2 Any correct proof without reasons. 1 In addition, any relevant correct argument with correct reason 1 At most 2 marks (at most 1 mark). Case 3 Any relevant correct argument with correct reason. 1 At most 1 mark				(∠ in alt. segment)		[交錯弓形的圓周角]、[弦切 定理]
(L12) : 30° + 90° + 2x = 180° (∠ sum of △) [△內角和] (L13) x = 30° Marking Scheme: Case ! Any correct proof with correct reasons. 3 Case 2 Any correct proof without reasons. 1 In addition, any relevant correct argument with correct reason (at most 1 mark). Case 3 Any relevant correct argument with correct reason. 1 At most 1 mark	(L11)	$\angle TPQ = 90^{\circ}$	•	(∠ in semicircle)		[半圓上的圓周角]
Marking Scheme: Case 1 Any correct proof with correct reasons. 3 Case 2 Any correct proof without reasons. 1 In addition, any relevant correct argument with correct reason 1 At most 2 marks (at most 1 mark). Case 3 Any relevant correct argument with correct reason. 1 At most 1 mark	(L12)	∴ 30° + 90	$0^{\circ} + 2x = 180^{\circ}$	(∠ sum of ∆)		[△ 内角 和]
Case 1 Any correct proof with correct reasons. Case 2 Any correct proof without reasons. In addition, any relevant correct argument with correct reason (at most 1 mark). Case 3 Any relevant correct argument with correct reason. 1 At most 1 mark At most 1 mark	(L13)	x = 30°	_,			
Case 1 Any correct proof with correct reasons. Case 2 Any correct proof without reasons. In addition, any relevant correct argument with correct reason (at most 1 mark). Case 3 Any relevant correct argument with correct reason. 1 At most 1 mark At most 1 mark	Marki	ng Scheme :				
In addition, any relevant correct argument with correct reason 1 At most 2 marks (at most 1 mark). Case 3 Any relevant correct argument with correct reason. 1 At most 1 mark			proof with correct	reasons.		
Case 3 Any relevant correct argument with correct reason. 1 At most I mark	Case 2	In addition,	any relevant corre			At most 2 marks
Case 3 Any reterant correst against	Core 3			t with correct reason.	1	At most I mark
(3)	Case 3	Ally Icicvan	ir correct at Battlett			-
					(3)	

		Remarks
(b) (i)		
(L14) $\angle ROQ = \angle QOP = 30^{\circ}$ (tangents from ext. pt.)		(tangent properties) [切線性質/定理]
(L15) ∠PQO = 30° (proved)	ı	
(L16) : $\angle RQP + \angle POR = 180^{\circ}$ (opp. $\angle s$ of cyclic quad.)		[圓內接四邊形的對角]
(L17) $\angle CQR = 180^{\circ} - 3 \times 30^{\circ} = 90^{\circ}$		
(L18) Hence RQ is tangent to circle (conv. of tangent 1 radius). PQS at Q.		[切錄上字徑的逆定理]
Marking Scheme :	1.4.4	-
Case I Any correct proof with correct reasons.	3	
Case 2 Any correct proof without reasons.	1	
In addition, any relevant correct argument with correct reason (at most 1 mark).	1	At most 2 marks
Case 3 Any relevant correct argument with correct reason.	1	At most 1 mark
	(3)	
(b) (ii) \therefore Slope of $OC = \frac{4}{3}$		
3	ŧΜ	
$\therefore \text{Slope of } QR = -\frac{3}{4}$	(IVI	
$OC = \sqrt{6^2 + 8^2} = 10$	1 A	
$\overrightarrow{CQ} \stackrel{\triangle}{=} CP = OC \sin 30^{\circ} \stackrel{\triangle}{=} 5$	IM	
Let the coordinates of Q be (x, y) .		
OC: CQ = 10:5 = 2:1		
$\therefore \frac{2x+1(0)}{3}=6 \text{ and } \frac{2y+1(0)}{3}=8$	1M	
Equation of circle: $(x-6)^2 + (y-8)^2 = 25$		
$x^2 + y^2 - 12x - 16y + 75 = 0$ (1)		
Equation of <i>OC</i> : $y = \frac{4}{3}x$ (2)		
Solving (1) and (2), $x^2 - 12x + 27 = 0$ (or $y^2 - 16y + 48 = 0$)		
x = 3 (rej.) or 9 (or $y = 4$ (rej.) or 12) x = 9 and $y = 12$	1M	must reject the smaller root
x = y and $y = 12$		
Hence the equation of QR is		
$\frac{y-12}{y-9} = -\frac{3}{4}$		
2 2 1		
$3x+4y-75=0$ (or $y=-\frac{3}{4}x+\frac{75}{4}$)	_IA_	
,	(5)	
1		
•		
ļ		

Solution	Marks	Remarks
(a) (i) $AD = \frac{h}{\sin 30^{\circ}} \text{ m} = 2h \text{ m}$	1A	u−1 for missing unit
$BD = \frac{h+10}{\sin 60^{\circ}} \text{ m} \neq \frac{2}{\sqrt{3}} (h+10) ; \text{m} = \frac{2\sqrt{3}}{3} (h+10) \text{ m}$	1 A	
(ii) $AB^2 = 10^2 + 10^2 \text{ (m}^2\text{)}$	1A	or $AB = \sqrt{200}$, $\frac{10}{\sin 45^{\circ}}$ m etc
By cosine law, $AB^2 = AD^2 + DB^2 - 2(AD)(DB) \cos \angle ADB$		•
$200 = \left(\frac{h}{\sin 30^{\circ}}\right)^{2} + \left(\frac{h+10}{\sin 60^{\circ}}\right)^{2} - 2\left(\frac{h}{\sin 30^{\circ}}\right)\left(\frac{h+10}{\sin 60^{\circ}}\right)\cos 30^{\circ}$	1M+IA	Do not accept setting $AD = BE$
$200 = 4h^2 + \frac{4}{3}(h+10)^2 - 4h(h+10)$		
$h^2 - 10h - 50 = 0$	1A	or multiples
h = 13.660 or -3.660		or 5±5√3
h ≈ 13.7 or -3.66 (rejected)	1A	or h≈ 13.7 only
$5+5\sqrt{3}$ or $5-5\sqrt{3}$ (rejected)		
Vertical 30° 60° D	(7)	
(b) $AC = 2(10 \sin 10^\circ)$ (m) $\sqrt{10^2 + 10^2 - 2(10)(10)\cos 20^\circ}$ (m) ≈ 3.47296 (m) $AE = \frac{h}{\sin 25^\circ}$ (m) ≈ 32.3 (m)	1A	
By sine law, $\sin \angle ACE = \frac{AE \sin 5^{\circ}}{AC}$		
AC hsin 5°		
≈ 738115 20 sin 10° sin 25°	1 M	
$\therefore \angle ACE = 54.2^{\circ} \text{ or } 126^{\circ} \frac{54^{\circ}13' \text{ or } 126^{\circ}}{54^{\circ}13' \text{ or } 126^{\circ}}$. iA+ 1A. (4)	r.t. 54.2 , 126
		i

			S	olution	·	Marks	Remarks
18. ((a) Let $V = ah^2 + bh^3$ where a , b are non-zero constants. Then $\begin{cases} \frac{29}{3}\pi = a + b & \begin{cases} a + b = \frac{29}{3}\pi \end{cases} & \dots & (1) \\ 81\pi = 9a + 27b & \begin{cases} a + b = \frac{29}{3}\pi \end{cases} & \dots & (2) \end{cases}$				And the second s	IA IM	
			(2) – (1) gives $2b = -$	$\frac{2}{3}\pi$			
			Hence $b = -\frac{\pi}{3}$ and	a = 10π		1A	
		<i>:</i> .	$V = 10\pi h^2 - \frac{\pi}{3}h^3$		P. h cm	 	
			3			(3)	
					0	:	
((b)	(i)	Surface area = $2x \times 10^3$ $\approx 628 \text{ cm}^3$:m²)	1A	r.t. 628
		6i)	∵ Volume of hemisp	where $=\frac{2}{\pi} \times 10^3$ (c	:m³)	1A	
		12	$\therefore \frac{2}{3}\pi \times 10^3 - 2V =$	-			
				$\frac{\pi}{3} h^3 = \frac{1400}{3} \pi$		· IM	
			$\frac{2}{3}\pi(1000-30h^2)$	$+h^3-700)=0$			
			$3 - 30h^2 + 300 =$			1	
			From the graph in	Figure 11.3,	(4 Setos)	ĬМ	or claiming to draw $y = -300$, writing $h \approx 3.35$, $h \approx 3.4$ etc.
			Let $f(h) = h^3 - 30h^2 +$	300 , then f(3.3) >	0 and f(3.4) < 0.		
			Using the method of bit			1	
			Interval	"mid-value"	f(h)		use interval ⊆ [0, 5] containing the root as the starting interval
			3.3 < h < 3.4	3.35	+ve (0.9204)	IM	testing sign of "mid-value" or any intermediate value
			3.35 < h < 3.4	3.375	-ve (-3.2754)	1M	choosing the correct interval
			3.35 < h < 3.375	3.363	-ve (-1.2583)	1	
			3.35 < h < 3.363	3.357 3.354	-ve (-0.2519) +ve (0.2507)		
			3.35 < h < 3.357 3.354 < h < 3.357	3.356	-ve (-0.0843)		
			3.354 < h < 3.356	3,355	+ve (0.0832)		
			. 3,355 < h < 3.356		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	
			h≈3.36 (correc	t to 2 decimal places	5)	1A	f.t.
			Let $f(h) = h^3 - 30h^2 + \frac{1}{2}$	-300 .			
			$f(3,34) \approx 2.5917$ $f(3,35) \approx 0.9203$ $f(3,36) \approx -0.7549$	f(3.355) ≈	0.0832	IM+IM	
			f(3,37) =-2,4342		•)	[A	£t.
			∴ n ≈ 3.30 (correc	t to 2 decimal place	»į	U.Ci	
						(8)	
							I